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Abstract

We propose a cost-effective outcome-dependent sampling design for the failure time data and 

develop an efficient inference procedure for data collected with this design. To account for the 

biased sampling scheme, we derive estimators from a weighted partial likelihood estimating 

equation. The proposed estimators for regression parameters are shown to be consistent and 

asymptotically normally distributed. A criteria that can be used to optimally implement the ODS 

design in practice is proposed and studied. The small sample performance of the proposed method 

is evaluated by simulation studies. The proposed design and inference procedure is shown to be 

statistically more powerful than existing alternative designs with the same sample sizes. We 

illustrate the proposed method with an existing real data from the Cancer Incidence and Mortality 

of Uranium Miners Study.

Keywords

Empirical process; optimal allocation; outcome-dependent sampling

1 Introduction

The cost of exposure assessment is often the deciding factor in determining the duration and 

size of many real studies. When the measurement of main exposure is expensive (such as the 

assessment of some biomarkers), it could be prohibitive to assess the main exposure on all 

the subjects. For example, assessing the effect of epidermal growth factor receptor (EGFR) 
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genetic mutations on tumor response (no response, partial response, or complete response) 

to EGFR-targeted therapy for patients with nonsmall cell lung cancer, investigators have to 

assay the EGFR mutation patients. However, study sizes are limited as the genetic assay on 

EGFR mutations is expensive (around $3,000 per person) (Wang and Zhou, 2006). Hence, 

new and efficient study designs which can reduce the overall cost and/or improve the 

efficiency under a given budget are desirable in this case.

For a continuous outcome, Zhou et al. (2007) had shown that outcome-dependent sampling 

(ODS) was a cost-effectiveness design for situation described above in large epidemiologic 

studies. The principal idea of ODS design is to select subjects who are believed to be more 

informative about the exposure-response relationship to enhance the study efficiency. A 

typical ODS design for a continuous outcome will have subject’s exposure value assessed on 

a simple random sample (SRS) and additional supplemental samples selected with 

probability depending on the outcome variable (e.g., Zhou et al., 2002; Weaver and Zhou, 

2005). Analysis based only on the SRS data would not be efficient because it does not utilize 

the information from the supplemental subjects. On the other hand, standard estimation that 

ignores the biased sampling structure of the ODS design will yield biased and inconsistent 

estimators. This general ODS design is rooted in the earlier development of biased sampling 

designs. For example, in the discrete outcome case, case-control design is the well-known 

outcome-dependent sampling scheme (e.g., Prentice and Pyke, 1979; Breslow and Cain, 

1988; Weinberg and Wacholder, 1993; Breslow and Holubskov, 1997; Wang and Zhou, 

2010). Case–cohort design (Prentice, 1986) is based on ODS idea in failure time response. 

The case–cohort design samples a simple random sample (SRS) from the underlying 

population and in addition collects all the failures out of SRS (e.g., Self and Prentice, 1988; 

Cai and Zeng, 2004; Scheike and Martinussen, 2004; Sun, Sun and Flournoy, 2004; Zhang, 

Schaubel and Kalbfleisch, 2011; Kim, Cai and Lu, 2013).

The case–cohort design can be viewed as a special case of ODS design with the selection 

probability of supplemental failure equal to 1. The case–cohort design is especially useful 

when the failure rate is low and the number of failures is small. However, in many large 

cohort studies, the failure rate may not be low or the number of failures could be large. 

Under such situations, investigators often are forced to decide how to assemble exposure 

information for only a subset of the failures instead of all the failures, so it will fit their 

overall budget. Variations of the case–cohort (Prentice, 1986) sampling scheme have been 

proposed to improve the efficiency of the design while reducing the overall experiment cost. 

For example, in the stratified case–cohort design (Borgan et al., 2000), the sample was 

drawn from the stratum defined by the covariate correlated with exposure. In the generalized 

case–cohort design (Cai and Zeng, 2007; Kang and Cai, 2009), a subset of failures are 

randomly sampled as the supplemental samples.

As Zhou et al. (2002) has demonstrated in a continuous outcome case, the certain segments 

of outcome variable are more informative than others in providing information on evaluating 

the association between an exposure and outcome. Specifically, for a given sample size, a 

sample composed subjects from the high and low region of response variables is more 

informative about the exposure-response relationship than a sample consisted with just a 

simple random sample. Inspired by the ODS design for continuous outcome, we propose an 
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outcome-dependent sampling design for failure time data with right-censoring under Cox’s 

proportional hazards model. The proposed failure time outcome-dependent sampling design 

is a retrospective design and the exposure value is only measured for the selected subjects. 

