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ABSTRACT  25 

Synchronization between the firing times of simultaneously active motor units (MUs) is generally 26 

assumed to increase during fatiguing contractions. To date, however, estimates of MU 27 

synchronization have relied on indirect measures, derived from surface electromyographic (EMG) 28 

interference signals. This study used intramuscular coherence to investigate the correlation between 29 

MU discharges in the first dorsal interosseous muscle during and immediately following a 30 

submaximal fatiguing contraction, and after rest. Coherence between composite MU spike trains, 31 

derived from decomposed surface EMG, were examined in the delta (1-4 Hz), alpha (8-12 Hz), beta 32 

(15-30 Hz) and gamma (30-60 Hz) band frequency ranges. 33 

A significant increase in MU coherence was observed in the delta, alpha and beta frequency bands 34 

postfatigue. In addition, wavelet coherence revealed a tendency for delta, alpha and beta-band 35 

coherence to increase during the fatiguing contraction, with subjects exhibiting low initial coherence 36 

values displaying the greatest relative increase. This was accompanied by an increase in MU short-37 

term synchronization and a decline in mean firing rate of the majority of MUs detected during the 38 

sustained contraction. 39 

A model of the motoneuron pool and surface EMG was used to investigate factors influencing the 40 

coherence estimate. Simulation results indicated that changes in motoneuron inhibition and firing 41 

rates alone could not directly account for increased beta-band coherence postfatigue. The observed 42 

increase is, therefore, more likely to arise from an increase in the strength of correlated inputs to 43 

MUs as the muscle fatigues.  44 

Key words: motor unit coherence, isometric fatigue, intramuscular coherence, beta-band 45 

coherence, short-term synchronization  46 
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INTRODUCTION 47 

As muscle fatigue progresses, a number of adaptations develop within the central and peripheral 48 

nervous system, several of which may serve as compensatory or protective mechanisms. These 49 

include alterations in motor unit (MU) recruitment and firing rate (McManus et al. 2015a), changes 50 

in reflex inputs from metabolically and mechanically sensitive muscle afferents (Macefield et al. 51 

1991), and a progressive reduction in the ability to voluntarily activate the muscle with suboptimal 52 

drive from the motor cortex (Gandevia 2001). In addition to these more well-established changes, it 53 

is commonly suggested that fatigue also alters the degree of synchronization between the firing 54 

times of simultaneously active motor units. Recent studies have added weight to this hypothesis, 55 

reporting evidence of a fatigue-induced increase in synchronized motor unit firings using indirect 56 

estimates of synchronization derived from surface EMG interference signals (Beretta-Piccoli et al. 57 

2015; Holtermann et al. 2009; Talebinejad et al. 2010; Webber et al. 1995). The observed 58 

synchronization of motor unit firing trains can be modulated in specific frequency ranges, including 59 

the delta (1-4 Hz), alpha (8-12 Hz), beta (15-30 Hz) and gamma (30-60 Hz) frequency bands. Each 60 

type of synchrony is purported to have distinct origins, with beta-band coherence of particular 61 

interest, as it is believed to reflect information on oscillatory cortical and sub-cortical processes, and 62 

has been shown to be directly correlated with short-term MU synchronization (Lowery et al. 2007). 63 

Despite indications of increased MU synchronization postfatigue, direct evidence of an increase in 64 

either short-term synchronization or coherent MU firings in the beta frequency range has never 65 

been shown. 66 

Previous studies using intramuscular EMG have reported no change in MU synchronization with 67 

fatigue (Contessa et al. 2009; Nordstrom et al. 1990), with the exception of an early study which 68 

reported increased motor unit synchrony following a sustained, fatiguing maximal contraction in the 69 

biceps (Buchthal and Madsen 1950). However, in that study MUs were recorded after the recovery 70 

of muscle force, which makes it unclear whether the increase in MU synchronization was due to 71 
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fatigue, or could be attributed to exercise-induced muscle damage (Dartnall et al. 2008). The 72 

conflicting results obtained from intramuscular EMG studies may arise from the relatively low 73 

number of motor units detected. This could also explain why methods based on non-linear analysis 74 

of the surface EMG signal, which captures a larger representative sample of MU activity, have 75 

consistently inferred that MU synchronization increases with fatigue (Beretta-Piccoli et al. 2015; 76 

Holtermann et al. 2009; Talebinejad et al. 2010; Webber et al. 1995). Analysis of a greater number of 77 

motor units spike trains using surface EMG decomposition techniques has the potential to enhance 78 

the detection of correlated MU discharges. 79 

Several recent studies have shown a fatigue-induced increase in intermuscular beta coherence 80 

between surface EMG of synergistic index finger flexor muscles (Kattla and Lowery 2010), knee 81 

extensor muscles (Chang et al. 2012), antagonistic elbow muscles (Wang et al. 2015) and during 82 

three-digit grasping (Danna-Dos Santos et al. 2010). Furthermore, increased beta-band coherence 83 

was observed between cortical neuron activity and EMG recordings following sustained maximal 84 

(Tecchio et al. 2006) and submaximal fatiguing contractions (Ushiyama et al. 2011). Though 85 

increases in beta frequency corticomuscular and intermuscular coherence postfatigue have been 86 

reported, direct evidence of a similar change in coherent MU discharges within the same muscle has 87 

not been shown. The aim of this study was to examine alterations in MU coherence during and after 88 

a sustained submaximal fatiguing contraction in the first dorsal interosseous. To do this, a large 89 

population of motor unit spike trains, decomposed from the surface EMG signal, were examined. 90 

