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It is evident that p53 activity is critical for tumour prevention and stress response through its transcriptional activation of genes

affecting cellular senescence, apoptosis, cellular metabolism, and DNA repair. The regulation of p53 is highly complex, and

MDM2 and MDMX are thought to be critical for deciding the fate of p53, both through inhibitory binding and post-translational

modification. Many mouse models have been generated to study the regulation of p53 in vivo, and they have altered our inter-

pretations of how p53 is regulated by MDM2 and MDMX. Although MDM2 is absolutely required for p53 regulation, certain func-

tions are dispensable under unstressed conditions, including the ability of MDM2 to degrade p53. MDMX, on the other hand,

may only be required in select situations, like embryogenesis. These models have also clarified how cellular stress signals mod-

ify the p53-inhibiting activities of MDM2 and MDMX in vivo. It is clear that more work will need to be performed to further

understand the contexts for each of these signals and the requirements of various MDM2 and MDMX functions. Here, we will

discuss what we have learned from mouse modelling of MDM2 and MDMX and underscore the ways in which these models

could inform future therapies.
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Introduction

The role of p53 as a tumour-suppressing transcription factor is

abundantly clear, and it is well known that p53 is frequently

mutated or inactivated in various cancers (Muller and Vousden,

2013). It is also apparent that p53 regulation is highly complex,

but two proteins are critically important for proper control of p53:

MDM2 and MDMX (also known as MDM4) (Wade et al., 2010). p53

transcription and translation are thought to occur ubiquitously,

while MDM2 and MDMX cooperate to control both the post-

translational stability and activity of p53 (Hu et al., 2007; Wade

et al., 2010). MDM2 is also a transcriptional target of p53 (Barak

et al., 1993), which contributes to a feedback loop of regulation.

MDM2, but not MDMX, harbours E3 ubiquitin ligase activity

towards p53 (Haupt et al., 1997; Honda et al., 1997; Kubbutat

et al., 1997; Jackson and Berberich, 2000), and both proteins

can directly bind to the p53 transactivation domain and inhibit

transcription (Chen et al., 1993; Shvarts et al., 1996). MDM2

and MDMX interact to form a heterodimer (Tanimura et al.,

1999), which is thought to promote more efficient p53 inhibition.

Although these activities have been clearly demonstrated in vitro,

the relative importance of MDM2−p53 and/or MDMX−p53
binding, MDM2–MDMX heterodimer formation, or MDM2 E3 lig-

ase activity towards in vivo p53 activity has been incompletely

understood. For instance, it was previously thought that

MDM2 E3 ligase activity was essential for basal p53 regulation,

but evidence from mouse models suggests that MDM2 E3 lig-

ase activity is dispensable under normal conditions (Tollini

et al., 2014).

The mechanisms of p53 regulation are still being elucidated.

Studies in mouse models have both confirmed existing hypoth-

eses and often challenged widely held beliefs about how MDM2

and MDMX function together to regulate p53. This review will

address how in vitro and in vivo evidences have conflicted. We

will first discuss what MDM2 and MDMX knockout mouse mod-

els have told us about how p53 is differentially regulated during

embryogenesis and adulthood. Then, we will explore how

knockin mouse models have clarified the mechanistic
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cooperation of MDM2 and MDMX and the upstream signals that

regulate their inhibition of p53. Last, we will comment on how

mouse models could inform the discovery of novel drug targets

or treatment strategies to fight cancer.

Temporal and tissue-specific roles for MDM2 and MDMX:

lessons from knockout mice

Mdm2 knockout mice

In the following section, we will review work from whole body

MDM2 and MDMX knockout studies. For a more comprehensive

discussion of tissue-specific deletion studies, please refer to an

accompanying review by Guillermina Lozano and her colleagues

(Moyer et al., 2017) in this special issue.

Early in vitro work demonstrated that MDM2 could bind to p53

and mask p53 transactivation activity (Chen et al., 1993; Oliner

et al., 1993). However, the degree of MDM2 importance to p53

regulation was not fully appreciated until the creation of Mdm2

deletion alleles in the mouse (Montes de Oca Luna et al., 1995;

Jones et al., 1995). Interestingly, mice deficient for p53 are viable,

but tend to develop tumours (typically lymphomas) and die by 6

months of age (Donehower et al., 1992). Surprisingly, mice defi-

cient for MDM2 die between embryonic days 4.5–6.5, with pro-

nounced levels of apoptosis. This embryonic lethality caused

by loss of MDM2 is rescued by concomitant loss of p53, sug-

gesting that the primary function of MDM2 during embryogen-

esis is to inhibit undue p53 activation or accumulation. These

studies also established that MDM2 and p53 are expressed ubi-

quitously during embryonic development.