We use the weighted estimating equation method to estimate the interested regression 

parameters, which is easy to implement with the freely available R package “survival”. To 

help investigators to design an optimal ODS study, we develop a computation formula for 

optimal subsamples allocations by evaluating the asymptotic relative efficiency between our 

proposed method and the simple random sampling design with the same sample size.

The rest of the paper is organized as following. In Section 2, we introduce the proposed 

failure time ODS design and the appropriate weighted estimating equation is given to 

estimate the regression parameters. In Section 3, we present the asymptotic properties of the 

proposed estimator. In Section 4, we establish a criteria and formula for optimal allocation 

of subsamples. In Section 5, we conduct the simulation studies to evaluate the finite sample 

performance of the proposed method. In Section 6, we illustrate the proposed method with a 

data set from the Cancer Incidence and Mortality of Uranium Miners Study. In Section 7, 

concluding remarks and discussions are given. Finally, the proofs for theoretical results are 

outlined in the Appendix.

2 Failure Time ODS Design and Proposed Estimator

2.1 Failure Time ODS Design and Data Structure

Assume there are m independent subjects in an underlying cohort. Let  denote the failure 

time and C be the potential censoring time for . Due to right-censoring, we only observes 

the vector (T, δ) with  and , where I(·) is the indicator function. 

Let Ze(t) be a possibly time-dependent one-dimensional exposure which is expensive or 

difficult to measure and Zc(t) be a possibly time-dependent q – 1-vector of covariates which 

are cheap or easily to measure, respectively. We assume that  and C are independent 

conditional on Ze(·) and Zc(·). Assume the hazard function of the conditional distribution of 

failure time  given Ze(t) and Zc(t) follows Cox’s proportional hazards model (Cox, 1972):

(2.1)

where λ0(t) is the unspecified baseline hazard function and  is the q-

dimensional unknown regression parameter and define .

The sampling mechanism of the proposed failure ODS design is constituted by following 

two-stage sampling and the exposure value is only assessed on these selected subjects. First, 

a subcohort (SRS) of simple random sample is selected from the underlying cohort and the 

subjects in SRS is indexed by a binary indictor ξ (1, if belonging to SRS; otherwise, 0). Let 

n0 denote the sample size of SRS and assume that n0/m is convergent to p in probability.

Second, the domain of failure time  are partitioned into K mutually exclusive intervals, Ak 

= (ak−1, ak], k = 1, …, K, where {ak: k = 0, 1, …, K} are known constants with a0 = 0 < a1 <, 
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…, < aK = +∞. Let  be the indictor of the i-th subject falling into the 

interval Ak. Let ηik denote the indicator of failure subject i, which is from the stratum Ak 

and selected into supplemental sample. The size of supplemental sample from the k-th 

stratum is denoted by nk. Let mk and n0,k denote the size of the full cohort failure sample 

and the SRS failure sample falling into the stratum Ak, respectively. Assume that nk/(mk – 

n0,k) is convergent to rk in probability, for k = 1, …, K. For most ODS applications, the K = 

3 case is shown to be a practical and sufficient setting and usually assume n1 = n3 (Zhou et 

al., 2007). Therefore, we consider K = 3 and only select supplemental samples from the 

intervals A1 and A3 in this article. The sampling mechanism of ODS can be explained by the 

following figure:

The samples with exposure value observed are referred to as validation sample, and the set 

of remaining subjects whose exposure value are not assessed is referred to as nonvalidation 

sample. Therefore, the observed data for our failure ODS design is:

where V0, Vk and  are the index for the SRS, supplemental sample from the stratum Ak 

and the nonvalidation sample, respectively. Note that the proposed failure time ODS design 

is coincided with classical case–cohort design if we let K = 1 and r1 = 1; and coincided with 

generalized case–cohort design if we let K = 1 and r1 ∈ (0, 1).

2.2 A Weighted Estimating Equation For Regression Parameter

Define the counting processes Ni(t) = I(Ti ≤ t, δi = 1) and at risk processes Yi(t) = I(Ti ≥ t), 

for i = 1, …, m. Define , 

with , , , for a vector a and recall . Let τ 
denote the study end time. If the covariate history are observable for all the study cohort, the 

regression parameters β0 can be estimated by solving the standard partial likelihood score 

equation U(β) = 0 (Andersen and Gill 1982, referred as AG in the following), where

(2.2)

Under the proposed failure time ODS design, since the exposure Ze(·) is only observed for 

the selected subjects, therefore the estimator of β0 cannot be calculated directly from (2.2). 

