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Abstract

Current status data arise frequently in demography, epidemiology, and econometrics where the 

exact failure time cannot be determined but is only known to have occurred before or after a 

known observation time. We propose a quantile regression model to analyze current status data, 

because it does not require distributional assumptions and the coefficients can be interpreted as 

direct regression effects on the distribution of failure time in the original time scale. Our model 

assumes that the conditional quantile of failure time is a linear function of covariates. We assume 

conditional independence between the failure time and observation time. An M-estimator is 

developed for parameter estimation which is computed using the concave-convex procedure and 

its confidence intervals are constructed using a subsampling method. Asymptotic properties for the 

estimator are derived and proven using modern empirical process theory. The small sample 

performance of the proposed method is demonstrated via simulation studies. Finally, we apply the 

proposed method to analyze data from the Mayo Clinic Study of Aging.
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1. Introduction

Quantile regression (Koenker and Bassett 1978) is a robust estimation method for regression 

models which offers a powerful and natural approach to examine how covariates influence 

the location, scale, and shape of a response distribution. Unlike linear regression analysis, 

which focuses on the relationship between the conditional mean of the response variable and 

explanatory variables, quantile regression specifies changes in the conditional quantile as a 

parametric function of the explanatory variables. It has been applied in a wide range of fields 

including ecology, biology, economics, finance, and public health (Cade and Noon 2003; 

Koenker and Hallock 2001). Quantile regression for censored data was first introduced by 

Powell (Powell 1984, 1986), where the censored values for the dependent variable were 

assumed to be known for all observations (also known as the “Tobit” model). While this 

approach established an ingenious way to correct for censoring, the objective function was 
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not convex over parameter values making global minimization difficult. Several methods 

have been proposed to mitigate related computational issues (Buchinsky and Hahn 1998; 

Chernozhukov and Hong 2002).

In most survival analysis, however, censoring time is not always observed. To accommodate 

a random censoring time, several methods were proposed over the past few decades. Early 

methods (Ying et al. 1995; Yang 1999; Honore et al. 2002) required stringent assumptions 

on the censoring time, i.e. the censoring time must be independent of covariates. Under the 

conditional independence assumption where failure time and censoring time are independent 

conditional on covariates, Portnoy (2003) proposed a recursively reweighted estimator. 

Unfortunately, the quantile cannot be computed until the entire lower quantile regression 

process was computed first. The recursive scheme also complicated asymptotic inference. To 

overcome inferential difficulties, Peng and Huang (2008) and Peng (2012) developed a 

quantile regression method for survival data subject to conditionally independent censoring 

and used a martingale-based procedure which made asymptotic inference more tractable. 

However, the method developed by Peng and Huang (2008) still has the same drawback as 

in Portnoy (2003), namely, the entire lower quantile regression process must be computed 

first. Huang (2010) developed a new concept of quantile calculus while allowing for zero-

density intervals and discontinuities in a distribution. The grid-free estimation procedure 

introduced by Huang (2010) circumvented grid dependency as in Portnoy (2003) and Peng 

and Huang (2008). To avoid the necessity of assuming that all lower quantiles were linear, 

Wang and Wang (2009) proposed a locally weighted method. Their approach assumed 

linearity at one prespecified quantile level of interest and thus relaxed the assumption of 

Portnoy (2003); however, their method suffered the curse of dimensionality and hence can 

only handle a small number of covariates.

Current status data arise extensively in epidemiological studies and clinical trials, especially 

in large-scale longitudinal studies where the event of interest, such as disease contraction, is 

not observed exactly but is only known to happen before or after an examination time. Many 

likelihood-based methods have been developed for current status data, such as proportional 

hazards models, proportional odds models, and additive hazards models (see Sun (2007) for 

a survey of different methods). Despite the fact that the development for censored quantile 

regression flourishes, the aforementioned methods were developed for right-censoring and 

are not suitable for current status data. To the best of our knowledge, the only method 

available for quantile regression models on interval-censored data was proposed by Kim et 

al. (2010) which was a generalization of the method proposed by McKeague et al. (2001). 

The proposed method can only be applied when the covariates took on a finite number of 

values since the method required estimation of the survival function conditional on 

covariates. The proposed method performed well in simulation studies, yet no theoretical 

justifications were offered. In this paper, we develop a new method for the conditional 

quantile regression model for current status data while allowing the censoring time to 

depend on the covariates.

The remaining paper is organized as follows. In Section 2, the proposed model is introduced 

and we establish estimation and inference procedures. Consistency and the asymptotic 

distribution are established in Section 3 with technical details deferred to the Appendix. In 
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Section 4, the small-sample performance is demonstrated via simulation studies and the 

application to data from the Mayo Clinic Study of Aging (MCSA) is given. Section 5 

summarizes the method presented herein and avenues of further research.

2. THE METHOD

2.1. Model and Data

Let T denote failure time and X a k × 1 covariate vector with the first component set to one. 

We consider a quantile regression model for the failure time,

(1)

where QT (τ ∣ X) is the conditional quantile defined as QT (τ ∣ X) = inf{t : pr(T ≤ t ∣ X) ≥ τ} 

and the vector of unknown regression coefficients, β(τ), represents the covariate effects on 

the τth quantile of T which may depend on τ. Each element of β(τ) can be interpreted as an 

estimated difference in τth quantile by one unit change of the corresponding covariate while 

other variables in the model are held constant. Our interest lies in the estimation and 

inference on β(τ).

Let C denote the observation time and define δ ≡ I(T ≤ C) where I(·) is the indicator 

function. For current status data, T is not observed and the observed data consist of n 
independent replicates of (C, X, δ), denoted by {(Ci, Xi, δi)i=1,⋯ ,n}. It is assumed that T is 

conditionally independent of C given X. Since T is unobserved, we cannot directly estimate 

the conditional quantile function QT (τ ∣ X) in Equation (1) making a standard quantile 

regression unsuitable for our problem.