Coherence between groups of simultaneously active motor units was then calculated across a range 91 

of frequency bands, before, during, and directly after the fatiguing contraction, and again following a 92 

rest period. In addition, the temporal evolution of synchronized motor unit firing was investigated 93 

over the course of the fatiguing contraction using wavelet coherence. Finally, model simulations 94 

were used to explore whether changes in mean motor unit firing rates, or alterations in the direct 95 

inhibition of motoneurons could account for the changes in coherence observed. 96 
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Direct evidence of an increase in short-term MU synchronization and correlated MU firings in the 97 

beta-band range during fatigue within a single muscle has been presented for the first time in this 98 

study. An increase in delta-band coherence, which is equivalent to the “common drive” modulation 99 

of motor unit firing rates (Myers et al. 2004), and alpha-band coherence were also reported both 100 

during the sustained contraction and postfatigue. The increase in delta-band coherence was 101 

correlated with increases in force variability. A progressive decrease in motor unit mean firing rates 102 

was observed during the fatiguing contraction, however, model simulations indicated that changes 103 

in firing rates alone were unlikely to account for the increase in coherence postfatigue. Preliminary 104 

results from this study were presented at the 7th Annual International IEEE EMBS Conference on 105 

Neural Engineering (McManus et al. 2015b). 106 

METHODS 107 

Experimental Procedure 108 

Written informed consent and ethical approval was obtained for fifteen subjects (8 female,) to 109 

examine EMG activity of the FDI muscle during isometric abduction of the right index finger. Details 110 

of the experimental procedure have been reported previously in McManus et al. (2015a). Briefly, 111 

subjects performed a series of six isometric voluntary contractions prefatigue, the force trajectory 112 

contained a 3 s quiescent period for baseline noise calculation, an up-ramp increasing at 10% 113 

maximum voluntary contraction (MVC) per second, a constant force of 20% MVC for 10 s, a down-114 

ramp decreasing at 10% MVC/s, and a final 3 s quiescent period. After the six prefatigue trials, a 115 

sustained isometric contraction was performed at 30% MVC until task failure, defined as the point at 116 

which the subject’s force dropped 10% below the required output for 5 or more seconds. Additional 117 

verbal encouragement was provided during the contraction. A single MVC was performed directly 118 

following task failure, followed by six 10 s contractions at 20% MVC with no rest period between 119 

trials to minimize recovery. Subjects were then allowed a 10 minute recovery period before a series 120 

of four more 10 s contractions at 20% MVC. 121 
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Data Analysis – Motor unit acceptance 122 

Discriminable MUs were extracted from the surface EMG recorded using the decomposition 123 

algorithms described in Nawab et al. (2010) (Delsys, version 4.1.1.0). For each identified MU, the 124 

output of the algorithm consisted of MU firing times and 4 motor unit action potential (MUAP) 125 

waveforms corresponding to 4 pairs of electrode channels. The identified firing times for each MU 126 

were used to spike trigger average (STA) the surface EMG signal on each channel, resulting in 4 127 

representative STA MUAP estimates for each MU. Two separate reliability tests were performed to 128 

determine which decomposed MUs would be retained for further analysis, using the procedure 129 

outlined in Hu et al. (2013). To quantify the variation of the STA MUAP over time, the coefficient of 130 

variation was calculated for the peak-to-peak amplitude of the MUAP templates. The maximum 131 

linear correlation coefficient between the STA estimate (calculated over the entire trial duration) 132 

and the decomposition-estimated templates was also computed. MUs with an average correlation 133 

coefficient (between the STA MUAP estimate and the decomposition MUAP template) > 0.7 and the 134 

coefficient of variation of the peak-to-peak amplitude < 0.3 across all four channels were selected 135 

for further analysis. 136 

In the present study, the MUs identified by the decomposition algorithm during the fatiguing 137 

contraction were additionally required to have a correlation coefficient (between the STA MUAP 138 

template and the decomposition MU template and between each consecutive STA MUAP template 139 

and the average STA MUAP template) > 0.8 and a peak-to-peak MUAP amplitude variation < 0.2 140 

(both between consecutive STA MUAP templates and across all STA MUAP templates), on a 141 

minimum of two channels to be selected for further analysis. A 400 ms Hanning window filter was 142 

applied to the firing time data to analyze trends in MU mean firing times over the course of the 143 

fatiguing contraction. The change in firing rate was examined for each motor unit by fitting a least-144 

squares regression line to the mean firing rate data.  145 

  146 

6 
 



Data Analysis – Motor unit coherence, wavelet coherence and short-term synchronization 147 

The number of MU spike trains used for the coherence analysis was chosen to be the maximum 148 

number of MU spike trains available across all accepted trials and conditions for each subject. This 149 

ensured that an equal sample of MU spike trains were analyzed within each condition. For trials that 150 

contained more than the chosen number of motor units for that subject, motor unit spike trains 151 

were selected randomly for further analysis. The spike trains from multiple trials were pooled 152 

together for each condition, with the same number of trials analyzed per condition. The pooled 153 

motor unit trains were then divided into two groups, and the firing instances in each group were 154 

summed to obtain two composite spike trains, Figure 1. The composite spike train method has been 155 

previously applied to examine corticomuscular coherence  and low frequency (<10 Hz) intramuscular 156 

coherence during fatigue among a small number of subjects (Castronovo et al. 2015). A pair of 157 

composite spike trains was obtained for every available combination of two groups from the pooled 158 

MUs. For each subject, the number of paired combinations of composite trains analyzed was 159 

constant across prefatigue, postfatigue and recovery conditions. 160 

Figure 1 161 

The magnitude squared coherence, Cxy(f), was calculated for each pair of composite spike trains, x(t) 162 

and y(t), as a function of their power spectral densities, Pxx(f) and Pyy(f), and cross power spectral 163 

density, Pxy(f). 164 

𝐶𝐶xy(𝑓𝑓) = �𝑃𝑃xy(𝑓𝑓)�
2

𝑃𝑃xx(𝑓𝑓)𝑃𝑃yy(𝑓𝑓)
      (1) 165 

The level at which the magnitude squared coherence was considered significant for overlapping 166 

windows with 75% overlap was calculated at the 0.05 significance level (Terry and Griffin 2008). The 167 

coherence in each frequency band was estimated as the integral of the magnitude-squared 168 

