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Abstract

Joint models for longitudinal and survival data now have a long history of being used in clinical 

trials or other studies in which the goal is to assess a treatment effect while accounting for a 

longitudinal biomarker such as patient-reported outcomes or immune responses. Although 

software has been developed for fitting the joint model, no software packages are currently 

available for simultaneously fitting the joint model and assessing the fit of the longitudinal 

component and the survival component of the model separately as well as the contribution of the 

longitudinal data to the fit of the survival model. To fulfill this need, we develop a SAS macro, 

called JMFit. JMFit implements a variety of popular joint models and provides several model 

assessment measures including the decomposition of AIC and BIC as well as ΔAIC and ΔBIC 

recently developed in Zhang et al. (2014). Examples with real and simulated data are provided to 

illustrate the use of JMFit.

Keywords

AIC; BIC; Patient-reported outcome (PRO); Shared parameter model; Time-varying covariates

1. Introduction

The joint analysis of longitudinal and time-to-event outcomes has been widely published in 

statistical journals. One popular approach in joint modeling of longitudinal and survival data 

is based on shared random effects, where the longitudinal model and survival model share 
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common random effects and these random effects then induce correlation between the 

longitudinal and survival components of the model. This family of joint models is also called 

the “shared parameter models” (SPMs). There are two basic formulations of SPMs. The first 

is the “time trajectory model”, denoted by SPM1, where one essentially substitutes the 

polynomial time trajectory function from the longitudinal model into the hazard function of 

the survival model, and in this case, the trajectory function acts like a time-varying covariate 

in the survival model. The second formulation, denoted by SPM2, is to directly include the 

random effects as covariates in the survival model. There are several R packages available in 

fitting joint models based on shared random effects, including JM (Rizopoulos 2012), 

JMbayes (Rizopoulos 2014), and joineR (Philipson et al. 2012). There is also a Stata 

module stjm (Crowther 2012; Crowther et al. 2013), which estimates shared random effects 

models. In addition, another R package, lcmm (Proust-Lima et al. 2014), estimates joint 

models based on shared latent classes.

One important issue in the joint modeling of longitudinal and survival data concerns the 

separate contribution of the model components to the overall goodness-of-fit of the joint 

model. Recently, Zhang et al. (2014) derived a novel decomposition of the AIC and BIC 

criteria into additive components that will allow us to assess the goodness of fit for each 

component of the joint model. Such a decomposition leads to the development of ΔAIC and 

ΔBIC, which quantify the change of AIC and BIC in fitting the survival data with and 

without using the longitudinal data. Thus, ΔAIC and ΔBIC can be used to determine the 

importance of the longitudinal data relative to the model fit of the survival data. In addition, 

ΔAIC and ΔBIC are also very useful in assessing whether a linear trajectory or quadratic 

trajectory is more suitable and also facilitating a direct comparison between SPM1's and 

SPM2's. These measures will help the data analyst in not only assessing each component of 

the joint model but also in determining the contribution of the longitudinal measures to the 

fit of the survival data. These newly developed model assessment criteria are not available in 

any of these packages or module mentioned before. We mention here that the methodology 

for ΔAIC and ΔBIC was fully developed in Zhang et al. (2014), but our goal here is the 

novel implementation of this methodology into user-friendly software along with a class of 

joint models for jointly analyzing longitudinal and time-to-event data.

This paper introduces JMFit, a SAS macro, that will allow us to fit the SPM1, SPM2, time-

varying covariates, and two-stage models as well as to assess the goodness-of-fit of each of 

the longitudinal and survival components in the joint model. A detailed analysis of the 

longitudinal and survival data from a cancer clinical trial as well as an analysis of the 

simulated data are carried out to illustrate the functionality of JMFit. A detailed description 

of JMFit is given in Appendix A.

2. The models and model assessment

2.1. The joint models

Suppose that there are n subjects. For the ith subject, let yi(t) denote the longitudinal 

measure, which is observed at time t ∈ {ai1, ai2, . . . , aimi}, where 0 ≤ ai1 < ai2 < ··· < aimi 
and mi ≥ 1. Here, yi(0) denotes the baseline value of the longitudinal measure. Let ti and δi 

be the failure time and the censoring indicator such that δi = 1 if ti is a failure time and 0 if ti 
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is right-censored for the ith subject. We further let xi(t) and zi denote a pL-dimensional 

vector of time-dependent covariates and a pS-dimensional vector of baseline covariates, 

respectively. The joint model for (yi, ti) consists of the longitudinal component and the 

survival component.

For the longitudinal component, a mixed effects regression model is assumed for yi(t), which 

takes the form:

(1)

where  is a polynomial vector of order q for j = 1, . . . , mi, θi is 

a (q + 1)-dimensional vector of random effects, and γ is a p-dimensional vector of 

regression coefficients. In (1), we further assume θi ~ N(θ, Ω), where θ is the (q +1)-

dimensional vector of the overall effects, Ω is a (q + 1) × (q + 1) positive definite covariance 

matrix with the lower triangle consisting of {Ω00, Ω10, Ω11, . . . , Ωqq}, εi(aij) ~ N(0, σ2), and 

θi and εi(aij) are independent. We note that in (1), if q = 1,  and 

represents a linear trajectory, and if q = 2,  and  leads to a 

quadratic trajectory.