The τth conditional quantile of a random variable Y conditional on X can be characterized 

as the solution to the expected loss minimization problem,

(2)

where ρτ(u) = u[τ − I(u < 0)]. Quantiles possess “equivariance to monotone 

transformations” (Koenker 2005) which means that we may analyze a transformation h(T) 

since the conditional quantile of h(T) is h(X′ β(τ)) if h(·) is nondecreasing (Powell 1994). In 

current status data, we observe realizations of the transformed variable δ ≡ I(T ≤ C) or, 

equivalently, (1−δ) ≡ I(T > C) where the transformation is h(T ∣ C) = I(T > C) which is 

nondecreasing. We apply the same transformation to the conditional quantile, X′β(τ), and 

use the transformed conditional quantile, I(X′β(τ) > C), in the subsequent analysis. Since 

the objective function in (2) is well-defined and is sufficient to identify the parameters of 

interests (Powell 1994), we can substitute (1 − δ) and I(X′β > C) in Equation (2) to get

(3)
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Equation (3) may now be used to identify β(τ) since it contains only the observable variables 

(C, X, δ). We can show that the derivative of Z(β) with respect to β is zero at the true β (see 

Appendix for details). Due to censoring, it is possible that not all β(τ) can be estimated 

using the observed data. We provide a sufficient condition to guarantee the identifiability for 

a fixed quantile in Section 3.1.

2.2. Parameter Estimation and Algorithm

To simplify notation, we use β instead of β(τ) henceforth. Assuming the formulation from 

Equation (3), the regression quantile estimator  (Koenker and Bassett 1978) is the 

minimizer of the objective function

(4)

where

The regression quantile estimator, , which minimizes Equation(4) is difficult to obtain by 

direct minimization since Zn(β) is neither convex nor continuous. To overcome this 

difficulty, we approximate Zn(β) as a difference of two hinge functions, where the 

approximation is controlled via a small constant, ϵ.

(5)

where ϵ > 0 and [·]+ denotes the positive part of the argument. We illustrate the 

approximation of a 0/1 loss by the difference between these two hinge functions in Figure 1.

The optimization is then performed by the concave-convex procedure proposed by Yuille 

and Rangarajan (2003). The concave-convex procedure relies on decomposing an objective 

function, f(x), into a convex part, f∪(x), and a concave part, f∩(x) such that

Optimization is carried out with an iterative procedure in which f∩(x) is linearized at the 

current solution x(t),
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making each iteration a convex optimization problem. The first value x(0) can be initialized 

with any reasonable guess.

To apply the concave-convex procedure to our optimization problem, we define the first term 

in Equation (5) as f∪(β) and the second term as f∩(β). The gradient of the concave part, 

f∩(β), is

Applying the concave-convex procedure to the above decomposition, we obtain

(6)

where β(r) denotes the estimated β at the rth iteration. The final form can be solved with a 

standard convex optimization algorithm with a decreasing sequence of ϵ = {20, 2−1, ⋯}. 

Specifically, the initial values for both the simulation studies and the real data example were 

generated using a coarse grid search. Given the initial value, we solve Equation (6) with ϵ = 

20. The solution with ϵ = 20 is then used as the initial value to solve Equation (6) with ϵ = 

2−1. This is repeated until the maximum relative change over all covariates is less than one 

percent. In this study, the fminsearch function from the optimization toolbox in MATLAB 

was used to solve for β. The fminsearch function performs unconstrained nonlinear 

optimization to find the minimum of a scalar function of several variables.

2.3. Inference

The confidence intervals for parameter estimates are obtained using a subsampling method 

since the bootstrap does not consistently estimate the asymptotic distribution for estimators 

with cube-root convergence (Abrevaya and Huang 2005). The subsampling method 

described below is from Politis et al. (1999). Subsampling can produce consistent estimated 

sampling distributions under extremely weak assumptions even when the bootstrap fails and 

it can be used to obtain confidence intervals for parameter estimates. It should not be used to 

obtain standard errors; however, since our estimators are not normally distributed, even 

asymptotically (Section 3.3); therefore, there is no simple relation between the distribution 

of the estimators and standard errors (Horowitz 2010, page 108). The justification for using 

the subsampling method in our study is discussed further in Section 3.3.
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To obtain confidence intervals for the minimizer of Equation (5), , we produce 

subsamples K1, K2, ⋯ ,KNn where Kj’s are the  distinct subsets of {(Ci, Xi, 

δi)i=1,⋯ ,n} of size b. Let βτ denote the true parameter values and  denote the 

estimated value produced by solving Equation (6) using the Kjth dataset.

Define

From Theorem 2.2.1 of Politis et al. (1999), for any 0 < γ < 1,

under the condition that b → ∞ as n → ∞ and b/n → 0. It follows that for any 0 < α < 1 ,

thus an asymptotic 1 − α level confidence interval for βτ can be constructed with

Symmetric confidence intervals can be obtained by modifying the above approach slightly. 

Define

Again, if b → ∞ as n → ∞ and at the same time b/n → 0, a symmetric confidence interval 

for βτ can be constructed as

(7)

Symmetric confidence intervals are desirable because they often have nicer properties than 

the nonsymmetric version in finite samples (Banerjee and Wellner 2005). This fact was also 

observed in our simulation studies; hence, symmetric confidence intervals are recommended 

and used in this paper.
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To avoid large scale computation issues, a stochastic approximation from Politis et al. (1999) 

is employed where B randomly chosen datasets from {1, 2, ⋯ ,Nn} are used in the above 

calculation. Furthermore, the block size is chosen using the method implemented in Delgado 

et al. (2001) and Banerjee and Wellner (2005). Briefly, the algorithm for choosing block size 

is described below.

Step 1—Fix a selection of reasonable block sizes b between limits blow and bup.

Step 2—Draw M bootstrap samples from the actual dataset.