We propose to use the inverse probability weight (IPW)(e.g., Horvitz and Thompson, 1951) 

to inference the data from our proposed ODS design. Define n = n0+n1+n3, n/m → ρV and 

nk/n → ρk, k = 0, 1, 3, respectively. Define πk = Pr(T ∈ Ak, δ = 1), k = 1, 2, 3. From simple 

calculation, we can obtain the relationship between (p, rk)(Section 2.1) and (ρV, ρ0, ρk) as 

following:
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(2.3)

Due to biased sampling mechanism of proposed failure time ODS design, the inverse 

probability weight will have the following four characteristics: (i) nonvalidation samples are 

eliminated by setting w = 0; (ii) the sampled censored subjects are weighted by (ρ0ρV)−1; 

(iii) the sampled subcohort cases are weighted by 1, if their failure times belong to A1 and 

A3, and by (ρ0ρV)−1 otherwise; (iv) the sampled non-subcohort cases are weighted by π1(1 

− ρ0ρV)/(ρ1ρV) and π3(1 − ρ0ρV)/(ρ3ρV), if their failure times belong to A1 or A3, 

respectively. Hence, the weight can be written as following formula:

(2.4)

with ζi = ζi1 + ζi3.

The true regression coefficients, β0, then can be estimated by  from solving the 

following weighted estimating equation: UW (β) = 0, where

(2.5)

with .

The cumulative baseline hazard  can be naturally estimated by:

3 Asymptotic Properties

To establish the asymptotic properties of  we first show that m−1/2UW (β) can be 

approximated by two uncorrelated sums of independent random variables. Since the weights 

are not predictable, we employ empirical process theory for asymptotic properties, which do 

not require predictability. Define  and 

e(β, t) = s(1)(β, t)/s(0)(β, t). Straightforward calculation can show .

In order to estimate the asymptotic properties of proposed estimators, we impose the 

following regularity conditions:
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(C1)

(C2) Pr(Yi(t) = 1) > 0 for t ∈ (0, τ].

(C3) Xi(·) (i = 1, …, m) have bounded total variations, i.e. 

 for all j = 1, …, q and i = 1, …, m, where Xij 

is the j-th component of Xi and ConM is a constant.

(C4) There exists a neighborhood B of β0 such that 

 for d=0,1,2, where 

 is absolutely continuous, for β ∈ B, uniformly in u ∈ 
(0, τ]. Moreover, s(0)(β, t) is assumed to be bounded away from zero for each 

(β, t) ∈ B × (0, τ].

(C5)

The matrix  is 

positive definite.

Conditions (C1), (C2), (C4) and (C5) are analogous to those of Anderson and Gill (1982). 

Condition (C3) simplifies the derivation of the asymptotic results, but is not a practical 

limitation. Define

which is a martingale. Under some regularity conditions (see the Appendix), the asymptotic 

properties can be developed and summarized in following theorem.

Theorem 3.1

Under the conditions (C1)–(C5), (i)(consistency) ; (ii)(asymptotic normality) 

 is asymptotically normally distributed with mean zero and variance matrix 

, where ΣA(β0) is defined as 

in assumption (C5) and

where .

We note that, due to biased sampling, the asymptotic variance of  compared with full-

cohort standard partial likelihood estimator has an extra variance term ΣB(β0). The 
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covariance matrix could be consistently estimated by replacing the means with their 

empirical counterparts.

Theorem 3.2

Under the assumptions (C1)–(C5),  and

converges to a Gaussian process with variance function

Similarly, ΣΛ(t) can be consistently estimated by

The proofs of Theorem 3.1 and 3.2 are provided in the Appendix.

4 The Optimal Failure Time ODS Design Under a Fixed Budget

The validation samples of ODS design are constituted by SRS and supplemental sample. 

Under the fixed budget, there are many options of n0, n1, n3 satisfying the condition n = n0 + 

n1 + n3 with n fixed. How to choose the allocation of (n0, n1, n3) to improve efficiency is an 

important problem. The asymptotic relative efficiency between the standard partial 

likelihood estimator  based on the same sample size as ODS design and the proposed 

estimator  is

(4.1)

where MIq is an identity matrix of size q × q. The optimal failure time ODS design means 

the optimal allocation of n0, n1, n3, which minimizes  with n fixed, 

where F[i,j] denotes the (i, j) element of matrix F, and  denotes the 

asymptotic relative efficiency of the exposure Ze(·). We use the notation 

for . The formula of the  can be re-written as:
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(4.2)

In practice, we usually assume ρ1 = ρ3. Therefore,  is a function of ρ0 and 

the nonlinear program methods can be used to obtain the optimal failure time ODS design. 