For the failure time ti, we assume that the hazard function takes the form

(2)

or

(3)

where λ0(t) is the baseline hazard function, β is a one-dimensional regression coefficient in 

(2) and β is a (q + 1)-dimensional vector of the regression coefficients in (3). Note that in (2) 

or (3), θi and g(t) are the parameters and the functions from the longitudinal component of 

the joint model in (1) while λ0, β (or β), and α are the only parameters pertaining to the 

survival component. As shown in Section 3.1, β (or β) controls the association between the 

longitudinal marker and the time-to-event. A value of β = 0 (or β = 0) implies no association 

between the longitudinal marker and the time-to-event. The joint model with hazard function 

specified in (2) is the trajectory model, denoted by SPM1, while the one with hazard 

function given by (3) is denoted by SPM2. Under SPM1, a positive value of β implies that a 

larger current value of the longitudinal marker is associated with a larger instantaneous 

hazard, whereas a negative value of β implies that a larger current value of the longitudinal 

marker is associated with a smaller instantaneous hazard.
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2.2. The construction of the piecewise constant baseline hazard function

Assuming λ0(t) to be a piecewise constant baseline hazard function, we partition the time 

axis into J intervals with . Then we assign a constant 

baseline hazard to each of the J intervals, that is,

(4)

Let  be the n* event times of the ti's, where . We consider 

four algorithms to construct the 's.

Algorithm 1: Equally-Spaced Quantile Partition (ESQP)

Step 1: Compute pj = j/J for j = 1, . . . , J − 1.

Step 2: Let nj = [pjn*], which is the integer part of pjn*.

Step 3: Set

(5)

for j = 1, . . . , J − 1.

The ESQP is a popular approach to construct the piecewise constant hazard function, which 

is discussed in Ibrahim et al. (2001, Chapter 5) and also implemented in the R package JM 

developed by Rizopoulos (2010). We note that  is the pjth quantile of the 's and (5) is 

implemented in the SAS UNIVARIATE procedure as the default option for computing 

quantiles. We also note that the ESQP algorithm does not yield nested partitions in the sense 

that  is not necessarily a subset of  when J1 < J2. In 

order to construct partitions, we propose the following three bi-sectional quantile partition 

algorithms.

Algorithm 2: Left Bi-Sectional Quantile Partition (LBSQP)

Step 1: Decompose J into two parts:

(6)

where K and M are integers, and M < 2K. In (6), K = [log J/ log 2], and then M 
= J − 2K.

Step 2: Compute

(i) ak = k/2K, for k = 1, . . . , 2K − 1; and
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(ii) bm = (2m − 1)/2K+1, for m = 1, . . . , M(≥ 1).

Step 3: Sort {a1, . . . , a2K − 1, b1, . . . , bM} in ascending order and the resulting 

ordered J − 1 values are devoted by p1 ≤ p2 ≤ ··· ≤ pJ−1.

Step 4: Use Steps 2 and 3 of Algorithm 1 to compute .

Algorithm 3: Middle Bi-Sectional Quantile Partition (MBSQP)

Step 1: The same as Algorithm 2.

Step 2: Compute

(i) ak = k/2K, for k = 1, . . . , 2K − 1; and

(ii) for m = 1, . . . , M(≥ 1),

(a) bm = (2K − m)/2K+1, for m = 1, 3, 5, . . . ; and

(b) bm = (2K + m − 1)/2K+1, for m = 2, 4, 6, . . . .

Steps 3 and 4: The same as Algorithm 2.

Algorithm 4: Right Bi-Sectional Quantile Partition (RBSQP)

Step 1: The same as Algorithm 2.

Step 2: Compute

(i) ak = k/2K, for k = 1, . . . , 2K − 1; and

(ii) bm = (2K+1 − (2m − 1))/2K+1, for m = 1, . . . , M(≥ 1).

Steps 3 and 4: The same as Algorithm 2.

If there are ties in , say , the interval ( , ] is undefined. Thus 

we only use distinct values of the . Let Jt denote the number of ties in . 

Then the number of distinct intervals reduces to J − Jt.

Figure 1 shows how the partition intervals are constructed based on LBSQP, MBSQP, and 

RBSQP. Notice that when J = 2K, K = 1, 2, . . . , ESQP, LBSQP, MBSQP, and RBSQP yield 

the same partition. LBSQP, MBSQP, and RBSQP are desirable when there are more events 

at the beginning, in the middle, and at the end of the follow-up period, respectively. Another 

advantage of LBSQP, MBSQP, and RBSQP is that the resulting partitions are nested and, 

hence, the log-likelihood of the joint model increases in J when the longitudinal component 

remains fixed.