coherence above the significance level, for the delta (1-4 Hz), alpha (8-12 Hz), beta (15-30 Hz) and 169 
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gamma (30-60 Hz) frequency bands. The coherence was estimated for three conditions, prefatigue, 170 

postfatigue and following the recovery period. 171 

Coherence was estimated for each combination of composite MU trains. The prefatigue coherence 172 

estimates were standardized to have zero mean and unit variance, Figure 4. Postfatigue and 173 

recovery coherence estimates were then scaled using the prefatigue mean and variance for that 174 

subject. Fourier based coherence was used for the short duration contractions pre- and postfatigue, 175 

which were assumed to be stationary. 176 

For the longer, non-stationary fatiguing contractions, wavelet coherence analysis was used to 177 

examine the temporal evolution of the intramuscular coherence (Lachaux et al. 2002). The wavelet 178 

transform, Wx(b, s), of a signal x(u) is given by the convolution of the signal with a wavelet function, 179 

where b and s are the time shift and scale respectively. For this study, the Morlet waveform Ψs,b(u) 180 

was chosen as it has both oscillatory features and is complex valued. Similar to Fourier based 181 

coherence, the wavelet coherence WCo(t, f) at a time t and frequency f  between two signals x(t) 182 

and y(t) is defined by 183 

𝑊𝑊𝑊𝑊𝑊𝑊(𝑡𝑡, 𝑓𝑓) = �𝑆𝑆𝑊𝑊xy(𝑡𝑡,𝑓𝑓)�

�𝑆𝑆𝑊𝑊xx(𝑡𝑡,𝑓𝑓).𝑆𝑆𝑊𝑊yy(𝑡𝑡,𝑓𝑓)�
1 2⁄   (2) 184 

where SWxy(t, f) is the wavelet cross-spectrum between x(t) and y(t) and SWxx(t, f) and SWyy(t, f) the 185 

auto-spectra of the two signals. In the wavelet coherence method, the length of the integration 186 

window decreases with increasing frequency, which improves the temporal resolution of the 187 

coherence estimate for higher frequencies. The number of cycles of the wavelet (nco = 10) and the 188 

number of cycles contained within the integration window (ncy = 40) were chosen to focus on the 189 

change in beta-band wavelet coherence. Delta-band coherence was analyzed separately and the 190 

number of cycles of the wavelet was changed to improve the resolution in this frequency band (nco = 191 

1). Confidence levels for the detection of significant coherence were calculated for these values of 192 

nco and ncy using surrogate white noise signals to compute the statistical thresholds (Lachaux et al. 193 

2002). Wavelet coherence was used to examine the coherence between composite MU spike trains 194 
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over the fatiguing contraction. Each subject was required to have a minimum number of 8 motor 195 

units pass the acceptance criteria to be used in the wavelet coherence analysis. For subjects with a 196 

large number of motor units 100 combinations were randomly chosen for the coherence estimate. 197 

For each subject, the integral of the coherence in the alpha, beta and gamma frequency bands was 198 

calculated at each 1 ms time step over the course of the fatiguing contraction. The change in 199 

coherence during the fatiguing contraction was examined for each subject by fitting a least-squares 200 

regression line to the integral of the coherence in each frequency band against the percentage of 201 

time to task failure, and using the equation of the line to calculate the estimates for the initial and 202 

final coherence values. The percentage change in coherence in each frequency band was compared 203 

to the percentage change in the coefficient of variation of the force trace, calculated during the first 204 

and the last 10 seconds of the fatiguing contraction. 205 

In the time-domain, short-term motor unit synchronization was quantified using the synchronization 206 

index (SI) (De Luca et al., 1993). Cross-interval histograms were constructed between pulse trains 207 

representing the firing times of pairs of motor units, for each possible pair of motor units. The cross-208 

interval histogram was constructed by calculating the first order, forward and backward recurrence 209 

times of the alternate motor unit with respect to the reference unit. The peak in the cross-interval 210 

histogram was determined by locating bins within 6 ms of the zero time-lag, for which the total 211 

number of occurrences lay above the mean number of occurrences at the 95% significance level. SI, 212 

the percentage of synchronized firings in excess of what would be expected due to chance, was 213 

defined as the ratio between the total number of firings within the peak in excess of the mean, and 214 

half the total area under the cross-interval histogram. The synchronization between motor unit pairs 215 

was calculated for the first and second half of each fatiguing contraction. 216 

Model Simulation 217 

A model of the motoneuron pool, surface EMG signal and force output of first dorsal interosseous 218 

muscle was used to examine the degree to which synchronization and coherence between the 219 
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motor unit discharge times is affected by the strength of common pre-synaptic inputs to the 220 

motoneuron pool, and possible additional factors, including variations in mean motor unit firing rate 221 

and the introduction of a common inhibitory input.  222 

The model was designed to produce motor unit activation patterns qualitatively similar to those 223 

recorded experimentally. The force generated by the model was continuously compared to a target 224 

force, and adjusted based on the difference between the two to emulate the experimental 225 

conditions in which a subject tracks a target force trajectory. The model of the motoneuron pool was 226 

based on the model described by Lowery and Erim (2005) and was comprised of 100 motoneurons, 227 

simulated using a single compartment threshold-crossing model (Powers 1993). Each motoneuron 228 

received three inputs: a constant activation current, and a common modulation or oscillatory 229 

current, and an independent membrane noise voltage (Lowery and Erim 2005).  230 

The motoneuron pool model was coupled to a model of the surface EMG signal based on that 231 

described in Lowery et al. (2000) and adapted for the first dorsal interosseous muscle. The muscle 232 

was assumed to be trapezoidal in shape with a width of 35 mm, height of 5 mm, and length of 11.5 233 

mm on the medial side extending to 35 mm on the lateral side (Infantolino and Challis 2010). 234 

Coordinates within the muscle cross-section for both MUs and fibers within each MU were randomly 235 

generated for one hundred motor units using Sobol distributions. The number of fibers assigned to 236 

each motor unit was assumed to increase linearly with recruitment threshold from 50 to 360 237 