Step 3—For each bootstrap sample, construct a subsampling symmetric confidence interval 

with asymptotic coverage 1 − α for each block size b. Let Rm,b be one if  was within the 

mth interval based on block size b and zero otherwise.

Step 4—Compute .

Step 5—Find the value  that minimizes  and use  as the block size when 

constructing confidence interval for the original data.

3. ASYMPTOTIC PROPERTIES

3.1. Identifiability

Prior to deriving the asymptotic properties of the proposed estimator, we will discuss a set of 

sufficient conditions for identifiability. For a fixed quantile τ, let

and

Let βτ denote a minimizer of Z(·). The following conditions will be used in subsequent 

theorems.

Condition 1—The support of fX is not contained in any proper linear subspace of .

Condition 2—fT∣X(t) and fC∣X(t) are continuous and positive in a neighborhood of X′βτ 
with probability 1, where fT∣X and fC∣X are the conditional densities of T and C given X.

Condition 1 is the typical full-rank condition. Conditions 1 and 2 are sufficient for βτ to be 

identifiable, as shown in the following lemma. Intuitively, the positivity of fT∣X and fC∣X in a 

neighborhood of t = X′βτ ensures that the conditional probability of P(T ≤ t∣X) is estimable 

for t around its τ-quantile using current status data. In other words, the conditions make it 
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possible to differentiate between QT(τ∣X) and QT(τ ± ϵ∣X) for a sufficiently small ϵ over a 

full ranked set of X.

Lemma 1—Under Conditions 1 and 2, βτ is identifiable, i.e. βτ is the unique minimizer of 
Z(·).

We prove Lemma 1 by showing Z(β)−Z(βτ) > 0, ∀β ≠ βτ. A detailed proof is provided in 

the Appendix.

3.2. Consistency

For a fixed quantile τ, let

We assume the following conditions for the consistency theorem.

Condition 3—Let βτ ∊  where  is a compact subset of  which contains βτ as an 
interior point.

Condition 4—MT ≡ supT,X fT∣X(T ∣ X) < ∞ and MC ≡ supC,X fC∣X(C ∣ X) < ∞.

Let  be the minimizer of Zn,ϵ(·) in .

Theorem 1—Under Conditions 1−4,  converges to βτ in probability as n → ∞ and ϵ 
→ 0.

The proof follows by first showing that the collection of functions in Zn(β) is a VC-subgraph 

class and hence Zn(β) converge almost surely uniformly to Z(β). In addition, Zn,ϵ(β) 

converges almost surely uniformly to Zn(β) as n → ∞ and ϵ → 0; thus we can conclude 

that Zn,ϵ(β) converges almost surely uniformly to Z(β). Next, we prove that Z(·) is 

continuous. Conditions 1 and 2 provide sufficient conditions for identifiability and hence, βτ 
is the unique minimizer of Z(·). Since we assumed  is compact, we can then conclude that 

 converges to βτ in probability by a standard argument for M-estimators (Theorem 2.1 of 

Newey and McFadden (1994)). A detailed proof is provided in the Appendix.

3.3. Asymptotic Distribution

This section shows that  converges to a nondegenerate distribution. The 

convergence rate is atypical because our objective function (4) is non-smooth and not 

everywhere differentiable; this is sometimes called the “sharp-edge effect” (Kim and Pollard 

1990). We will need the following conditions in Theorem 2 to guarantee that the asymptotic 

distribution will be nondegenerate, namely
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Condition 5—The ϵ of Equation (5) is o(n−2/3).

Condition 6—The distribution C, T and X is absolutely continuous with respect to 

Lebesgue measure.

Condition 7—X is bounded.

Condition 8—Let V (βτ)i,j = Px [XiXjfC∣X(X′βτ ∣ X)fT∣X(X′βτ ∣ X)] and V(βτ) is positive 
definite where Xi and Xj are elements of X.

Theorem 2—Under Conditions 1−8, the process 

 converges in distribution to a Gaussian 

process  with continuous sample paths, mean s′V (βτ)s/2, and covariance H, 

where V is the second order expansion of Z(β) at βτ, and

when it exists. Furthermore, .

Theorem 2 follows by verifying the conditions of the main theorem from Kim and Pollard 

(1990). Provided that V is positive definite, we can conclude that  converges 

to a nondegenerate distribution. A detailed proof is provided in Appendix.

Subsampling can produce consistent estimated sampling distributions for our estimator and 

it is an immediate consequence of Theorem 2.2.1 from Politis et al. (1999). In our study, we 

choose block size b = Nγ where γ = {1/3, 1/2, 2/3, 3/4, 0.8, 5/6, 6/7, 0.9, 12/13, 0.95} thus b 

→ ∞ and b/N → 0 as N → ∞.  converges to a nondegenerate continuous 

distribution. All conditions in Theorem 2.2.1 from Politis et al. (1999) are met thus we can 

construct confidence intervals as stated in Section 2.3.

4. NUMERICAL STUDIES

4.1. Simulation

Two simulation studies were carried out to test the finite sample performance of our 

estimator. We used conditional quantile functions which were linear in the covariate for each 

study. In the first scenario, Simulation 1, the conditional quantile functions had identical 

linear coefficients and differed only in intercept. In the second scenario, Simulation 2, both 

the intercepts and covariate effects varied over the quantiles. Simulation 1 represents a 

situation where the errors are independent and identically distributed and Simulation 2 
represents a situation where the errors are heteroscedastic.