2.3. The joint likelihood

We rewrite (1) as follows:
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where , , and 

. The complete-data likelihood function of the 

longitudinal measures for the ith subject is given by

(7)

for i = 1, . . . , n. Note that the density of θi is given by

(8)

Let φ = (λ, β, α, γ, σ2, θ, Ω). Using (2) (or (3)), (7), and (8), the observed-data likelihood 

function for (yi, ti, δi) for the ith subject is given by

(9)

where the complete-data likelihood function for the survival component is written as

(10)

for i = 1, . . . , n. In (2) (or (3)), when β = 0 (or β = 0), the hazard function reduces to λ(t|λ0, 

α, zi) = λ0(t) exp( ). In this case, we fit the survival data alone and the likelihood 

function in (10) for the ith subject reduces to

(11)

Letting Dobs = {(yi, ti, δi, xi, zi), i = 1, . . . , n} denote the observed data, the joint likelihood 

for all subjects is given by
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(12)

2.4. AIC (BIC) decomposition and ΔAIC (ΔBIC)

Write φ1 = (γ, σ2, θ, Ω) and φ2 = (λ, β, α). Let f(θi|yi, Wi, φ1) be the conditional density of 

the random effects θi given yi, and also let L(φ1|yi, Wi) = ∫L(γ, σ2|yi, Wi, θi)f(θi|θ, Ω)dθi, 

which is the likelihood function corresponding to the marginal distribution of yi. Following 

Zhang et al. (2014), the joint likelihood given in (12) can be decomposed as

(13)

where  and 

. Using (13), 

the decomposition of the total Akaike Information Criterion (AIC) (Akaike 1973) developed 

in Zhang et al. (2014) is given as

where , 

, 

, and , , and  are the 

maximum likelihood estimates (MLEs) of φ, φ1 and φ2. Similarly, the total Bayesian 

Information Criterion (BIC) (Schwarz 1978) for the joint model can be decomposed into

where BIC = AIC+dim(θ)(log n-2), BICLong = AICLong+dim(φ1)(log n−2), BICSurv|Long = 

AICSurv|Long + dim(φ2)(log n−2). Using the decompositions of AIC and BIC, Zhang et al. 
(2014) proposed two new model assessment criteria given by

where
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and L0(λ, α|ti, δi, zi) is defined by (11). The ΔAIC or ΔBIC measure the gain of the fit in the 

survival component due to the longitudinal data with a penalty for the additional parameters 

in the survival component of the joint model. The model with a large value of ΔAIC (ΔBIC) 

is more preferred.

3. The SAS macro JMFit

3.1. Design

The SAS macro JMFit has been developed to assess model fit in joint models of longitudinal 

and survival data. In fact, it can fit five models, including the two types of joint models with 

linear and quadratic trajectories, as well as the time-varying covariates model. The macro 

JMFit consists of five submacros, SPM1L, SPM1Q, SPM2L, SPM2Q, and TVC, 

corresponding to the five models, respectively. The MODEL argument of JMFit specifies 

one of the following five models to be fitted:

SPM1L: SPM1 with Linear trajectory. The hazard function has the form

SPM1Q: SPM1 with Quadratic trajectory. The hazard function has the form

SPM2L: SPM2 with Linear trajectory. The hazard function has the form

where θ0i and θ1i are subject-level random intercept and random slope.

SPM2Q: SPM2 with Quadratic trajectory. The hazard function has the form

where θ0i, θ1i, and θ2i are random effects (i.e., random intercept, random 

slope, and random quadratic coefficient).

TVC: Time-Varying Covariates model. The hazard function has the form

where yi(t) = yi(aij) for aij ≤ t < ai,j+1 for j = 1, . . . , mi, where ai,mi+1 = ∞. 

Note that the TVC model is a“non-joint”model, and the use of this model has 

great potential for bias (Fisher and Lin 1999).

Zhang et al. Page 8

J Stat Softw. Author manuscript; available in PMC 2016 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We provide the two versions of SPM1L, SPM1Q, SPM2L, and SPM2Q with the TS 

argument. If TS is missing or equal to 0, the joint model will be fit; while “TS=1” yields the 

corresponding two-stage model. Similar to the method in Tsiatis et al. (1995), (i) we first fit 

the linear mixed model specified in (1) to the longitudinal data alone and then obtain the 

estimates of θi, denoted by ; and (ii) we replace θi in (2) or (3) with the estimate  at the 

second stage. The only difference between the joint model and the corresponding two-stage 

model is that θi in (2) or (3) is replaced with the estimate . This two-stage approach may 

potentially lead to biased and inefficient estimates (Ibrahim et al. 2010).

The number of intervals J (≥ 1) for the piecewise constant baseline hazard function needs to 

be specified in the NPIECES argument. For the PARTITION argument, “1” represents 

“ESQP”, “2” represents “LBSQP”, “3” represents “MBSQP”, and “4” represents “RBSQP”.

JMFit automatically produces a rich text file (rtf) including five tables: (i) Number of 

Subjects; (ii) Fit Statistics; (iii) Survival Parameter Estimates (Survival Alone); (iv) 

Parameter Estimates; and (v) Hazard Ratios & λ Estimates.