(Feinstein et al. 1955). Fiber diameters (0.052 – 0.068 mm, Freund (1983)) also increased linearly 238 

with motor unit size, and a muscle fiber density of 20 fibers per mm2 was assumed (Buchthal et al. 239 

1957). All muscle fibers were orientated with a pennation angle of 50° (Infantolino and Challis 2010). 240 

The electrode was modelled as 5 point electrodes located at each of the corners and the center of a 241 

5 × 5 mm square, based on the dimensions of the Delsys electrode used experimentally. It was 242 

located 15 mm from the proximal end of the muscle and 11 mm from the lateral side of the muscle, 243 

3.5 mm above most superficial muscle fibers, and rotated 20° with respect to the fiber direction to 244 
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replicate experimental placement of the electrode. The muscle fibers were located within 245 

homogeneous cylindrically anisotropic muscle tissue, with radial and axial conductivities of 0.063 246 

and 0.33 S/m, respectively. The single fiber action potential detected when each muscle fiber was 247 

stimulated was calculated using an infinite volume conductor model for anisotropic muscle (Lowery 248 

et al. 2000). The single fiber action potentials generated by all of the fibers in each motor unit 249 

summed linearly to yield the MUAP. The common input was simulated by band-pass filtering a 250 

random Gaussian signal between 9-25 Hz using a second order Butterworth filter, chosen to 251 

generate motor unit coherence spectra qualitatively similar to those recorded experimentally. The 252 

amplitude of the signal was varied between 0-0.6 mV to simulate changing levels of shared pre-253 

synaptic input in the beta-band. 254 

To investigate whether a net inhibition of motoneurons could affect the level of motor unit 255 

coherence, inhibition to the motoneuron pool was simulated as follows. Firing of a motoneuron 256 

resulted in the generation of an inhibitory post-synaptic potential (IPSP) at the input to that 257 

motoneuron, and to its two neighboring motoneurons as defined in terms of the motoneuron 258 

recruitment order. To replicate the changes in firing rate and recruitment that were observed 259 

experimentally, a weighting function was assigned to the amplitude of the IPSPs such that the 260 

earliest recruited motoneurons received the greatest level of inhibition. IPSPs were simulated as an 261 

alpha function with a rise time of 5.5 ms and half-width of 18.5 ms, and ranged in amplitude from 5-262 

60 µV according to a weighted sigmoidal function, based upon experimental data of Renshaw 263 

inhibition (Hamm et al. 1987). 264 

Spike triggered averaging was performed on the simulated EMG data to characterize the MU 265 

waveform, using the same acceptance criteria as in the experimental data. To estimate MU 266 

coherence from the motoneuron model, 26 MUs were randomly chosen from the pool and 267 

coherence was estimated for the composite spike trains for the first 10,000 combinations of two 268 

groups, as described previously for the experimental data. 269 

270 
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Statistical Analysis 271 

 272 

A repeated measure analysis of variance was conducted to compare motor unit mean firing rate 273 

(MFR) and coherence in each frequency band prefatigue, postfatigue, and following the recovery 274 

period. Mauchly's Test of Sphericity was implemented to check the assumption of sphericity, and if 275 

violated, a Greenhouse-Geisser correction was applied. Post hoc tests to examine pairwise 276 

differences between conditions were conducted using the Fisher’s Least Significant Difference test. 277 

The relationship between initial motor unit firing rate (the intercept of the regression line) and the 278 

change in the motor unit firing rate over the course of the fatiguing contraction (slope of the line) 279 

was examined using a Pearson product-moment correlation. The t-statistic was used to test for the 280 

significance of the slope. The relationship between the change in motor unit mean firing rate and 281 

the change in beta-band coherence was investigated using a Spearman's rank-order non-parametric 282 

correlation. A Spearman's correlation was also used to assess the relationship between the initial 283 

coherence and the percentage change in coherence over the course of the fatiguing contraction in 284 

the delta, alpha, beta and gamma-bands, and the correlation between the percentage change in 285 

coherence and the percentage change in the coefficient of variation of the force. Differences in the 286 

median SI, between the first and second half of the fatiguing contraction, were tested using a paired 287 

Wilcoxon signed rank test. 288 

RESULTS 289 

Maximum voluntary force was significantly reduced (50.4 ± 11 N to 26 ± 12 N, p < .001) following the 290 

sustained isometric fatiguing contraction (248 ± 174 seconds). MVC failed to recover after the period 291 

of rest and remained significantly depressed (39.5 ± 15.9 N, p < .001), though still higher than 292 

directly postfatigue (p < .005). The average number of motor units detected per trial was 17.6 ± 3 293 

MUs prefatigue, 15.5 ± 3.5 postfatigue, and 17.2 ± 3.8 after recovery, with 80 ± 10% of MUs 294 

accepted for further analysis. During the fatiguing contraction, 11 of 15 subjects had the minimum of 295 
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8 accepted MUs required to be included in the wavelet coherence analysis. For these subjects, an 296 

average of 70 ± 11 MUs were identified by the decomposition algorithm, but due to more stringent 297 

criteria applied to the sustained fatiguing contraction, just 27.7 ± 14 % of these MUs were accepted. 298 

Motor unit properties pre and postfatigue 299 

A small, though significant effect of fatigue on the MFR of the decomposed MUAPs was observed (F 300 

(2, 22) = 10.04, p < .001), Figure 2 (b). MU mean firing rates decreased significantly (p < .005) from 301 

prefatigue to postfatigue conditions (10.8 ± 1.2 Hz vs. 10.0 ± 1.4 Hz, respectively). After the recovery 302 

period MU firing rates increased (11.2 ± 1.2 Hz, p<.001), and were not statistically different from 303 

discharge rates observed before fatigue (p = .15). 304 

Figure 2 305 

The coherence between composite MU pulse trains is displayed in Figure 3, prefatigue, postfatigue 306 

and following a recovery period, for a representative subject. A significant increase in MU coherence 307 

was observed in the delta (0.64 ± 0.98 to 4.14 ± 2.4, p < .0001), alpha (6.2± 3.6 to 10.8 ± 5, p < .0001) 308 

and beta (13.9 ± 7.3 to 25.6 ± 10.2 , p < .0001) frequency bands postfatigue. The mean and standard 309 

deviation of the standardized coherence values across all motor unit combinations are presented in 310 