Ou et al. Page 9

J Stat Plan Inference. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In Simulation 1, the covariate is X ≡ (1, X1, X2)′ where X1 ~ Uniform [0, 2] and X2 ~ 

Bernoulli(0.5). The unobserved failure times, T, were generated from the linear model, T = 2 

+ 3X1 + X2 + 0.3 U. The observation times, C, were generated from the linear model, C = 

1.9 + 3.2X1 + 0.8 V when X2 = 0 and C = 3.1 + 2.8X1 + 0.8 V when X2 = 1. Both U and V 
were generated from N(0, 1). The proportion of events occurring prior to the observation 

time (δ = 1) was about 50%. The underlying 0.25 quantile is QT (0.25∣X) = 1.798 + 3X1 + 

X2, the underlying 0.50 quantile is QT (0.50∣X) = 2 + 3X1 + X2, and the underlying 0.75 

quantile is QT(0.75∣X) = 2.202 + 3X1 + X2. Since it is possible that T and/or C are negative, 

in a survival analysis context, we can treat T and C as the logarithm of survival time and 

logarithm of observation time, respectively.

In Simulation 2, the covariate setup is the same as in Simulation 1. Unobserved failure times 

were generated from the linear model, T = 2+3X1 + X2 +(0.2+0.5X1) U and the observation 

times, C, were generated from the linear model C = 1.8 + 3.2X1 + 0.8X2 + 0.8 V . Both U 
and V were generated from exponential distribution with rate equal to one. The proportion 

of events occurring prior to the observation time (δ = 1) was about 50%. The underlying 

0.25 quantile is QT(0.25∣X) = 2.058 + 3.144X1 + X2, the underlying 0.50 quantile is 

QT(0.50∣X) = 2.139 + 3.347X1 + X2, and the underlying 0.75 quantile is QT(0.75∣X) = 2.277 

+ 3.693X1 + X2.

We are interested in estimation of the 0.25 quantile, median, and 0.75 quantile. For each 

scenario, we reported the mean bias, mean squared error, and median absolute deviation 

based on 1000 simulations. Sample sizes were chosen to be n = 200, 400, and 800 for each 

simulation setup. Since the unobserved event time, T, and the observation time, C, were 

generated as a function of covariates and the error terms were generated from distributions 

which had positive density in the neighborhood of quantiles of interests, our simulation 

setup satisfy the identifiability conditions in Lemma 1.

For each simulated dataset, the procedure described at the end of Section 2.2 was used to 

estimate β. Symmetric confidence intervals as in Equation (7) were calculated based on a 

stochastic approximation with 500 subsamples. To decrease computational burdens, the 

block size was determined via a pilot simulation in the same fashion as described in 

Banerjee and McKeague (2007). In a small scale simulation study, we examined the block 

size chosen by the algorithm described in Section 2.3 and by the pilot simulation method 

described in Banerjee and McKeague (2007). The block sizes chosen by either method 

produced similar average coverage which indicated the coverage presented in this section is 

a good representation of the coverage when confidence intervals are constructed using the 

algorithm described in Section 2.3. The optimal subsampling block size was determined 

from the following selected block sizes: {n1/3, n1/2, n2/3, n3/4, n0.8, n5/6, n6/7, n0.9, n12/13, 

n0.95}.

Table 1 and Table 2 summarize the results for Simulation 1 and Simulation 2 with sample 

size equal to 200, 400, and 800 at the 0.25, median, and 0.75 quantiles. In the tables, “Truth” 

is the true parameter value; “Bias” is the mean bias of the estimates from all replicates; 

“MSE” is the mean squared error; “MAD” is the median absolute deviation of the estimates; 

“CP” is the average coverage from subsampling symmetric confidence intervals; and 
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“Length” is the average confidence interval length. The tables show that the regression 

coefficient estimators have negligible bias.

In Simulation 1, the bias has a decreasing trend as the sample size increases for all quantiles 

and parameters. The mean squared errors and median absolute deviations decrease as the 

sample size increases for all quantiles and parameters. The subsampling confidence interval 

coverage is slightly lower than the nominal 95% level in smallest sample size (N=200) but 

the empirical coverage probability is close to 95% as the sample size increases. In 

Simulation 2, the bias for all quantiles is small for all sample sizes. There is a general 

decreasing trend for bias when the sample size increases. The mean squared errors and 

median absolute deviations decrease as the sample size increases for all quantiles and 

parameters. The average 95% confidence interval coverage rate is a bit low for the smallest 

sample size (N=200) but gets closer to the nominal 0.95 level as the sample size increases. 

In both scenarios, the median absolute deviations for sample size 800 is roughly 63% of the 

median absolute deviation for sample size 200 which is consistent with the cube-root rate.

The algorithm seems to converge in all of our simulation studies. Nonconvergence of the 

algorithm would be an indication that the data might not have sufficient information to 

support the estimation at the specified quantile. The computation time to estimate one 

quantile for each of the 100 simulated dataset ranged from 30 to 42 seconds for sample sizes 

200 to 800 using a computer equipped with an Intel(R) Core(TM) i5-2500 CPU @3.30GHz 

3.60 GHz CPU and 4.00 GB RAM. The computation times are similar for the second 

simulation scenario.

To illustrate the strengths and limitations of the proposed method, an accelerated failure time 

(AFT) model with normally distributed errors was fit to the simulated datasets. Table 3 

shows the results from the AFT models. In Table 3, the ‘truth’ column is the true parameter 

values for Simulation 1, and the mean from the accelerated failure time model with 

exponentially distributed errors for Simulation 2. When the error distribution in the AFT 

model is correctly specified, as in Simulation 1, the estimates have negligible bias. The true 

parameter values of the AFT model is the same as the true parameter value at the median 

because the Normal distribution is symmetric; therefore, the conditional mean is the same as 

the conditional median. Since the error terms are correctly specified, the parametric method 

has higher efficiency than the proposed method which can be seen from the much smaller 

confidence interval length. When the error distribution is incorrectly specified, as in 

Simulation 2, the estimates are alarmingly biased. The coverage percentage is low for β2 and 

is extremely low for both β0 and β1 even though the confidence intervals are narrow. Our 

method has a lower efficiency than the parametric method when the error distribution can be 

correctly specified in the parametric method. On the other hand, when the error distribution 

is incorrectly specified in the parametric method, our proposed method clearly outperforms 

the parametric method in terms of unbiased estimation and retaining proper coverage levels. 