3.2. Implementation details

If the observed longitudinal measures are sparse, the full trajectories of longitudinal 

measures might not be well estimated. For example, in the case of fitting a quadratic 

trajectory, the sign of the estimated second-order coefficient could be incorrect if the 

longitudinal measures were observed only within the first half of the follow-up period, 

leading to incorrect extrapolation when the observed progression time was far beyond the 

time of the last observed longitudinal measure.

Let tmax,i = max1≤jmi{aij}. When t > tmax,i, yi(t) is never observed and no longitudinal data 

are available to estimate the trajectory  for t > tmax,i. Under SPM1, the extrapolation 

of the trajectory  beyond tmax,i may lead to a survival component of the joint model 

that fits the survival data poorly. In addition, such an extrapolation also causes a severe 

convergence problem in the SAS NLMIXED (SAS Institute Inc. 2011b) procedure 

especially when tmax,i < < ti for many subjects. To circumvent these issues, for SPM1, we 

modify the hazard function in (2) as

(14)

or
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(15)

where , , w(∈
[0,1]) is the proportion of max(ti − tmax,i,0), and τ = max1≤i≤n{ti}, which is the last follow-up 

survival time. If w = 0 (default), tmax,i will be the starting point of the modified extrapolation 

of the trajectory; while w = 1 implies that the trajectory extends to ti with no tmax,i 

adjustment. This modification can also be applied to the TS model corresponding to SPM1L 

or SPM1Q. There are two arguments called TMAXI and WEIGHT. If TMAXI is missing or 

equal to 0, no tmax,i adjustment will be applied. If TMAXI=1, the tmax,i adjustment based on 

hazard function given in (14) will be applied with weight given in the WEIGHT argument, 

that is, the trajectory will become flat after . If TMAXI=2, the tmax,i adjustment based 

on hazard function given in (15) will be applied with weight given in the WEIGHT 

argument, that is, starting at , the trajectory will linearly go down to 0 at the last 

follow-up survival time. An “optimal” choice of weight w in conjunction with TMAXI 

option may be determined by either AICSurv|Long or BICSurv|Long. The purpose of defining 

tmax,i is that we create an extrapolation of the longitudinal measures so that the trajectory 

function can be well estimated. This extrapolation is needed when there are few longitudinal 

measures at later points. We note here that the tmax,i method corresponds to a “Prediction 

Carried Forward” approach, which may potentially induce bias in the estimation. We also 

note that this is not an issue for the SPM2, in which the hazard function is independent of 

g(t).

The OPTIONS argument allows users to specify options (e.g., integration method, 

optimization technique, and convergence criteria) that are available in the PROC NLMIXED 

statement. If OPTIONS is missing, JMFit will use adaptive Gaussian quadrature to 

approximate the integral of the likelihood over the random effects, perform a quasi-Newton 

optimization, and apply a relative gradient convergence criterion of 10−8. All the methods 

mentioned above are default methods in PROC NLMIXED. The Riemann integral is used to 

compute the cumulative hazard function for the trajectory models. Each time interval is 

divided into 200 subintervals.

A big challenge in fitting joint models using the SAS NLMIXED procedure is convergence. 

Poor initial values may lead to the failure of convergence in NLMIXED. To address this 

issue, we first fit the longitudinal data alone using the SAS MIXED procedure to obtain the 

estimates, , , , , , for the parameters in the longitudinal component of the joint model. 

Using ( , i = 1, . . . , n) to replace (θi, i = 1, . . . , n) in (2) (or (3)), we fit the survival data 

alone to obtain the estimates, , (or ), , and , for the parameters in the survival 
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component of the joint model. Finally, these estimates are used as the initial values for the 

joint model.

JMFit does not exclude any longitudinal measures for the joint models. If one wishes to 

exclude the longitudinal measures observed after the survival time ti, those longitudinal 

measures should be pre-excluded in the input longitudinal data for JMFit. “CAUTION: 

Longitudinal measures are observed after the survival time.” will be given at the end of the 

output file if there are any longitudinal measures observed after the survival time.

4. Examples

4.1. The EMPHACIS data

To illustrate how JMFit works, we use the data from a multicenter, randomized, single-blind, 

EMPHACIS lung cancer clinical trial (Evaluation of MTA in Mesothelioma in a Phase III 

Study with Cisplatin). The study drug was a multi-targeted antifolate (MTA) pemetrexed 

which was given in combination with cisplatin (the PEM/Cis arm), and the active-treatment 

comparator was cisplatin alone (the Cis arm). The treatment for both arms was structured as 

six 21-day cycles of therapy; patients receiving treatment benefit could receive additional 

cycles based on investigator discretion.

Malignant pleural mesothelioma is a rapidly progressing and highly symptomatic 

malignancy with a median survival time of 6 to 9 months. Accordingly, patient-reported 

assessments are important for evaluation of disease progression and patients’ response to 

therapy. In oncology, the patients’ importance ratings on the magnitude of progression-free 

survival improvement have been shown to depend on the severity of disease-related 

symptoms (Bridges et al. 2012). We analyzed the disease-specific patient-reported Lung 

Cancer Symptom Scales (LCSS) to evaluate the patient-level association of five instrument 

items, anorexia, cough, dyspnea, fatigue, and pain, with progression-free survival using 

EMPHACIS trial data.