It is also apparent that although MDM2 expression is found

throughout the embryo and required during embryogenesis in the

presence of p53, MDM2-mediated p53 regulation remains essen-

tial in the adult mouse as a whole. The p53-dependent embryonic

lethality caused by MDM2 deficiency renders the study of MDM2

in p53 regulation difficult in vivo. To address this, Christophorou

et al. (2005) developed a mouse model expressing the hormone-

binding domain of a modified oestrogen receptor placed at the 3′
end of the p53 coding sequence, therefore generating a switch-

able chimeric p53 protein (p53ER hereafter) able to be rendered

inactive or active by withdrawal or addition of tamoxifen or

4-hydroxytamoxifen, respectively. The p53ER protein behaves like

a null allele in the absence of tamoxifen, which allows for the

generation of MDM2-deficient mice and the study of MDM2-

dependent p53 regulation in the adult mouse. Ringshausen et al.

(2006) crossed p53ER/− mice with Mdm2+/− mice to generate

Mdm2−/−;p53ER/− mice. Then, they injected tamoxifen into these mice,

rendering p53ER able to be active. Strikingly, all Mdm2−/−;p53ER/−

mice died within 5−6 days after a single tamoxifen injection,

presenting severe anaemia and bone marrow ablation, suggest-

ing that p53 regulation is most critical in radio-sensitive tissues.

Several proliferative tissues were also severely atrophied,

including small intestine and colon tissue. On the other hand,

classically radio-insensitive tissues such as the heart and kidney

appeared normal following tamoxifen treatment. However, in all

tissues analysed, p53 was more transcriptionally active, though

not to a level necessarily causing extensive cell death,

suggesting that the loss of MDM2 allows for spontaneous p53

activation throughout the body (Ringshausen et al., 2006).

Interestingly, only Mdm2−/−;p53ER/− mice, but not Mdm2−/−;p53ER/

ER mice, were recovered from these crosses, which suggests that

the p53ER protein may have ‘leaky’ activity.

In a similar study, Zhang et al. (2014a) used a conditional

Mdm2 deletion allele (Mdm2FM) (Grier et al., 2002) coupled with a

whole body, tamoxifen-inducible, Cre-mediated recombination

allele (CreER) to study the effects of whole body Mdm2 loss at

various stages of aging, since p53 activity has been shown to

decline with age (Feng et al., 2007). Similar to Mdm2−/−;p53ER/−

mice, 2 to 4-month-old Mdm2FM/−;CreER mice experience p53-

mediated morbidity within a few days after tamoxifen injection.

Mdm2FM/−;CreER mice also display extensive levels of apoptosis

and atrophy in the kidney and liver, radio-insensitive tissues, in

addition to extensive damage to radio-sensitive tissues. Loss of

Mdm2 results in p53 stabilization and activation in most organs,

including the brain, spleen, kidney, liver, and heart. Interestingly,

MDM2 is still required for viability in aged mice, but p53 activation

and stabilization is less severe in radio-insensitive tissues.

Several other studies (Table 1) have generated tissue-specific

deletions of Mdm2 using conditional Mdm2 deletion alleles com-

bined with tissue-specific Cre expression, including expression

in differentiated intestinal smooth muscle cells, erythroid, and

cardiac tissue (Boesten et al., 2006; Grier et al., 2006; Xiong et al.,

2006; Maetens et al., 2007). Others have coupled whole body

Mdm2 deletions with tissue-specific reintroduction of p53 (Francoz

et al., 2006). Most tissues in which Mdm2 has been deleted, espe-

cially those that are highly proliferative, exhibit substantially

increased levels of apoptosis, advocating that MDM2-mediated

p53 regulation is critical in nearly all tissues in the mouse.

In contrast to Mdm2 deletion or reduction, transgenic Mdm2

overexpression in the mouse supports increased tumour devel-

opment, presumably because of increased p53 inhibition (Jones

et al., 1998). This, in combination with Mdm2 deletion studies,

strengthens the importance of MDM2 to proper p53 regulation

at all stages of development.