The strength of our proposed method lies in the fact that it is a semiparametric method thus 

we do not need to know the true underlying distribution of the error terms in the AFT model.
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4.2. Application

We applied the proposed method to analysis of the “Mayo Clinic Study of Aging” (MCSA) 

data. The detailed study design is described in Roberts et al. (2008). The results from a 

cross-sectional analysis (Jack et al. 2014) and a longitudinal analysis (Jack et al. 2016) have 

been published elsewhere. The MCSA is a longitudinal population-based study of cognitive 

aging in residents of Olmsted County, Minnesota, USA (Roberts et al. 2008). Four 

thousands and forty nine participants were enrolled and the follow-up visits occurred 

approximately every 15 months.

To understand the time to incidence of cognitive impairment, participants with clinically 

normal cognitive function and who had at least one follow-up visit (N=3388) were included 

in our analysis. The study was originally designed to understand the change of biomarkers 

for amyloidosis and neurodegeneration over time; thus, the follow-up visits occur regularly. 

To change the data structure into current status data, and to allow sufficient time for 

participants to develop cognitive impairment, we used the first available follow-up which 

was more than 2 years from the original observation to assess a patient’s current cognitive 

impairment status. In doing so, 759 participants who did not have a follow-up more than 2 

years from their baseline observation were excluded. Additionally, 154 participants who had 

missing glucose levels at their baseline were also excluded since we are using it as one of the 

covariates in the model. The final analysis included 2,475 participants from the MCSA 

dataset aged 51-91 (median=74) of which 50.8% (N=1,258) were male.

Since we would like to understand the age of incidence for cognitive impairment, a 

participants’ age at the first follow-up more than 2 years from baseline was used as the 

response variable. Participants were between 53.4 and 94.2 years old (median=76.9 years 

old) at the first follow-up more than 2 years from baseline. Histograms for the age at the first 

follow-up more than 2 years from baseline for males and females are shown in Figure 2. 

There does not appear to be a difference in age between males and females at the first 

follow-up more than 2 years from baseline. In our analysis, the outcome “cognitive 

impairment” is defined as clinical diagnosis of either mild cognitive impairment or dementia 

at the follow-up visit. Among 2,475 participants, 240 (9.7%) were diagnosed with cognitive 

impairment by the first follow-up visit at least 2 years from baseline (136 males and 104 

females). The (unobserved) failure time of interest was the age of incident cognitive 

impairment. The analysis examined the effect of gender and glucose level at baseline on the 

quantiles of age to cognitive impairment.

Before applying our proposed method on the data, we need to determine for which quantiles 

the regression coefficients are estimable. Following the remark in Section 3.1, it was 

sufficient to examine which quantiles of T can be estimated well using current status data 

over all covariate values. Thus, a nonparametric maximum likelihood estimator (NPMLE) of 

the (unobserved) failure time distribution function was fit to the data stratified by the 

covariates (Wellner and Zhan 1997; Gentleman and Vandal 2011). The NPMLE can tell us 

whether data provides enough information for estimation of a certain quantile. Moreover, 

Turnbull (1976) noted that the NPMLE was not unique within certain intervals. The shady 

areas in the NPMLE figure represent the non-unique areas. A large shaded area is an 

indication that the data might not contain enough information for estimation; thus, we 
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should avoid estimating quantiles within a large non-unique area. Specifically, the 

distribution estimator in Figure 3 suggests that the data may provide enough information for 

estimation for quantiles less than 0.3 for males since the cumulative probability for 

incidence of cognitive impairment does not rise above 0.3. Therefore, we focused only on 

0.10 to 0.25 quantiles with increments of 0.05 when performing data analysis. We centered 

the glucose level at 96 mg/dL (median) then divided it by 10. Our proposed model was fitted 

for the lower quantiles and symmetric confidence intervals were constructed by subsampling 

where the block size was chosen based on the algorithm presented in Section 2.3. The results 

are summarized in Table 4 and Figure 4.

The results indicate that the 0.10, 0.15, 0.20, and 0.25 quantiles for the incidence of 

cognitive impairment for a female with a glucose level of 96 mg/dL would be 83.4, 87.3, 

88.2, and 90.1 years old, respectively. Compared to females, the onset of cognitive 

impairment for male participants is 4 years earlier at the 0.10 quantile and the effect 

diminishes in magnitude at higher quantiles. The negative effect of male is statistically 

significant at 0.10 and 0.15 quantiles but became insignificant at the higher quantiles. 

Elevated glucose levels also had a negative effect on age of incidence for cognitive 

impairment. The magnitude of glucose effects are similar at all quantiles examined. Each 10 

mg/dL increase in glucose level is associated with around 1 ~ 2 years earlier onset of 

cognitive impairment for the 0.1 and 0.15 quantiles and around 0.5 year earlier onset for 

0.20 and 0.25 quantiles. The effect of glucose level is statistically significant only at the 0.15 

quantile.

Quantile regression models provided additional insights toward risk factors associated with 

incidence cognitive impairment. The gender differences in mild cognitive impairment and 

dementia have been documented in the literatures (Roberts et al. 2012; Ruitenberg et al. 

2001). Using quantile regression, we can describe the differential gender effect over 

different quantiles in a quantitative manner. Male participants have earlier onset at lower 

quantiles (i.e. younger age) but the effect dissipates at higher quantiles (i.e. older age). The 

association between glucose level and dementia is also recognized (Crane et al. 2013). The 

similar point estimates for glucose levels across quantiles suggest that the glucose effect may 

be a simple shift in the distribution for the age of incidence for cognitive impairment.

5. DISCUSSION

To solve the non-convex objective function in Equation (4), we used the difference between 

two convex hinge functions Equation (5) to approximate the objective function. One 

practical issue is how to choose a good initial value, since a good initial value is critical to 

prevent the algorithm from stalling at an unsuitable local minimum. Currently, we used a 

coarse grid search to generate the initial value. A grid search can be done in low dimensional 

data but it is not practical when the data is high dimensional. Further work is needed to 

investigate a practical method to produce reasonable initial values for high dimensional data.