We consider the same subset of the EMPHACIS data as in Zhang et al. (2014), which 

consists of 425 patients with at least one post-baseline value of each longitudinal measure 

and seven binary covariates, including therapy (1=pemetrexed/cisplatin and 0=cisplatin 

alone), race (1=white and 0=others), gender (1=male and 0=female), age (1=‘≥ 65’ and 0=‘< 

65’), Karnofsky (1=‘90-100’ and 0=‘<90’), stage (1=stage I/II and 0=stage III/IV), and bf 

(1=full vitamin supplementation and 0=other). The detailed description of this study can be 

found in Zhang et al. (2014). By applying joint models in this study, we compare the 

longitudinal LCSS symptoms in terms of their contribution to the overall fit of survival data 

via ΔAIC and ΔBIC, which are computed using JMFit.

Suppose we fit the trajectory model with a linear trajectory and J = 3 for pain. Then we 

create two data sets named as “lcss_long_pain” and “lcss_surv_pain” for the macro JMFit's 

LONG and SURV options, respectively. The MODEL option is set to “SPM1L” and TS is 

set to 0. We assign 1 to TMAXI for tmax,i adjustment with WEIGHT=0. The NPIECES 

option is set to 3 and the PARTITION option is set to 2 for the LBSQP algorithm.
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JMFit is called:

%JMFit(LONG = lcss_long_pain, SURV = lcss_surv_pain, MODEL = SPM1L, TS = 0, 

TMAXI = 1, WEIGHT = 0, NPIECES = 3, PARTITION = 2);

The rtf file “Output for pain under SPM1L with J = 3 (Partition=2).rtf” is generated by 

JMFit, which lists five tables. Table “Number of Subjects” given in Figure 2 shows that there 

are 425 patients in data sets lcss_long_pain and lcss_surv_pain, respectively, and 425 

subjects are used, implying that the id's of the subjects in these two data sets match.

Figure 3 shows the“Fit Statistics”table, which consists of the log likelihood, AICLong 

(BICLong), AICSurv (BICSurv), and ΔAIC (ΔBIC). Inside the JMFit macro, PROC 

NLMIXED provides the log likelihood, AIC and BIC, and PROC IML (SAS Institute Inc. 

2011a) is used to compute AICLong and BICLong.

Next, the table, titled “Survival Parameter Estimates (Survival Alone)” shown in Figure 4, is 

obtained by fitting the survival data alone. For this table, the estimate, the standard error 

(SE), the degrees of freedom (DF), the t-value, the p-value, and the 95% confidence interval 

(CI) are all shown for each parameter. In addition, the gradient of the negative log-likelihood 

function is displayed, which can be used to check convergence of PROC NLMIXED. A 

small gradient implies better convergence. The largest absolute value of the gradients shown 

in Figure 4 is 0.00322, indicating good convergence of PROC NLMIXED.

PROC NLMIXED produces the table titled “Parameter Estimates” in Figure 5, which 

consists of three subtables: “Covariance Parameter Estimates”, “Longitudinal Parameter 

Estimates”, and “Survival Parameter Estimates”. For each parameter in this table, the 

estimate, SE, DF, t value, p value, 95% CI, and gradient are all provided. The Subtable 

“Covariance Parameter Estimates” consists of the estimates of the three lower-triangle 

elements (Ω00, Ω10, Ω11) of the random-effects covariance matrix as well as the estimate of 

the standard deviation (σ) for the error term. The estimates of the coefficients of the 

variables from the longitudinal component are shown in Subtable “Longitudinal Parameter 

Estimates”. In Subtable “Survival Parameter Estimates”, “Param/Var” lists all the names of 

the variables as well as the parameters from the survival component. In this subtable, log λ1, 

log λ2, and log λ3 are the natural logarithms of the piecewise baseline hazards for the three 

intervals, respectively. The hazard ratios of the covariates and β as well as the estimates of λ 
are shown in Figure 6. From Figure 5, we see that therapy has p-values of 0.1451 and <.0001 

in the longitudinal and survival submodels, respectively, indicating that therapy is not 

statistically significant at the 0.05 level in the longitudinal submodel and it is highly 

significant in the survival submodel. Also, from Figure 6, the estimated hazard ratio of 

therapy in the survival model is 0.6272 with a 95% CI of (0.508, 0.775), implying that the 

treatment reduces the risk of disease progression by about 37%. From Figure 5, we also see 

that (i) karnofsky is highly significant in both the longitudinal and survival submodels and 

(ii) the other significant variables in the survival submodel include the coefficient β 
corresponding to the linear trajectory and stage. A significant coefficient β indicates that 

pain is highly associated with disease progression.
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From the “Fit Statistics” tables in Figure 3 and Figure 7, we see that pain had the largest 

values of ΔAIC and ΔBIC and cough had the smallest values of ΔAIC and ΔBIC, which 

indicate that pain led to the most gain in fitting the PFS data while cough had the least 

contribution to the fit of the PFS data.