Figure 4 for the (a) delta, (b) alpha, (c) beta and (d) gamma frequency bands. 311 

Figure 3 312 

Following the recovery period, coherence decreased significantly and was not significantly different 313 

from the estimated coherence prefatigue for the delta, alpha and beta frequency bands (p = .3, p = 314 

.9 and p = .42, respectively). The changes in gamma frequency coherence did not exhibit a 315 

statistically significant effect of condition (F (1.29, 18) = 3.1, p = .087), Figure 4 (d). 316 

Figure 4 317 

  318 
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Fatiguing Contraction – MU Mean Firing Rate  319 

To investigate the motor unit MFR changes in more detail, MU mean firing rate were analyzed for 11 320 

subjects over the course of the fatiguing contraction, with an average of 16.9 ± 6.7 MUs per subject 321 

and initial MFR of 12.8 ± 2.8 Hz. Across all subjects, there was a weak tendency for motor units with 322 

higher firing rates to exhibit a decrease in discharge rate during the fatiguing contraction, and those 323 

with lower firing rates to increase their MFR (r = -0.27, p < .001). For 6 of the 11 subjects there was a 324 

significant, strong negative correlation between initial motor unit firing rate and the change in the 325 

motor unit firing rate over the course of the contraction (r=-0.7± 0.09), Figure 5 (a). Over all subjects, 326 

a weak correlation between the two variables was still present (r=-0.27, p<0.001), Figure 5 (b). The 327 

majority of MUs (74.4 %) exhibited a decline in MFR over the course of the fatiguing contraction, 328 

though the average magnitude of the decline was small, -10 ± 9.4%, and there was a large variation 329 

in the magnitude of MU MFR changes per subject. In the remaining motor units, the MFR increased 330 

by an average of 14.7 ± 27.5%. Motor units recruited as the contraction progressed exhibited both 331 

increases and decreases in their discharge rates. 332 

Figure 5 333 

Fatiguing Contraction –MU Coherence and Synchronization 334 

Wavelet coherence and time domain synchronization between motor unit firing times were analyzed 335 

for the same 11 subjects during the fatiguing contraction. The majority of subjects exhibited an 336 

increase in coherence in the delta, alpha and beta-band over the course of the fatiguing contraction, 337 

with median regression slopes of 0.004 ± 0.006, 0.012 ± 0.01 and 0.014 ± 0.03 respectively. Motor 338 

unit firing rates and the corresponding motor unit wavelet coherence during the fatiguing 339 

contraction are shown for a representative subject in Figure 6 (a) & (b). In the gamma frequency 340 

band only 5 subjects showed an increase in coherence, with positive regression slopes significantly 341 

different to zero. There was a significant negative correlation between the initial value for delta, 342 

alpha and beta-band coherence and the percentage change in coherence within that band over the 343 
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fatiguing contraction (r = -0.7, p = .019, r = -0.55, p < .01 and r = -0.71, p = .018, respectively), Figure 344 

7 (a). However, this correlation was not significant for the gamma-band (r = -0.59, p = .055). No 345 

significant relationship was observed between the magnitude of the change in motor unit mean 346 

firing rates and the change in beta-band coherence (rs = -0.48, p = .13), nor between the average MU 347 

firing rate and the strength of the beta coherence observed (rs = 0.4, p = .2).  348 

Figure 6 349 

Synchronization was quantified only during the sustained fatiguing contraction, as the pre- and 350 

postfatigue trials were not sufficiently long to obtain an accurate estimate. The percentage of MU 351 

pairs that displayed significant synchronization was 88.7% and 92.9% in the first and second half of 352 

the fatiguing contraction, respectively. In the second half of the contraction the mean 353 

synchronization index of the MUs that displayed significant synchronization increased (11 ± 3 % to 354 

15 ± 4.6 %, p < .001), Figure 7 (b). There was a significant correlation between the coefficient of 355 

variation of the force and the percentage change in coherence within the delta (rs = 0.76, p < .01), 356 

Figure 7 (c), but not the alpha-band or beta frequency bands (rs = 0.5, p = .11 and rs = 0.44, p = .18, 357 

respectively). 358 

Figure 7 359 

Simulation Results 360 

Using the model, the effect of common or shared neural inputs to the motoneuron pool, changes in 361 

motor unit mean firing rate and inhibition of motoneurons were each examined to identify the 362 

factors that could contribute to the experimentally observed increase in beta band coherence. The 363 

magnitude of the common component of the input signal to the motoneuron pool was first 364 

increased to examine the effect on the beta coherence between MU firings, Figure 8 (a) & (b). The 365 

integral of the significant coherence in the beta-band in the model increased when a common input 366 
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amplitude of 0.4 mV was applied to the motoneuron pool, and increased further at a common input 367 

amplitude of 0.6 mV, Figure 9 (b). 368 

To examine the effect of MU mean firing rate on the coherence estimate, the median beta-band 369 

coherence was examined at 3 different firing rates, with a shared beta-band input of 0.6 mV, Figure 370 

8 (c) & (d). Increasing the mean firing rate of the motoneuron population from 11.3±3 Hz to 12.1±3 371 

Hz resulted in an increase in the median coherence from 6.4 ± 1.4 to 8.6 ± 1.3. A further increase in 372 

MFR from 12.1±3 Hz to 13.2±3 Hz increased the median coherence to 8.97±1.5. 373 

Figure 8 374 

Finally, to examine the possible effect of motoneuron inhibition on beta coherence, coherence was 375 

estimated after the introduction of inhibition in the presence of a common input of amplitude 0.6 376 

mV (and a resulting reduction in MU MFR from 12.1±3 Hz to 10± 3 Hz), and were found to decrease 377 

from 8.6 ± 1.5 to 6.9 ± 1.5. When an increase in the magnitude of the common input to the 378 

motoneuron pool (0.6 mV to 0.8 mV) and an inhibition-induced reduction in motor unit firing rates 379 