MdmX knockout mice

Similar to MDM2, loss of MDMX in the mouse has also pro-

ven to be embryonic lethal, with concomitant p53 deletion res-

cuing the lethality (Parant et al., 2001), suggesting that MDM2

and MDMX play non-redundant roles in the inhibition of p53

activation or stabilization. Interestingly, overexpression of an

MDM2 transgene (Mdm2Tg/+) can rescue MDMX deletion

(Steinman et al., 2005), hinting that MDM2 is perhaps capable

of restraining undue p53 activity in vivo but its efficiency is

compromised by MDMX loss. From these studies, it is possible

to speculate that MDMX serves to either directly enhance

MDM2 inhibitory functions or enhance its stability.

It also appears that MDMX is less important to p53 regulation

in the adult mouse than MDM2. Garcia et al. (2011) combined

MdmX+/− mice with the p53ER model to generate MdmX−/−;p53ER/−

mice and tested whether, like MDM2, MDMX is critical to p53 sup-

pression in the adult mouse. Surprisingly, MdmX−/−;p53ER/− mice
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injected with tamoxifen daily live an average of 29 days.

Spontaneous p53 activity was also observed in select tissues.

Six hours after tamoxifen injection and in the absence of MDMX,

the mRNA expression of p53 cell cycle target gene cdkn1a (p21)

was significantly increased in almost all tissues examined.

However, the mRNA expression of puma, a p53 apoptotic target,

was only significantly increased in radio-sensitive tissues. The

expression of cdkn1a following p53ER restoration correlated

with decreased proliferation in tissues, while the expression of

puma correlated with increased apoptosis. In contrast to

Mdm2−/−;p53ER/− mice, which die 5–6 days after a single tam-

oxifen injection (Ringshausen et al., 2006), MdmX−/−;p53ER/−

mice are remarkably tolerant to temporary p53ER restoration.

After daily injections of tamoxifen for 1 week, MdmX−/−;p53ER/−

mice displayed significant loss of cell proliferation in the spleen,

bone marrow, and thymus tissue, but following withdrawal of

tamoxifen, the mice were able to recover without long-term

adverse consequences. Tissue-specific p53 restoration studies

in MdmX−/− mice and tissue-specific deletions of MdmX have

further indicated that the necessity of MDMX in p53 regulation

is context dependent; conversely, many conditional deletion

studies support the idea that MDM2 is critical in the suppres-

sion of basal p53 in almost all situations.

Consistent with this idea, several groups have suggested that

MDMX serves to enhance MDM2-mediated p53 degradation

(Badciong and Haas, 2002; Gu et al., 2002; Linke et al., 2008).

The relatively better survival of MdmX−/−;p53ER/− mice com-

pared to Mdm2−/−;p53ER/− mice in the presence of transient

p53ER restoration suggests that MDM2 is at least capable of

restraining p53 on its own for short periods of time, but it is

conceivable that efficient MDM2-mediated p53 inhibition or deg-

radation is required for long-term viability. Indeed, the levels of

Table 1 Reduction of Mdm2 or MdmX expression in mice in various tissues and stages.

Tissue MDM model p53 alleles Cre transgene Phenotypes and p53 responses References

Whole body Mdm2puro Wild type N/A Decreased body weight, haematopoietic defects, increased

apoptosis, increased p53 activity

Mendrysa et al. (2003)

MdmXΔEx6

(truncation)

Wild type N/A Embryonic lethality, increased p53 activity on p53ΔP/ΔP background Bardot et al. (2015)

Central nervous

system

Mdm2−/− p53LSL/− Nestin-Cre Embryonic lethality, increased p53 protein levels and activity,

increased apoptosis

Francoz et al. (2006)

MdmX−/− p53LSL/− Nestin-Cre Microcephaly, growth retardation, increased p53 activity and cell

cycle arrest

Mdm2FM/FM Wild type Nestin-Cre Neonatal lethality, hydrancephaly, increased p53 protein levels and

activity, aberrant apoptosis and proliferation

Grier et al. (2002), Xiong

et al. (2006)

MdmXFX/FX Wild type Nestin-Cre Neonatal lethality, porencephaly, increased p53 activity, aberrant

apoptosis and proliferation

Mdm2−/− p53ER/− N/A No discernable phenotypes Ringshausen et al. (2006)