Since ΔAIC = AICSurv,0 − AICSurv|Long, both AICSurv,0 and AICSurv|Long change when J 
changes. Thus, the “best J” based on ΔAIC may not necessarily lead to the best survival 

submodel or the best joint model. As an illustration, Table 1 shows the values of 

AICSurv|Long and ΔAIC for pain under SPM1L with different partition algorithms and 

different J's. From Table 1, we see that (i) J = 7 (or J = 6) is the “best” choice according to 

ΔAIC; (ii) J = 2 is the “best” one based on AICSurv|Long; and (iii) the values of AICSurv|Long 

are 2175.29, 2175.29, and 2175.60 for LBSQP, MBSQP, and RBSQP when J = 7, which are 

much larger than those when J = 2. Since our goal is to fit the joint model to both the 

longitudinal data and the survival data, it is more appropriate to use AICSurv|Long to 

determine the number of intervals for the piecewise constant baseline hazard function.

Table 2 shows the values of AICSurv|Long for cough and pain under SPM1L with tmax,i 

adjustments using different w's. We can see from Table 2 that, among the five values of w, 

for both tmax,i adjustments, cough and pain have the smallest values of AICSurv|Long at w = 

0.25 and 0, respectively. For cough, the two tmax,i adjustments result in similar values of 

AICSurv|Long; and for pain, TMAXI=2 slightly outperforms TMAXI=1. In addition, both 

cough and pain have the largest values of AICSurv|Long at w = 1, indicating that the full 

trajectories were not well estimated.

4.2. A simulated data example

Since we do not have permission to distribute the EMPHACIS dataset used in Section 4.1 

publicly, we consider a simulated data example, in which the simulated data can be 

downloaded directly from the journal's website.

We generated a simulated data set with n = 400 subjects as follows. First, the time points 

(aij's) at which the longitudinal measures were taken were fixed at (0, 21, 42, 63, 84, 105, 

126)/30.4375. For each subject, we generated seven binary covariates, (xi1, . . . , xi7), 

independently from Bernoulli distributions with success probabilities (i.e., P(xij = 1), j = 

1, . . . , 7)) 0.49, 0.92, 0.81, 0.49, 0.38, 0.56, and 0.74, respectively. These proportions were 

estimated from the EMPHACIS data, corresponding to the covariates treatment, race/

ethnicity, gender, age, Karnofsky status, baseline stage of disease, and vitamin 

supplementation, respectively. Second, we simulated the longitudinal trajectory as

where θ0 = 0.62, θ1 = 0.04, , and 

. Finally, we generated the longitudinal data from 

a N(μi(aij), σ2) distribution with σ = 0.54 and  as
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where , β1 = 0.26, β2 = 1.17, λ = 

exp(−1.67), and U ~ U(0,1). This longitudinal dataset is denoted by DLong. Note that the 

values of the parameters were obtained by fitting SPM2L to the EMPHACIS data in which 

the longitudinal measure corresponds to pain. The censoring time Ci was generated from an 

exponential distribution with mean 50, and the right-censoring percentage was about 12%. 

The failure time and censoring indicator were calculated as  and 

, where 1{A} denotes the indicator function such that 1{A} = 1 if A is true 

and 0 otherwise. This survival dataset is denoted by DSurv.

We also generated three additional sets of longitudinal data, with longitudinal trajectories 

simulated from

where (i) ; (ii) 

; and (iii) . Then 

the longitudinal data were generated from a N(μℓi(aij), σ2) distribution with σ = 0.54 for ℓ = 

1, 2, 3. These three additional sets of longitudinal data were coupled with the same survival 

times as in DLong + DSurv to form three additional data sets. These resulting data sets are 

denoted by DLong1 + DSurv, DLong2 + DSurv, and DLong3 + DSurv. This simulation setting is 

similar to Simulation III in Zhang et al. (2014) except for the six additional covariates.

Figure 8 shows the fit statistics for DLong + DSurv, DLong1 + DSurv, DLong2 + DSurv, and 

DLong3 + DSurv, respectively, using JMFit. We see from Figure 8 that DLong + DSurv has the 

largest values of ΔAIC and ΔBIC.

The rest of the output for DLong + DSurv are provided in Appendix B. The output for 

DLongℓ+DSurv (ℓ = 1, 2, 3) are omitted here for brevity.

5. Concluding remarks

The JMFit SAS macro fits the joint models for longitudinal and survival data. The piecewise 

exponential constant hazard model is assumed for the baseline hazard function. The time-

axis is partitioned into J intervals, which are constructed by four algorithms, namely, ESQP, 

LBSQP, MBSQP, and RBSQP. JMFit allows users to specify the number of intervals J and 

the partition method. Five models, including SPM1L, SPM1Q, SPM2L, SPM2Q, and TVC, 

are implemented in JMFit. This SAS macro also computes AIC, BIC, ΔAIC, ΔBIC, and the 

estimates of the parameters in the joint model. The computational time of JMFit depends on 

which of SPM1L, SPM1Q, SPM2L, SPM2Q, or TVC is chosen and how big the dataset is. 
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For the example given in Section 4.1, it took 42 seconds to fit SPM1L with J = 3 based on 

LBSQP for pain on a Dell PC with an Intel i5 processor, 3.30 GHz CPU, and 8 GB of 

memory. On the same PC, it only took 10 to 11 seconds to fit SPM2L to each of the 

simulated datasets illustrated in Section 4.2.