(12.1±3 Hz to 11 ± 3 Hz) were simultaneously simulated, the median coherence displayed an 380 

increase similar to what was observed experimentally (8.6 ± 1.3 to 15 ± 1.4), Figure 9. 381 

Figure 9  382 
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DISCUSSION 383 

Since the appearance of grouped motor unit activity with muscle fatigue was first reported (Buchthal 384 

and Madsen 1950), it has been widely accepted that an increase in the synchronization between the 385 

firing times of simultaneously active motor units occurs with the onset of fatigue. However, while 386 

estimates of MU synchronization inferred from the surface EMG interference signal support this 387 

hypothesis (Beretta-Piccoli et al. 2015; Holtermann et al. 2009; Webber et al. 1995), direct evidence 388 

of a fatigue-induced increase in short-term synchronization or beta-range oscillatory coupling 389 

between the firing times of simultaneously active motor units within a single muscle has not yet 390 

been shown. This study presents direct affirmation of an increase in beta-band MU coherence 391 

postfatigue, within motor units of the same muscle, for the first time, Figure 4 (c). The increased 392 

coherence postfatigue was preceded by increases in the beta-band MU coherence and short-term 393 

MU synchronization over the course of the fatiguing contraction, Figure 6 (b) and Figure 7. Subjects 394 

with high initial beta-band MU coherence showed little change in coherence during the fatiguing 395 

contraction, possibly indicating a saturation effect, Figure 7 (a), whereby no further increase in 396 

neural oscillatory activity is possible beyond a certain point. In addition, increases in delta and alpha-397 

band coherence were observed both during the fatiguing contraction and directly postfatigue. After 398 

10 minutes of recovery, there was no significant difference between the coherence estimates and 399 

those obtained prefatigue, for any of the frequency bands.  400 

This study extends the results of previous studies reporting a significant increase in beta-band 401 

intermuscular coherence between surface EMG following isometric fatigue (Chang et al. 2012; 402 

Danna-Dos Santos et al. 2010; Kattla and Lowery 2010; Wang et al. 2015). However, other studies 403 

have reported no significant increase in beta-band EMG-EMG or motor unit coherence during 404 

sustained fatiguing contractions in the elbow flexor muscles (Semmler et al. 2013) and in the tibialis 405 

anterior muscle (Castronovo et al. 2015), respectively. Furthermore, although an increase in beta-406 

band corticomuscular coherence has been reported postfatigue in the extensor digitorum communis 407 
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(Tecchio et al. 2006) and the tibialis anterior (Ushiyama et al. 2011), a weakening of beta coherence 408 

has also been reported during sustained (Yang et al. 2009) elbow flexion and in the flexor digitorum 409 

profundus, but not flexor digitorum superficialis, following maximal, intermittent handgrip 410 

contractions (Yang et al. 2010). These discrepancies highlight that the presence of correlated MU 411 

firings in the beta-band is likely muscle specific and task dependent, and may relate to the weaker 412 

contribution of the corticospinal pathway to proximal compared with distal muscles (Palmer and 413 

Ashby 1992). Changes in intramuscular beta coherence may be a more accurate reflection of 414 

underlying changes in the synchronous common inputs to the motoneuron pool than corresponding 415 

alterations in inter-muscular coherence, as the motor unit spike trains used in the coherence 416 

analysis were recorded within the same muscle, at the same force level. This may mitigate some of 417 

the uncertainty in the synchronization estimate when comparing across muscles with different firing 418 

characteristics, active at various force levels (Kline and De Luca 2015). Furthermore, MU coherence 419 

estimates derived directly from MU spike trains limit sources of variability present in surface EMG 420 

coherence that may arise from inter-subject differences in subcutaneous tissue and muscle 421 

composition. 422 

It remains unclear whether increased beta-band coherence has a functional role or whether it is 423 

epiphenomenal in nature, reflecting underlying changes in cortical or other neural firing patterns. It 424 

is possible that the increase in beta-band MU coherence and MU short-term synchronization 425 

observed in this study may reflect higher attentional demands and a greater amount of motor-426 

related neural processing as fatigue progresses (Schmied et al. 2000). A decrease in the magnitude 427 

of oscillatory inputs to the motoneuron pool has been shown to cause more variability in motor unit 428 

firing trains, and decrease the number of motoneurons recruited to the contraction (Parkis et al. 429 

2003). Therefore, it is also possible that an increase in synchronized neural inputs may serve to 430 

overcome reduced motoneuron excitability and increase recruitment after fatigue (Andersen et al. 431 

2003). 432 
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The increase in correlated MU discharges in the delta and alpha frequency band observed in this 433 

study has been previously reported following sustained submaximal fatiguing contractions in the 434 

tibialis anterior muscle (Castronovo et al. 2015) and in elbow flexor muscles (Semmler et al. 2013). 435 

Both synchronization and MU coherence (< 10 Hz) have been found to increase following muscle 436 

damage induced by eccentric exercise (Dartnall et al. 2008). The restoration of low-frequency 437 

coherence to prefatigue values after the rest period, however, suggests that muscle damage was not 438 

a major factor in the coherence increase directly postfatigue. The increase in coherence MU 439 

discharges in the delta-band range was observed in the present study was significantly correlated 440 

with the coefficient of variation of the force trace, Figure 7 (c). Contessa et al. (2009) observed an 441 

increase in the common drive during fatigue, defined in terms of the cross-correlation between MU 442 

firing rates and analogous to MU coherence in the 0-4 Hz range (Myers et al. 2004), which was 443 

similarly correlated with the force variability. Alpha and beta-band coherence were not significantly 444 

correlated with force variability, which may be expected, as simulation studies have shown that 445 

mean firing rate fluctuations in the 1-4 Hz range have the greatest relative effect on force variability 446 

due to the low-pass filtering effect of the motor unit twitch response (Lowery and Erim 2005). Delta-447 

band coherence may be influenced by recruitment via feedback from muscle spindles, and possibly 448 

the Golgi tendon organs (De Luca et al. 2009). Synchrony in the alpha-band is also known to be 449 

influenced by the modulation of muscle spindle activity in mechanical and reflex loop resonances 450 