In practice, we firstly select a subcohort (SRS) by simple random sampling. Then, we can 

obtain the estimator of  by estimating , , 

,  for k = 1, 3 by the samples from SRS, and 

 can be estimated by , respectively. Finally, the optimal 

ODS design can be obtained by the nonlinear program methods.

5 Simulation Studies

The simulation studies are conducted to evaluate the small sample performance of the 

proposed statistical method for failure time ODS design. First, we conduct the simulation I, 

where the underlying cohort has m = 600 independent subjects, whose failure times are 

generated by Cox’s proportional hazards model:

(5.1)

with λ0(t) = 1, the exposure Ze ~ N(0, 1), and covariate Zc ~ Bern(1, 0.5). We set β1 = 0.5, 

β2 = 0 and generate the corresponding censoring times from the mixture of uniform 

distribution over [0, c1] and uniform distribution over [c2, c3] and the mixing probability is 

chosen to generate around 80%, 70% censoring respectively. The cutpoints (a1, a2) are set to 

be (30%, 70%) quartiles of the failure times. A subcohort with size n0 = 300 is randomly 

sampled from the underlying cohort.

We compare the estimator from ODS design  with the estimators from generalized 

case–cohort design and SRS design with different sample size. The estimator, , is based 

on generalized case–cohort design, which randomly selects the SRS samples of size n0 and 

the supplemental failures of size n1 + n3 out of SRS sample. The standard partial likelihood 

estimators, , , , are based on the underlying cohort, SRS sample and SRS sample 

with the same sample size as the ODS design, respectively.

The results of simulation I are presented in Table 1. For each specified scenario, we 

generated 1000 simulated data sets. The Mean column gives estimator of the regression 
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parameter. The SE column represents the sample standard deviation of the 1000 estimates. 

The  column gives the average of the estimated standard error, which is calculated by the 

closed formula in Section 3 and the corresponding covariance matrix could be consistently 

estimated by replacing the means with their empirical counterparts. The column “CI” is the 

nominal 95% confidence interval coverage of the true parameter using the estimated 

standard error.

From the simulation results, we know the five estimators are all unbiased under all situations 

considered here. The proposed variance estimator provides a good estimation for the sample 

standard errors and the confidence intervals attain coverage close to nominal 95% level. 

When the censoring rate is increasing, the efficiency is decreasing. When the censoring rate 

is fixed, the efficiency is increasing with supplemental sampling sizes increasing. The 

proposed estimator  is more efficient than  and , which indicates sampling the 

supplemental samples from the tails of the failure time is more efficient than the 

supplemental samples selected by random sampling and all the subjects randomly sampled, 

respectively. Therefore, our proposed design is an effective way to enhance study efficiency.

Second, we conduct the simulation II to evaluate the performances of the proposed method 

under the different cutpoints where the failure time is generated from the Cox model (5.1) 

with β1 = 1, β2 = −1 and the censoring rate is set to be 70% and the cutpoints (a1,a2) are set 

to be (30%, 70%) and (20%, 80%) quartiles of the failure times, respectively. We set m = 

800, n0 = 400 and generate 1000 simulated data sets for each specified scenario. The results 

of simulation II are presented in Table 2.

The results from the Table 2 are almost the same as in Table 1. For example, the five 

estimators are all unbiased, the proposed variance estimator provides a good estimation for 

the sample standard errors and the confidence intervals attain coverage close to nominal 

95% level. The result also confirm that the proposed estimator  is more efficient than 

 and .

Finally, We conduct the simulation III to evaluate the performance of the proposed optimal 

allocation method in Section 4. We consider the model which is the same as in the 

simulation II. The number of underlying cohort is m = 2000. There are 315 and 100 failures 

in the interval A1 and A3 under the cutpoints being (30%, 70%) quartiles of the failure times 

and there are 265 and 50 failures in the interval A1 and A3 under the cutpoints being (20%, 

80%) quartiles of the failure times with the censoring rate being 70%. The fraction of the 

validation sample ρV is set to be 0.15. We select the same size of supplemental failures from 

the intervals A1 and A3. Simulation results based on 1, 000 data sets are presented in Figure 

2.

From the results in Figure 2, we can obtain the optimal ρ0 is 0.6 (relative efficiency 0.699) 

under the censoring rate being (30%, 70%) quartiles of the failure times. When the 

censoring rate is (20%, 80%) quartiles of the failure times, sampling less simple random 

sample will enhance the study’s efficiency. The same number of supplemental samples from 
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the intervals (20%, 80%) quartiles of the failure times will gain more efficiency than the 

intervals (30%, 70%) quartiles of the failure times.