In real data analysis, it may be the case that not all quantiles are estimable. It is not due to 

the estimation procedure but the sparse data structure. Consider a situation where a disease 

requires a long incubation period, if the observation times are all concentrated in a short 
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period, most subjects would not have developed any symptoms yet. We will have most 

people with δ = 0 at the end of the observation period. In this case, the higher tail quantiles 

will not be estimable because we simply do not have enough information. We recommend to 

obtain a NPMLE of the cumulative density function stratified by covariates as we did for the 

MCSA data. The NPMLE results can provide useful information about which quantiles can 

be reasonably estimated.

The method proposed in this paper can be easily extended to Case 2 interval-censored data. 

For example, suppose the event occurred in interval (L,R], we can simply treat this as 2 

records in the current status data format. The first record would have C = L, and δ = 0 and 

the second record would have C = R, and δ = 1 then the same optimization routine can be 

carried out for estimation. In the interval (L,R], either L may be 0 or R may be ∞ (having 

both L = 0 and R = ∞ would mean that no information was supplied by the observation). 

Extension to right censored data may be possible. Intuitively, the non-censored observations 

can be treated as the event occurred within a very small interval and right-censored 

observation can be treated as current status with C equal to the censoring time and δ = 0. 

This extension will not require the “global linearity assumption” which is commonly 

assumed in existing quantile regression models for rightcensoring data (Portnoy 2003; Peng 

and Huang 2008). The validity of this extension will need careful examination and analytic 

appraisal before trusting. Furthermore, models with varying coefficients or nonparametric 

quantile regression models may be useful for practical purposes which warrant future 

investigation.
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Appendix A: Appendix

Proof of lemma and theorems

Proof of Lemma 1.

When β ≠ βτ, there is a positive probability that the set {(X′β ≤ c < X′βτ)⋃(X′βτ ≤ c < X
′β) is not empty. Furthermore, Condition 2 ensures that fT∣X and fC∣X are positive for c near 
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X′βτ. Thus, there is a positive probability that the inner most integral is positive. We then 

conclude that, Z(β) − Z(βτ) > 0 for all β ≠ βτ and hence, βτ is identifiable.

Remark

It is true that the derivative of Z(β) with respect to β is zero at the true β. Z(β) is defined as

We can take the derivative of Z(β) with respect to β as,

By definition, FT∣X(X′βτ) = τ , so it is immediate that .

Proof of Theorem 1

We shall prove this theorem by showing

(A.1)

and then showing Z(β) is continuous. By Lemma 1, βτ is the unique minimizer of Z(·) and 

since  is assumed, we can use Theorem 2.1 of Newey and McFadden (1994) to conclude 

that  in probability.

We can show Equation (A.1) is true by proving

since

(A.2)

The class of indicator functions I(δ = 0), I(δ = 1), , and 

 are examples of Vapnik-C̆ervonenkis (VC)-subgraph 

classes. τ and 1−τ are fixed functions and thus by Lemma 2.6.18 (i) and (vi) of van der Vaart 

and Wellner (1996), the classes  and  are also VC-subgraph 
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classes. Finally, (v) of the same lemma gives that  is a VC-subgraph 

class. Since  is a VC-subgraph class, it is also a Glivenko-Cantelli class; hence, 

 almost surely.

Since  is a VC class of functions, 

converges to  uniformly over  where Pn is the empirical 

measure and P is the true underlying measure. Thus, we have

(A.3)

By Condition 4, Equation (A.3) is bounded and converges to 0 as ϵ → 0, thus we can 

conclude that  almost surely as n → ∞ and ϵ → 0.

Since each term on the right hand side of Equation (A.2) converges to 0 almost surely, we 

can conclude that  almost surely as n → ∞ and ϵ → 0.

To show that Z(·) is continuous, we re-express Z(·) as

(A.4)

Only the first two inner integrals are functions of β. Under Condition 4, both of these inner 

integrals are bounded and continuous with respect to β; therefore, Z(·) is continuous.

Proof of Theorem 2

Before proceeding with the proof, we will state the main theorem from Kim and Pollard 

(1990). The theorem concerns estimators defined by minimization of process 

, where {ξi} is a sequence of independent observations taken 

from a distribution P and {g(·, θ) : θ ∊ Θ} is a class of functions indexed by a subset Θ of 

. Pn denotes the expectation with respect to the empirical process. The envelope GR(·) is 

defined as the supremum of ∣g(·, θ)∣ over the class gR = {g(·, θ) : ∣θ − θo∣ ≤ R} .
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Kim and Pollard (1990)

Let {θn} be a sequence of estimators for which (i) Png(· , θn) ≤ infθ∊Θ Png(·, θ) + op(n−2/3).

Suppose

(ii) θn converges in probability to the unique θ0 that minimizes Pg(·, θ);

(iii) θ0 is an interior point of Θ.

Let the functions be standardized so that g(·, θ0) ≡ 0. If the classes gR, for R near 0, are 

uniformly manageable for the envelopes GR and satisfy

(iv) Pg(·, θ) is twice differentiable with second derivative matrix V at θ0;

(v) H(s, t) = limα→∞ αPg(·, θ0 + s/α)g(·, θ0 + t/α) exists for each s, t in  and

for each ϵ > 0 and t in ;

(vi)  as R → 0 and for each ϵ > 0 there is a constant K such that 

 for R near 0;

(vii) P∣g(·, θ1) − g(·, θ2)∣ = O(∣θ1 − θ2∣) near θ0; then the process n2/3Png(·, θ0 + tn−1/3) 

converges in distribution to a Gaussian process Z(t) with continuous sample paths, expected 
value t′V t/2 and covariance kernel H.