The JMFit SAS macro provides two versions for SPM1L, SPM1Q, SPM2L, and SPM2Q 

with the TS argument, with “TS=1” yielding the corresponding two-stage model. Comparing 

these models with TS missing or equal to 0, for the two-stage models, (i) we first fit (1) to 

the longitudinal data alone and obtain the estimates of θi, denoted by ; and (ii) we then use 

 in (2) and (3). The TS models are also substantially different than the TVC model since 

the TS models do not require the LOCF assumption.

The current version of the JMFit SAS macro only fits linear and quadratic models for the 

longitudinal outcome and the piecewise constant baseline hazard function for the survival 

submodel. In the joint modeling framework, other dependence structures, such as 

dependence through the derivatives of the trajectory function or interactions with covariates 

as well as spline approximations to the baseline hazard could be assumed. In addition, other 

trajectory functions may be more appropriate to model the time effect on the longitudinal 

outcomes in certain applications. These additional features could be built in the JMFit macro 

in a future release.

Finally, we note that the EMPHACIS dataset used in this paper is proprietary and cannot be 

distributed publicly. However, the simulated datasets DSurv, DLong, DLong1, DLong2, and 

DLong3 are available for downloading from the journal website.
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A. The macro JMFit

The SAS macro JMFit as well as the five submacros should be stored in a folder named 

“jmfit”. Then JMFit can be accessed by including the following lines:

filename jmfit “directory of the file JMFit”;

%include jmfit(JMFit.sas);

%JMFit(LONG=, SURV=, MODEL=, TS=, TMAXI=, WEIGHT=, NPIECES=, PARTITION=, 

OPTIONS=, INITIAL=, OUTPUT=);

Inputs for JMFit

LONG: Data set with the first three columns, SID (subject ID), Y (longitudinal measure), A 

(time at which Y was taken), and additional columns for covariates (XL1-XLp), where SID, 

Y, and A should be arranged in the first, second, and third columns, and XL1, ···, XLp should 
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be placed after column 3, which can be enforced in SAS by using the “retain” command. 

Note that XL1, ..., XLp can be time-dependent or baseline covariates. Required.

SURV: Data set with the first three columns, SID, survival time (T), censoring indicator 

(delta) (1 = death and 0 = censored), and additional columns for covariates (XS1-XSq), where 

SID, T, and delta should be arranged in the first, second, and third columns, and XS1, . . . , 

XSq should be placed after column 3. Required.

MODEL: Model specification. Required. One of

1. SPM1L: Shared Parameter Model 1 with Linear trajectory.

2. SPM1Q: Shared Parameter Model 1 with Quadratic trajectory.

3. SPM2L: Shared Parameter Model 2 with Linear trajectory.

4. SPM2Q: Shared Parameter Model 2 with Quadratic trajectory.

5. TVC: Time-Varying Covariates Model.

TS: Indicates whether to implement the model specified in the MODEL argument or the 

corresponding two-stage model. If 0 (default), the model specified in the MODEL argument 

will be fit. If 1, the corresponding two-stage model will be fit instead. It only works for 

SPM1L, SPM1Q, SPM2L, and SPM2Q.

TMAXI: tmax,i adjustment to the model specified in the MODEL argument. If 0 (default), no 

tmax,i adjustment will be applied. If 1, the trajectory will become flat after 

. If 2, starting at , the trajectory will 

linearly go down to 0 at the last follow-up survival time. It only works for SPM1L and 

SPM1Q.

WEIGHT: The proportion (∈ [0, 1]) of max(ti − tmax,i, 0). If 0 (default), the starting point of 

the modified extrapolation of the trajectory is tmax,i. If 1, the trajectory extends to ti with no 

tmax,i adjustment. It only works when TMAXI=1 or TMAXI=2.

NPIECES: Number of intervals J (≥ 1) for the piecewise constant baseline hazard function.

Required.

PARTITION: Algorithm for constructing the partition of the time axis. Required. One of

(i) 1: Equally-Spaced Quantile Partition (ESQP).

(ii) 2: Left Bi-Sectional Quantile Partition (LBSQP).

(iii) 3: Middle Bi-Sectional Quantile Partition (MBSQP).

(iv) 4: Right Bi-Sectional Quantile Partition (RBSQP).

OPTIONS: Allows users to specify options that are available in the PROC NLMIXED 

statement. For example, “OPTIONS=%str(QPOINTS=5 TECH=CONGRA 

ABSGCONV=0.0001)” specifies Gaussian quadrature with five quadrature points for 
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approximating the integral of the likelihood over the random effects, the conjugate-gradient 

optimization, and an absolute gradient convergence criterion of 0.0001.