6 The Cancer Incidence and Mortality of Uranium Miners Study

Lung cancer has been long recognized as an occupational disease in uranium miners and the 

miners therefore entitled for compensation 1926 in Germany and in 1932 in Czechoslovakia 

(BEIR VI, 1999; Sandler et al., 1998; Witschi, 2001). The Cancer Incidence and Mortality 

of Uranium Miners Study was conducted during January 1, 1977, to December 31, 1996 to 

evaluate the risk of developing radiation-related cancer among uranium miners. Uranium 

miners are chronically exposed to the alpha particles emitted by radon and its progeny 

(referred to as radon), which can cause random damage to the chromosomes and DNA 

molecules contained in the nucleus of the cell, and have a carcinogenic effect.

In the literature, association of radon and mortality had been studied by many authors, e.g., 

Tirmarche et al. (1993), Vacquier et al. (2008), Kreuzer et al. (2008, 2010) investigated 

mortality and radon, while others, such as, Řeřicha et al. (2006) and Kulich et al. (2011) 

pointed out that above studies would miss a substantial number of cases when the cancers 

have low fatality rates. However, they only considered a radon exposure in Cox’s model. 

Hence, we investigate incidence of non-lung solid cancers to test associations of radon 

exposures with cancers adjusting for age, smoking and airborne dust. So, in this article, we 

employ a failure time ODS design on the cancer incidence of Uranium Miner Study data set 

to investigate incidence of non-lung solid cancers to test associations of radon exposures 

with cancers adjusting for age, smoking and airborne dust.

The underlying cohort during follow-up includes 16, 434 miners and a total of 2, 330 

subjects with incident cancers identified, of which 1, 444 had cancer types of interest 

(Sandler et al., 1998). We sampled the subcohort sample from each strata defined according 

to age on 1/1/1977 (5-year groups) so that the number in each stratum was approximately 

equal to the total number of all cancer cases in that stratum. There are total 12 stratums in 

the cohort. The sample size of SRS is n0 = 1, 825 and the number of SRS from each stratum 

is (33, 55, 40, 134, 206, 462, 364, 222, 198, 78, 25, 8). The censoring rate is 91.2%. The 

cutpoints are a2 and a8, which are the 20% and 80% quantiles of the incidence time. We then 

randomly sample n1 = 51 and n3 = 51 supplemental samples from the intervals (0, a2] and 

(a8, ∞), respectively. So, the total size of ODS sample is 1, 927.

The Cox proportional hazards model is considered to illustrate the proposed method:

where Trad (total radon exposure) is measured as working level months (WLM, 1WLM = 

3.5 × 10−3Jhm−3), Age is measured by year, Tdust (mg/m3) represents total airborne dust 

and Smoking is defined as 0–1 variable (0 denotes non-smokers and light smokers who 

smoked less than 10 cigarettes a day for a period not exceeding 5 years; 1 denotes moderate 

and heavy smokers).
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We consider three methods to evaluate the association between incident and Trad, such as 

,  and  based on the same sample size. We use the bootstrap method to obtain 

the variance estimation with the number of bootstrap being 300. The results are summarized 

in Table 3.

The three methods all confirm the Trad is not significantly related to the incidence of non-

lung solid cancers. A more precise 95% confidence interval of Trad is (−0.570×10−3, 1.075× 

10−3) and it is achieved by . The standard deviations for Trad are 0.497 × 10−3, 0.484 × 

10−3 and 0.421 × 10−3 by ,  and , respectively. The results also show Trad has 

a positive impact on the incidence of non-lung solid cancers.

7 Concluding Remarks and Discussions

We propose a weighted estimating equation approach for failure time ODS design with right 

censoring. Under the Cox proportional hazards model, we adopt the inverse probability 

weight (IPW) method to the standard partial likelihood score equation to estimate the 

regression parameters due to the biased sampling mechanism. The proposed estimators are 

shown to be consistent and asymptotically normality. One main advantage of the proposed 

estimator is that it is very easy to compute by existing R free package “survival”.

In this article, we consider the situation where the main exposure is a scaler variable. The 

proposed theory works when Ze(t) in (2.1) is a vector as well. However, in this case, we need 

to change the ARE formula in (4.2) to the trace of the corresponding matrix. Besides, there 

is only one exposure (radon) in the real data set.

To facilitate the practical use of the proposed design and method, we developed formula for 

the optimal study size allocation. The optimal allocation of subsamples is derived by 

evaluating the relative efficiency between our proposed estimator and the standard partial 

likelihood estimator from SRS design with the same sample size. This is especially useful 

tool in aiding investigators to design a cost-effective study. The simulation study suggests 

that our proposed methods can gain greater efficiency than other frequently used methods. 