If V is positive definite and if Z has nondegenerate increments, then n1/3(θn − θ0) converges 

in distribution to the (almost surely unique) random vector that minimizes Z(t).

Now we proceed with our proof of theorem 2. It will be convenient to define a version of the 

original objective function centered at the true value βτ ,

Under the true distribution P, we haveP(g(β)) = Z(β) − Z(βτ). The minimum value of P(g(·)) 

is then obtained at the arg min of Z(·) and P(g(βτ)) = 0. The estimator we use here is 

which is the minimizer of Zn,ϵ(·) defined as in (5).
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The first condition of the main theorem from Kim and Pollard (1990) is satisfied under 

Condition 5. By the definition of , we have . We 

also have  by definition.

Therefore,  which satisfied the first condition. The 

second condition,  in probability, has been verified in Theorem 1. The third 

condition is satisfied by assuming Condition 2.

The remaining four conditions of the theorem deal with the nature of expectation of g under 

the measure P. P(g) may be expressed as

where FT∣X(· ∣ ·) is the conditional distribution of T given X. This expectation is dominated 

by:

Since P is absolutely continuous with respect to Lebesgue measure, for any sequence dn → 
0, the dominated convergence theorem tells us P(g(β+dn)) → P(g(β)). In other words, 

P(g(β)) is continuous with respect to β.

We may expand P(g(β)) with a Taylor expansion. The first derivative is found by 

interchanging integration (expectation) and differentiation to find
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where fC∣X is the density of the observation time C conditioned on X and Xi is an element of 

Xi. Evaluated at βτ, the term FT∣X(βτX ∣ X) − τ equal to zero by definition of the τth 

quantile, making the derivative equal zero as would be expected for an extrema. Taking one 

step further, the second derivative would be

At βτ , the first integral vanishes and only the second remains taking the form

As the entries are dominated by

where M∣X∣ is the bound over all ∣Xi∣ and MC and MT are defined in Condition 4. V (βτ)i,j 

will be well defined verifying the fourth condition of the theorem. Writing

show that V (βτ) would be a symmetric positive semi-definite matrix since it is a positive 

mixture of the positive semi-definite terms XX′. A sufficient condition for V (βτ) to be 

positive definite is that the Lebesgue measure of the set {X : fC∣X(X′βτ ∣ X)fT∣X(X′βτ ∣ 
X)fX(X) > 0} is greater than zero.

To able control asymptotic covariance of Z(s), let
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where ⋁ and ⋀ denote maximum and minimum, respectively. Using Condition 4 and 7, we 

have

hence, along with Condition 6, H(s, r) is well defined by the dominated convergence 

theorem satisfying the fifth condition.

Let GR be the envelope of , i.e.,

A sufficient condition for the class gR to be uniformly manageable is that its envelope 

function GR is uniformly square integrable given that {g(β)} is VC-subgraph (Mohammadi 

and Van De Geer 2005). Since GR is bounded by one, it is uniformly square integrable for R 
close to zero. Together with the fact that {g(β)} is VC-subgraph, we conclude that gR is 

uniformly manageable.

Then

For any ϵ > 0, we can use K = 2, then  since GR is less than K 
everywhere. Combining these two traits satisfying the sixth condition of the theorem.
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The final condition is verified by letting GR,β be the envelope of 

, i.e.,

Using the same integration inequalities as used in the preceding for GR we find that 

 over all β,  in an  neighborhood of βτ 
since ∥ · ∥∞ and ∥ · ∥1 are equivalent metrics.

As the seven conditions are satisfied, the conclusion of the main theorem in Kim and Pollard 

(1990) follows which in turn proved Theorem 2.
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Figure 1. 
An illustration of using the difference between two hinge loss functions to approximate a 0/1 

loss. A smaller ϵ provides a closer approximation.

Ou et al. Page 23

J Stat Plan Inference. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Age at first follow-up more than 2 years from baseline for 2,475 participants in MCSA.
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Figure 3. 
Nonparametric maximum likelihood estimator (NPMLE) of the (unobserved) failure time 

distribution function stratified by gender and glucose level (below or above median).
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Figure 4. 
MCSA data: effect on age of incident cognitive impairment. The vertical bars are symmetric 

confidence interval constructed using a subsampling method.
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Table 1

Simulation results for Simulation 1, based on 1000 simulation replicates.

N τ Parameter Truth Bias MSE MAD CP Length

200 0.25 β 0 1.798 0.026 0.036 0.117 0.921 0.679

β 1 3.000 −0.010 0.022 0.097 0.941 0.542

β 2 1.000 0.020 0.028 0.110 0.923 0.604

0.50 β 0 2.000 0.002 0.032 0.120 0.931 0.633

β 1 3.000 −0.006 0.018 0.088 0.946 0.500

β 2 1.000 0.012 0.025 0.106 0.935 0.547

0.75 β 0 2.202 −0.011 0.039 0.138 0.925 0.695

β 1 3.000 −0.010 0.023 0.100 0.931 0.544

β 2 1.000 0.010 0.029 0.109 0.927 0.602

400 0.25 β 0 1.798 0.007 0.020 0.097 0.942 0.530

β 1 3.000 −0.002 0.012 0.074 0.958 0.415

β 2 1.000 0.009 0.018 0.094 0.943 0.476

0.50 β 0 2.000 −0.004 0.017 0.083 0.940 0.472

β 1 3.000 0.002 0.010 0.066 0.944 0.372

β 2 1.000 0.006 0.014 0.074 0.938 0.423

0.75 β 0 2.202 −0.005 0.020 0.098 0.945 0.527

β 1 3.000 −0.001 0.012 0.074 0.950 0.411

β 2 1.000 −0.002 0.016 0.087 0.939 0.473

800 0.25 β 0 1.798 0.006 0.012 0.074 0.942 0.403

β 1 3.000 −0.001 0.007 0.057 0.946 0.315

β 2 1.000 0.002 0.010 0.068 0.941 0.365

0.50 β 0 2.000 −0.003 0.010 0.065 0.939 0.367

β 1 3.000 0.001 0.006 0.049 0.958 0.288

β 2 1.000 0.004 0.009 0.062 0.944 0.338

0.75 β 0 2.202 −0.005 0.012 0.073 0.937 0.406

β 1 3.000 0.003 0.007 0.054 0.950 0.319

β 2 1.000 −0.001 0.010 0.065 0.950 0.365

Truth is the true parameter value; Bias is mean of bias from 1000 replicates; MSE is mean squared error; MAD is median absolute deviation of the 
estimates; CP is the empirical coverage probabilities with a nominal level of 0.95 from subsampling symmetric confidence intervals with 500 
subsamples; and Length is mean confidence interval length.
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Table 2

Simulation results for Simulation 2, based on 1000 simulation replicates.