(Erimaki and Christakos 2008). 451 

  452 
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Firing Rate 453 

 454 

The mean firing rates of the motor unit population decreased immediately postfatigue, and 455 

recovered following the 10 minute rest period, Figure 2. In addition there was a reduction in the 456 

firing rates of the majority of motor units (75%) during the sustained fatiguing contraction, Figure 5 457 

and Figure 6 (a). This mirrors the results of previous studies that have shown a reduction in MU firing 458 

rate during intermittent and constant force submaximal isometric fatiguing contractions (Duchateau 459 

et al. 2002; Garland et al. 1994). Garland et al. (1994) observed changes in the discharge rates of 460 

single motor units in the biceps brachii, held just above their threshold of recruitment force. In the 461 

present study, changes in discharge rate in a large sample of motor units, concurrently active at the 462 

same relative force level, were examined for the first time during a sustained, fatiguing contraction. 463 

Though relatively small, the magnitude of the changes in MU MFR during and postfatigue, were 464 

comparable to the modest increase in interpulse interval reported in the biceps brachii (Garland et 465 

al. 1994). There is evidence that metabolically and mechanically sensitive group III and IV afferents 466 

are in part responsible for the decline in motoneuron discharge rate in fatiguing contractions at 467 

maximal force levels (Bigland-Ritchie et al. 1986; Garland and McComas 1990), acting at the spinal 468 

and/or the supraspinal level (Gandevia 2001). However, a withdrawal of Ia facilitation from muscle 469 

spindles (Macefield et al. 1991) or intrinsic motoneuron properties (Spielmann et al. 1993) could also 470 

contribute. The alterations in MU coherence postfatigue and during recovery followed a similar time 471 

course to the changes observed in the motor unit firing rate and action potential duration presented 472 

in McManus et al. (2015a). Sensory ascending pathways can modulate the strength of beta-range 473 

corticomuscular coupling (McClelland et al. 2012), though the contribution of various afferent 474 

groups are not yet clear (Schmied et al. 2014). It is therefore possible that both the magnitude of 475 

MU firing rates and the degree of synchronized MU firings could be affected by increased afferent 476 

feedback in response to ionic and metabolic changes within the muscle. 477 

478 

20 
 



Model Simulation 479 

 480 

The increase in MU coherence immediately postfatigue and during the sustained fatiguing 481 

contraction is likely to be multifactorial, but the relative contribution of each factor is not clear. 482 

Model simulation was used to investigate how alterations in mean MU firing rate and the 483 

introduction of inhibitory feedback to the motoneuron pool can affect the coherence estimate 484 

obtained. The simulation studies, however, indicated that neither changes in mean motor unit firing 485 

rate of the magnitude observed experimentally, nor simulated inhibition of the motoneuron pool 486 

could individually account for the change in coherence observed, Figure 8 (c) & (d). 487 

In the model, when the mean firing rate increased towards the median frequency of the common 488 

input an increase in the estimated coherence was observed without any corresponding increase in 489 

the amplitude of the shared input, Figure 8, as previously demonstrated in simulation studies 490 

(Lowery et al. 2007). The efficacy of a shared oscillatory inputs in eliciting synchronized motoneuron 491 

firings increases when the motoneuron firing rates and the frequency of the oscillatory input are 492 

similar (Lowery and Erim 2005). In the experimental data, however, the observed reduction in motor 493 

unit mean firing rates is unlikely to have affected the coherence estimate, due to the already low 494 

average values (10.8 ± 1.2 Hz). The introduction of inhibition in the model, in the presence of a 495 

common correlated input to the motoneuron pool, decreased the coherence estimate by 20%. An 496 

increase in the ratio between the independent components of the synaptic input to the motoneuron 497 

pool, in this case direct inhibition, and the common correlated inputs may be expected to reduce 498 

motor unit coherence estimates. However, in experimental conditions, the possibility that afferent 499 

inputs indirectly enhance the coherence estimate via supraspinal centres cannot be ruled out 500 

(Gandevia 2001).  501 

In contrast to the moderate differences in the coherence estimate induced by alterations in MU 502 

mean firing rates and the introduction of inhibition, a large increase in the coherence estimate was 503 

observed by raising the amplitude of the common input shared across the motoneuron pool. The 504 
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magnitude of the change in the coherence spectrum observed experimentally (84%) could be 505 

approximated by increasing the amplitude of the shared beta input (74%), while fatigue-induced 506 

reductions in MU MFR were replicated with simulated inhibition, Figure 9. 507 

Study Limitations 508 

 509 

In this study, decomposition of the surface EMG signal was used to obtain the spike trains 510 

representing the firing times of individual motor units within a single muscle. The accuracy of the 511 

results depends on the accuracy of the decomposition method. To ensure the reliability of the data, 512 

the stability of the MUAP waveform was assessed during the pre and postfatigue contractions, and 513 

during the sustained fatiguing task, to select the most reliable motor unit firing times for further 514 

analysis (Hu et al. 2013). Despite the stringent criteria applied, particularly for the MU trains 515 

decomposed from the long fatiguing contraction, there may be inaccuracies in individual firing times 516 

present in the spike trains. Frequency domain MU coherence analysis has been shown to be less 517 

sensitive to motor unit firing rates than traditional synchronization-based measures of time domain 518 

correlation (Lowery et al. 2007), which may make it more robust to the presence of some firing time 519 

inaccuracies. In addition, the use of composite spike trains may provide a more aggregate measure 520 

of the overall coherence in the motor unit sample and mitigate the influence of minor sources of 521 

error. The strict acceptance criteria applied to the stability of the MU waveform may have rejected 522 

an undesirably large number of reliable MUs in this study and introduced a possible sampling bias. 523 