We illustrate our proposed method by the data set from the Cancer Incidence and Mortality 

of Uranium Miners Study.

We use a simple random sampling as our subcohort. In the non ODS literature (Borgan et al., 

2000; Samuelsen et al., 2007), it has been well established that stratified SRS sample is more 

efficient than the SRS alone. Exploring stratified failure time ODS design and inference 

could be interesting future work. This would be particularly useful in the case of auxiliary or 

surrogate covariate problems.

Acknowledgments

The authors are grateful for the valuable comments and suggestions from the associate editor and the referees which 
drastically improved the article. This work is supported by the National Science Foundation of China grant 
11501578 (for Yu), 11571263 and 11371299 (for Liu), and NIH R01 ES021900, P01 CA142538 (for Zhou).

Yu et al. Page 11

J Stat Plan Inference. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix

We first introduce the following Lemma which will be useful in proving the weak 

convergence of processes and can be found in Lin et. al (2000).

Lemma 7.1

Let fn and gn be two sequences of bounded functions such that, for some constant τ,

a.
, where f is continuous on [0, τ],

b. {gn} are monotone on [0, τ] and

c.
 for some bounded function g. Then

A. Proof of Theorem 1

First, we prove the consistency of . We use the theorem of Foutz (1977) to get the 

consistency of .  is consistent for β0 provided:

I. m−1∂UW(β)/∂β exists and is continuous in an open neighborhood B of β0;

II. m−1∂UW(β0)/∂β0 is negative definite with probability going to 1;

III. m−1∂UW(β)/∂β converges in probability to a fixed function, say, Σ(β), 

uniformly in an open neighborhood of β0;

IV. m−1UW (β0) → 0 in probability.

Specifically, one can write

(7.1)

Because of  and  is the difference of 

two nondecreasing processes, the first term of (7.1) converges to zero in probability by 

Lemma 7.1 and Conditions (C1)–(C4) (vander Vaart and Wellner, 1996). By Lemma 1 and 

conditions (C1) to (C5), we can prove that the second term of (7.1) converges in probability, 

Yu et al. Page 12

J Stat Plan Inference. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



uniformly for β ∈ B to ΣA(β). Therefore (I) to (III) are satisfied by conditions (C1) to (C5) 

and Lemma 1.

For (IV), it can be show that:

which can be proved to converge in probability to zero like the first part of (7.1).

Second, we prove the asymptotic normality of . By Taylor expansion of UW (β) around 

β0, we have

Inserting  in above equation, we have

where β* is between  and β0. To prove the asymptotic normality of , it suffices to 

prove that  converges to a normal random variable in distribution and that 

 converges to an invertible matrix.

Since

On the other hand, by the boundness of w and Lemma 7.1, we have

converges to zero in probability. Therefore,  is asymptotically equivalent to

Where
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So,

(7.2)

The first part of (7.2) is the same as partial likelihood in Cox (1972), the second part due to 

the ODS design. The expectation of Hi(β0) is zero and E[(wi −1)Hi(β0)] = E[Hi(β0)E[(wi 

− 1)|ζik, Ti, δi, Xi(t), 0 ≤ t ≤ τ, 1 ≤ k ≤ K]] = 0. We can get  by the 

same way.

The variance of (wi − 1)Hi(β0) is finite because w is bounded and the variance of Hi(β0) 

exists. Therefore  converges to a mean zero Gaussian distribution 

with covariance equivalent to .

Simple calculation show that

Therefore,

B. Proof of Theorem 3

First, we prove the consistency of . Define . By the definition 

of , we can show that
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(7.3)

The first part of (7.3) is equal to

and the second part of (7.3) equals

We can show them uniform converge to zero by the Condition (C1) to (C5) and Lemma 1, so 

is the conclusion.

Secondly, we prove the asymptotic normality of . We can show that

where  is defined as in Anderson and Gill (1982).

By the argument of Anderson and Gill (1982), , a.s. for all t ∈ [0, τ]. Therefore 

the third term of above equality is negligible.
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The second term equals , which asymptotically equals

(7.4)

by Lemma 1. Since  is the difference of two nondecreasing bounded 

processes, it converges to a Gaussian process. The linear functions of the Gaussian processes 

are Gaussian implies that Wm(t) converges to a Gaussian process with mean zero and 

variance function

A Taylor expansion of the first term yields the quantity , where

and β* is on the line segment between  and β0. Similar arguments as the proof of 

consistency of  can show that

Therefore Theorem 3.2 is proved.

References

Andersen PK, Gill RD. Cox’s regression model for counting processes: A large samle study. Annals of 
Statistics. 1982; 10:1100–1120.