N τ Parameter Truth Bias MSE MAD CP Length

200 0.25 β 0 2.058 0.003 0.039 0.073 0.934 0.759

β 1 3.144 0.010 0.020 0.087 0.956 0.563

β 2 1.000 0.042 0.038 0.090 0.942 0.749

0.50 β 0 2.139 0.027 0.030 0.109 0.938 0.662

β 1 3.347 0.014 0.035 0.123 0.930 0.657

β 2 1.000 0.021 0.040 0.126 0.937 0.745

0.75 β 0 2.277 0.059 0.082 0.166 0.931 0.973

β 1 3.693 −0.031 0.099 0.203 0.908 1.037

β 2 1.000 0.006 0.110 0.209 0.939 1.284

400 0.25 β 0 2.058 0.020 0.012 0.053 0.953 0.439

β 1 3.144 0.001 0.008 0.059 0.955 0.358

β 2 1.000 0.003 0.013 0.063 0.957 0.457

0.50 β 0 2.139 0.025 0.016 0.079 0.949 0.480

β 1 3.347 0.011 0.019 0.096 0.935 0.495

β 2 1.000 0.006 0.022 0.094 0.940 0.550

0.75 β 0 2.277 0.039 0.045 0.128 0.952 0.768

β 1 3.693 −0.016 0.059 0.158 0.934 0.843

β 2 1.000 0.012 0.062 0.160 0.950 0.924

800 0.25 β 0 2.058 0.014 0.004 0.040 0.957 0.272

β 1 3.144 0.001 0.004 0.041 0.954 0.253

β 2 1.000 0.001 0.006 0.050 0.955 0.299

0.50 β 0 2.139 0.017 0.009 0.059 0.954 0.350

β 1 3.347 0.000 0.010 0.068 0.940 0.373

β 2 1.000 0.003 0.012 0.070 0.950 0.414

0.75 β 0 2.277 0.026 0.024 0.103 0.968 0.595

β 1 3.693 −0.002 0.036 0.126 0.942 0.676

β 2 1.000 0.009 0.037 0.124 0.948 0.707

Truth is the true parameter value; Bias is mean of bias from 1000 replicates; MSE is mean squared error; MAD is median absolute deviation of the 
estimates; CP is the empirical coverage probabilities with a nominal level of 0.95 from subsampling symmetric confidence intervals with 500 
subsamples; and Length is mean confidence interval length.
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Table 3

Results from accelerated failure time models with normal error, based on 1000 simulation replicates.

Simulation N Parameter Truth Bias MSE MAD CP Length

1

200 β 0 2.000 0.009 0.010 0.069 0.935 0.371

β 1 3.000 −0.007 0.006 0.052 0.945 0.290

β 2 1.000 0.001 0.008 0.057 0.933 0.332

400 β 0 2.000 0.002 0.005 0.046 0.951 0.263

β 1 3.000 −0.001 0.003 0.035 0.955 0.205

β 2 1.000 −0.001 0.004 0.040 0.948 0.236

800 β 0 2.000 −0.0004 0.002 0.033 0.954 0.187

β 1 3.000 0.0001 0.001 0.024 0.948 0.146

β 2 1.000 0.001 0.002 0.020 0.946 0.167

2

200 β 0 2.200 0.269 0.090 0.268 0.497 0.550

β 1 3.500 0.326 0.119 0.323 0.149 0.426

β 2 1.000 0.061 0.021 0.095 0.928 0.496

400 β 0 2.200 0.281 0.088 0.283 0.185 0.389

β 1 3.500 0.317 0.107 0.315 0.016 0.301

β 2 1.000 0.056 0.011 0.071 0.913 0.351

800 β 0 2.200 0.275 0.080 0.276 0.027 0.274

β 1 3.500 0.318 0.105 0.318 0 0.212

β 2 1.000 0.061 0.008 0.065 0.833 0.247

Truth is the true parameter value, in Simulation 1. Truth is the mean of an accelerated failure time with exponential distributed error, in Simulation 
2 ; Bias is mean of bias from 1000 replicates; MSE is mean squared error; MAD is median absolute deviation of the estimates; CP is the empirical 
coverage probabilities with a nominal level of 0.95; and Length is mean confidence interval length.
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Table 4

Results of analyzing “Mayo Clinic Study of Aging” data, effect on age of incident cognitive impairment.

Quantile Parameter Estimate Lower C.I. Upper C.I.

0.10 Intercept 83.350 81.083 85.617

Male vs. Female −4.045 −6.938 −1.151

(Glucose – 96)/10 −0.926 −2.245 0.392

0.15 Intercept 87.331 84.474 90.188

Male vs. Female −3.123 −6.162 −0.084

(Glucose – 96)/10 −1.599 −3.195 −0.003

0.20 Intercept 88.244 85.856 90.632

Male vs. Female −2.673 −5.680 0.334

(Glucose – 96)/10 −0.532 −1.872 0.808

0.25 Intercept 90.148 87.097 93.198

Male vs. Female −2.494 −6.376 1.388

(Glucose – 96)/10 −0.210 −2.021 1.601
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