The large inter-subject variability associated with coherence estimation is a potential limitation of 524 

the coherence analysis. The variability in the coherence estimates obtained for each individual may 525 

be due to limitations of coherence as an accurate reflection of shared motoneuronal inputs, intrinsic 526 

differences in corticomuscular coupling among individuals, or a combination of both. As previously 527 

discussed, the interaction between firing rate and coherence may also skew the coherence estimate 528 

in some subjects, for example, when the firing rate of the detected MUs is close to the frequency of 529 

the observed coherence. Relatively more synchronous firing instances may also be detected if the 530 
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MU sample for a subject displays a particularly narrow range of firing rates (Kline and De Luca 2015). 531 

Nevertheless, consistent results in terms of the direction of the change in coherence were observed 532 

across all frequency bands, with all subjects showing an increase in coherence in the delta range 533 

postfatigue, and 14 out of 15 subjects displaying an increase in the alpha and beta-band ranges. 534 

Lastly, to investigate the effect of changing motor unit firing rates and increasing inhibitory inputs on 535 

the MU coherence estimate, a simplified model of the motoneuron pool was used. As the respective 536 

contribution, and distribution, of these inhibitory and excitatory inputs across the motoneuron pool 537 

during fatigue are still unclear, the integrated effect of afferent activity was simplified as a net 538 

inhibitory input, non-uniformly distributed over the motoneuron pool. Physiologically, no afferent 539 

input reaches motoneurons exclusively by a monosynaptic path and combined interplay between 540 

the many motoneuron inputs is complex (Gandevia 2001). However, these assumptions were made 541 

in order to replicate the simultaneous decrease in motoneuron firing rates and continued motor unit 542 

recruitment observed experimentally. It is possible that other forms of simulated inhibitory circuits 543 

could enhance the motor unit coherence around the beta-band. Certain intrinsic properties of 544 

motoneurons, such as persistent inward currents (Heckman et al. 2005), may have been altered 545 

postfatigue but were not included in this model. 546 

CONCLUSION  547 

 548 

A significant increase was observed in motor unit coherence in the delta, alpha and beta-band 549 

ranges following a sustained, fatiguing contraction, which recovered following a period of rest. A 550 

progressive increase in delta, alpha and beta-band motor unit coherence was observed over the 551 

course of the fatiguing contraction, which was examined using wavelet coherence. The increase in 552 

motor unit coherence and short-term synchronization during fatigue were accompanied by a decline 553 

in the MFR of the majority of motor units, with larger reductions in MFR associated with higher 554 

initial MU firing rates in some subjects. Simulation results suggest that an increase in inhibitory 555 
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afferent activity postfatigue, and a resulting or independent reduction in motor unit MFR, cannot 556 

account for the magnitude of the increase in beta-band coherence. The increase is, therefore, more 557 

likely to arise from a corresponding increase in the correlated common input to the motoneuron 558 

pool. Motor unit MFR and coherence recovered following rest, suggesting the possibility that both 559 

are modulated by afferent feedback in response to fatigue-induced changes within the muscle. The 560 

ability to infer information about oscillatory cortical and sub-cortical processes from the peripheral 561 

signal gives a novel insight into the adaptations taking place in the central and peripheral nervous 562 

system during fatigue. 563 

  564 
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FIGURE CAPTIONS 693 

Figure 1. Two sample groups of motor unit spike trains (a) and (b) pooled to form composite MU 694 

spike trains (c) and (d). The coherence between the two composite firing trains (c) and (d) was then 695 

estimated. 696 

Figure 2: Probability density of MU MFR (a) for a single representative subject and (b) across all 697 

subjects. 698 

Figure 3. The highest coherence between composite MU spike trains observed across motor unit 699 

combinations, prefatigue, postfatigue and following a recovery period for a representative subject 700 

(with a 95% confidence interval). 701 

Figure 4. The median and standard deviation of the standardized coherence values across all motor 702 

unit combinations for the (a) common drive (1-4 Hz), (b) alpha (8-12 Hz), (c) beta (15-30 Hz) and (d) 703 

gamma (30-60 Hz) frequency bands, *p < 0.001. 704 

Figure 5. The change in firing rate for each motor unit fatiguing contraction as a function of that 705 

unit’s initial firing rate for (a) a single subject and (b) over all subjects, *p < 0.001. 706 

Figure 6. (a) The force trace and time-varying mean firing rate of 8 motor units (obtained by low-pass 707 

filtering the impulse train with a Hanning window of 5 second duration) and (b) the median wavelet 708 

coherence between composite motor unit trains over the fatiguing contraction for the same subject. 709 

Figure 7. (a) The relationship between the initial coherence in the alpha and beta-bands and the 710 

percentage change in the integral of the wavelet coherence over the course of the fatiguing 711 

contraction, (b) the median and standard deviation of the synchronization index across all subjects 712 

for the first and second half of the contraction (* p<0.001), and (c) the relationship between the 713 

percentage change in coherence and the percentage change in the coefficient of variation of the 714 

force. 715 
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Figure 8: (a) The MU coherence estimate with no common input to the motoneuron pool, a beta-716 

band input of magnitude 0.6 mV and 0.8 mV, with a median MFR of 12.2±3 Hz across the MU pool, 717 

and (b) the median and standard deviation of the coherence estimates over all pairs of MU 718 

composite trains. (c) The MU coherence estimate for varying motor unit mean firing rate and (d) the 719 

median and standard deviation of the coherence estimates over all pairs of MU composite trains, 720 

with a beta-band input of magnitude 0.6 mV for the 3 corresponding firing rates. 721 

Figure 9: (a) The coherence spectrum for the pair of MU composite trains with the highest level of 722 

coherence with a beta-band input of magnitude 0.6 mV (prefatigue) and 0.8 mV with inhibition 723 

(postfatigue) and (b) the median and standard deviation of the coherence estimates over all pairs of 724 

MU composite trains. 725 
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