INITIAL: Allows users to set their own initial values. JMFit will automatically generate the 

starting values for the model parameters and these initial values will be stored in the data set 

“_initial”. Since the order of the parameters is very important when calculating AICLong and 

BICLong, users are recommended to change the initial values in “_initial” and then rename 

“_initial”.

OUTPUT: Name of the output rich text file (rtf). One can also specify the directory in which 

the file will be put. For example, the output file named “myoutput” will be stored in “C:

\ . . . ” by “%JMFit(..., OUTPUT = C: \. . . \myoutput);” If OUTPUT is not specified, the file 

will be indexed by the name of Y from LONG and the model's name.

Note 1: (i) The name of the SID variable in LONG should be the same as that 

of the SID variable in SURV; (ii) A and T should be in the same unit of time 

(month preferred); (iii) the categorical covariates must be coded as dummy 

variables; and (iv) the SAS macro allows for any numbers of covariates for 

both components of the joint model and the covariates for the longitudinal 

component can be totally different from those for the survival component.

Note 2: (i) “ERROR: Not enough memory to generate code.” This might occur 

if J is too big; (ii) a too long path for the OUTPUT may lead to an error; (iii) 

the macro is assuming “options validvarname=v7;” for valid variable names 

that can be processed in SAS; and (iv) the calculations of AICLong and 

BICLong require the IML Procedure.

Note 3: No missing values are allowed in both data sets.

Output for JMFit

The macro automatically produces an rtf file indexed by the name of Y from LONG and the 

model's name. The rtf file includes five tables: (i) Number of Subjects; (ii) Fit Statistics; (iii) 

Survival Parameter Estimates (Survival Alone); (iv) Parameter Estimates; and (v) Hazard 

Ratios & λ Estimates.

Note: The construction of the Parameter Estimates table is different for each model. For 

SPM1L, SPM1Q, SPM2L, and SPM2Q, it consists of three subtables: “Covariance 

Parameter Estimates”, “Longitudinal Parameter Estimates”, and“Survival Parameter 

Estimates”; for the TS model corresponding to SPM1L, SPM1Q, SPM2L, or SPM2Q, there 

are two tables: “Longitudinal Parameter Estimates (Stage I)” and “Survival Parameter 

Estimates (Stage II)”; and for the TVC model, there is only one table named“Parameter 

Estimates”.
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B. Output for the simulated data DLong + DSurv under SPM2L

Figure 9. 
The number of subjects for DLong + DSurv.

Figure 10. 
The estimates of the parameters obtained by fitting the survival data alone for DLong + DSurv.
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Figure 11. 
The hazard ratios and λ estimates for DLong + DSurv under SPM2L.
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Figure 12. 
The estimates of the parameters for DLong + DSurv under SPM2L.
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Figure 1. 
An illustration of three bi-sectional partition methods.
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Figure 2. 
The number of subjects for pain.
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Figure 3. 
The fit statistics for pain under SPM1L with J = 3 based on LBSQP.
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Figure 4. 
The estimates of the parameters obtained by (11) with J = 3 based on LBSQP.
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Figure 5. 
The estimates of the parameters for pain under SPM1L with J = 3 based on LBSQP.
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Figure 6. 
The hazard ratios and λ estimates for pain under SPM1L with J = 3 based on LBSQP.
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Figure 7. 
The fit statistics for anorexia, cough, dyspnea, and fatigue under SPM1L with J = 3 based on 

LBSQP.
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Figure 8. 
The fit statistics for DLong + DSurv, DLong1 + DSurv, DLong2 + DSurv, and DLong3 + DSurv 

under SPM2L.
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Table 1

AICSurv|Long's and ΔAIC's for pain under SPM1L with different partition algorithms and different J's.

J

AICSurv|Long ΔAIC

LBSQP MBSQP RBSQP LBSQP MBSQP RBSQP

1 2200.94 2200.94 2200.94 24.87 24.87 24.87

2 2170.94 2170.94 2170.94 35.35 35.35 35.35

3 2172.96 2172.96 2172.90 35.32 35.32 34.84

4 2174.91 2174.91 2174.91 34.81 34.81 34.81

5 2176.53 2174.36 2176.84 34.66 35.04 34.68

6 2175.98 2173.66 2176.15 34.89 35.72 35.36

7 2175.29 2175.29 2175.60 35.57 35.57 35.59

8 2177.22 2177.22 2177.22 35.44 35.44 35.44
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Table 2

AICSurv|Long's for cough and pain under SPM1L with tmax,i adjustments using different w's.

w

Cough Pain

TMAXI=1 TMAXI=2 TMAXI=1 TMAXI=2

0 2200.97 2200.88 2170.94 2168.33

0.25 2200.48 2200.74 2172.84 2171.65

0.5 2201.71 2201.51 2177.09 2175.40

0.75 2204.21 2203.63 2182.34 2180.72

1
a 2206.68 2206.68 2186.46 2186.46

a
No tmax,i adjustment
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