Borgan O, Langholz B, Samuelsen SO, Goldstein L, Pogoda J. Exposure stratified case–cohort 
designs. Lifetime Data Analysis. 2000; 6:39–58. [PubMed: 10763560] 

Breslow NE, Cain KC. Logistic regression for two-stage case-control data. Biometrika. 1988; 75:11–
20.

Breslow NE, Holubkov R. Maximum likelihood estimation of logistic regressiion parameters under 
two-phase, outcome-dependent sampling. Journal of the Royal Statistical Society. 1997; 59:447–
461.Series B

Breslow NE, McNeney B, Wellner JA. Large sample theory for semiparametric regression models with 
two-phase, outcome dependent sampling. The annals of Statistics. 2003; 31:1110–1139.

Cai J, Zeng D. Sample size/power calculation for case–cohort studies. Biometrics. 2004; 60:1015–
1024. [PubMed: 15606422] 

Yu et al. Page 16

J Stat Plan Inference. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cai J, Zeng D. Power calculation for case–cohort studies with nonrare events. Biometrics. 2007; 
63:1288–1295. [PubMed: 17608788] 

Chen K. Generalized case–cohort sampling. Journal of the Royal Statistical Society. 2001; 63:791–
809.Series B

Cox DR. Regression models and life tables (with discussion). Journal of the Royal Statistical Society. 
1972; 34:187–220.Series B

Foutz R. On the unique consistent solution to the likelihood equations. Journal of The American 
Statistical Association. 1977; 72:147–148.

Horvitz D, Thompson D. A generalization of sampling without replacement from a finite universe. 
Journal of the American Statistical Association. 1951; 47:663–685.

Kang S, Cai J. Marginal hazards model for case–cohort studies with multiple disease outcomes. 
Biometrika. 2009; 96:887–901. [PubMed: 23946547] 

Kim S, Cai J, Lu W. More efficient estimators for case-cohort studies. Biometrika. 2013; 100:695–708. 
[PubMed: 24634519] 

Kreuzer M, Grosche B, Schnelzer M, Tschense A, Dufey F, Walsh L. Radon and risk of death from 
cancer and cardiovascular diseases in the German uranium miners cohort study : follow-up 1946–
2003. Radiation and Environmental Biophysics. 2010; 49:177–185. [PubMed: 19855993] 

Kreuzer M, Walsh L, Schnelzer M, Tschense A, Grosche B. Radon and risk of extrapulmonary 
cancers: results of the German uranium miner’s cohort study. British Journal of Cancer. 2008; 
99:1945–1953.

Kulich M, Řeřicha V, Řeřicha R, Shore DL, Sander D. Incidence of non-lung solid cancers in Czech 
uranium miners: a case–cohort study. Enviromental Health. 2011; 111:400–405.

Lin D, Wei L, Yang I, Ying Z. Semiparametric regression for the mean and rate functions of recurrent 
events. Journal of the Royal Statistical Society. 2000; 62:711–730.Series B

National Research Council. Committee on the Biological Effects of lionizing Radiation (BEIR VI), 
Health effects of exposure to radon. National Academy Press; Washington DC: 1999. 

Prentice RL. A case-cohort design for epidemiologic cohort studies and disease prevention trials. 
Biometrika. 1986; 73:1–11.

Prentice RL, Pyke R. Logistic disease incidence models and case-control studies. Biometrika. 1979; 
66:403–412.

Řeřicha V, Kulich M, Řeřicha R, Shore DL, Sander D. Incidence of leukemia, lymphoma, and multiple 
myeloma in Czech uranium miners: a case–cohort study. Environmental Health Perspective. 2006; 
114:818–822.

Samuelsen S, Ȧnestad H, Skrondal A. Stratified case–cohort analysis of general cohort sampling 
designs. Scandinavian Journal of Statistics. 2007; 34:103–119.

Sandler DP, Shore DL, Solansky I, Rericha V, Hnizdo E, Sram R. Lung cancer in Czech Uranium 
miners. Epidemiology. 1998; 9:S44.

Sandler DP, Shore DL, Solansky I, Rericha V, Hnizdo E, Sram R. Lung cancer incidence in Czech 
uranium miners with low-level radon exposure. Am J Epidemiology. 1998; 147:S86.

Scheike T, Martinussen T. Maximum likelihood estimation in Cox’s regression model under case–
cohort sampling. Scandinavian Journal of Statistics. 2004; 31:283–293.

Self SG, Prentice RL. Asymptotic distribution theory and efficiency results for case–cohort studies. 
Annals of Statistics. 1988; 16:64–81.

Song R, Zhou H, Kosorok M. A note on semiparametric efficient inference for two-stage outcome-
dependent sampling with a continuous outcome. Biometrika. 2009; 96:221–228. [PubMed: 
20107493] 

Sun J, Sun L, Flournoy N. Additive hazards model for competing risks analysis of the case–cohort 
design. Communications in Statistics — Theory and Methods. 2004; 33:351–366.

Tirmarche M, Raphalen A, Allin F, Bredon P. Mortality of a cohort of French uranium miners exposure 
to relatively low radon concentrations. British Journal of Cancer. 1993; 67:1090–1097. [PubMed: 
8494704] 

Yu et al. Page 17

J Stat Plan Inference. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vacquier B, Caer S, Rogel A, Feurprier M, Tirmarche M, Luccioni C, Quesne B, Acker A, Laurier D. 
Mortality risk in the French cohort of uranium miners: extended follow-up 1964–1999. 
Occupational Environmental Medicine. 2008; 65:597–604. [PubMed: 18096654] 

vander Vaart, AW.; Wellner, JA. Weak convergence and empirical processes. Springer-Verlag; New 
York: 1996. 

Wang X, Zhou H. A semiparametric empirical likelihood method for biased sampling schemes with 
auxiliary covariates. Biometrics. 2006; 62:1149–1160. [PubMed: 17156290] 

Wang X, Zhou H. Design and inference for cancer biomarker study with an outcome and auxiliary-
dependent subsampling. Biometrics. 2010; 66:502–511. [PubMed: 19508239] 

Weaver MA, Zhou H. An estimated likelihood method for continuous outcome regression models with 
outcome-dependent sampling. Journal of The American Statistical Association. 2005; 100:459–
469.

Weinberg CR, Wacholder S. Prospective analysis of case-control data under general multiplicative 
intercept risk models. Biometrika. 1993; 80:461–465.

Zhang H, Schaubel DE, Kalbfleisch J. Proportional hazards regression for the analysis of clustered 
survival data from case–cohort studies. Biometrics. 2011; 67:18–28. [PubMed: 20560939] 

Zhou H, Chen J, Rissnen T, Korrick S, Hu H, Salonen J, Longnecker MP. Outcome-dependent 
sampling: an efficient sampling and inference procedure for studies with a continuous outcome. 
Epidemiology. 2007; 18:461–468. [PubMed: 17568219] 

Zhou H, Qin G, Longnecker M. A partial linear model in the outcome-dependent sampling setting to 
evaluate the effect of prenatal PCB exposure on cognitive function in children. Biometrics. 2011; 
67:876–885. [PubMed: 21039397] 

Zhou H, Weaver M, Qin J, Longnecker M, Wang MC. A semiparametric empirical likelihood method 
for data from an outcome-dependent sampling scheme with a continuous outcome. Biometrics. 
2002; 58:413–421. [PubMed: 12071415] 

Yu et al. Page 18

J Stat Plan Inference. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

1. Proposing the outcome-dependent sampling design for the survival 

time subjecting to right censor

2. To account for the biased sampling scheme, we derive estimators from 

a weighted partial likelihood estimating equation.

3. A criteria that can be used to optimally implement the ODS design in 

practice is proposed and studied.
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Figure 1. 
Outcome-dependent sampling mechanism, SRS samples: subcohort by simple random 

sample, Suppl: supplemental failure sample, interval A1: (0, a1], interval A2: (a1, a2], 

interval A3: (a2, ∞), a1 and a2 are the cutpoints.
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Figure 2. 

Asymptotic relative efficiency between  and  with ρV = 0.15.
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Table 3

Analysis results for Cancer Incidence and Mortality of Uranium Miners Study: the listed values are the 

original values ×10−2

Methods 95%CI

Trad 0.006 0.050 (−0.091, 0.104)

Age 4.600 0.502 (3.617, 5.583)

Tdust 0.002 0.001 (0.001, 0.004)

Smoking 76.879 13.839 (49.754, 104.004)

Trad 0.027 0.048 (−0.068, 0.122)

Age 4.516 0.440 (3.654, 5.377)

Tdust 0.002 0.001 (0.001, 0.004)

Smoking 74.055 13.468 (47.658, 100.452)

Trad 0.025 0.042 (−0.057 0.108)

Age 4.835 0.458 (3.937, 5.733)

Tdust 0.002 0.001 (0.001, 0.004)

Smoking 73.313 12.886 (48.056, 98.570)

Note: Trad is the total radon exposure, Tdust is the total airborne dust. : the estimator obtained by simple random sampling; : the 

estimator obtained by generalized Case-Cohort sampling; : the estimator obtained by ODS sampling. The three methods base on the same 

size of the sample.
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