MdmX−/− p53ER/− N/A Increased p53 activity, increased apoptosis in subventricular zones Garcia et al. (2011)

Bone Mdm2F11-12 Wild type Col3.6-Cre E19.5 lethality, skeletal defects, elevated p53 activity but not

protein levels, reduced proliferation

Lengner et al. (2006)

Intestine Mdm2FM/FM Wild type Villin-Cre Normal lifespan, intestinal abnormalities with eventual recovery,

increased p53 activity and protein levels

Valentin-Vega et al. (2008)

MdmXFX/FX Wild type Villin-Cre No major defects, increased p53-dependent apoptosis and activity

in proliferating cells

Valentin-Vega et al. (2009)

Mdm2−/− p53ER/− N/A Atrophy of villi and crypts, increased apoptosis Ringshausen et al. (2006)

MdmX−/− p53ER/− N/A Increased apoptosis Garcia et al. (2011)

Mdm2FM/− Wild type CAG-Cre

(Tamoxifen)

Atrophy in villi and increased apoptosis in crypts of 2−4 months old

mice, no phenotypes in 16−18 months old mice

Heart Mdm2FM/− Wild type αMyhc-Cre E13.5 lethality, severe defects, increased p53 protein and apoptosis Grier et al. (2006)

MdmXFX/− Wild type αMyhc-Cre Normal, with some premature death at 12 months of age

Mdm2FM/− Wild type CAG-Cre

(Tamoxifen)

Tissue fibrosis, increased p53 activity and protein levels

Mdm2−/− p53ER/− N/A No discernable phenotypes Ringshausen et al. (2006)

MdmX−/− p53ER/− N/A No discernable phenotypes Garcia et al. (2011)

Endothelium Mdm2FM/FM Wild type Tie2-Cre Embryonic lethality, severe vascular defects, increased p53 activity Zhang et al. (2012)

Skin Mdm2F11-12 Wild type K5-Cre Progressive hair loss and decreased skin elasticity, increased p53

protein levels and activity, increased senescence

Gannon et al. (2011)

Smooth muscle Mdm2FM/FM Wild type Sm22-CreERT2 Death within 12 days after tamoxifen injection, increased p53

protein levels and activity, increased apoptosis

Boesten et al. (2006)

MdmXFX/FX Wild type Sm22-CreERT2 No discernable phenotypes

Red blood cells Mdm2FM/FM Wild type EpoR-GFP-Cre E13 lethality, defects in erythropoiesis, increased p53 activity Maetens et al. (2007)

MdmXFX/FX Wild type EpoR-GFP-Cre Death between E12.5 and 21 days after birth, anaemia, increased

p53 activity

Lens epithelial cells Mdm2FM/FM Wild type Le-Cre Defects in lens development, normal birth ratios but

hyperglycaemia and neonatal lethality (1 week) present,

increased p53 levels and apoptosis, decreased cell proliferation

Zhang et al. (2014b)

MdmXFX/FX Wild type Le-Cre Eyeless, normal birth ratios and survival into adulthood, increased

p53 levels and apoptosis, decreased cell proliferation
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p53 are increased in MdmX−/−;p53ER/− mouse embryonic fibro-

blasts (MEFs) compared to MEFs containing MDMX (Garcia et al.,

2011), supporting the idea that MDMX plays some role in regulat-

ing p53 stability in vivo. It is possible that in MdmX−/−;p53ER/−

mice, p53ER could continue to accumulate. Theoretically, stably

elevated p53 levels could eventually mandate MDMX enhance-

ment of MDM2-mediated p53 inhibition, indicated by the eventual

lethality of continuous tamoxifen injection in MdmX−/−;p53ER/−

mice.

It appears that splice variations of MDMX may differentially

play a role in its regulation of p53. Recently, Bardot et al.

(2015) modelled a conserved splice variant of MDMX, generat-

ing mice with an allele of MdmX that obligatorily skips exon 6

(MdmXΔE6), preventing the expression of full-length MDMX and

increasing the mRNA expression of a short allele of MdmX

(MdmX-S). High expression of the MdmX-S splice variant is cor-

related with poor survival in several cancers (Bartel et al., 2005;

Prodosmo et al., 2008; Lenos et al., 2012), and overexpression-

based studies have suggested that MDMX-S may be a more

potent p53 inhibitor than MDMX (Rallapalli et al., 1999, 2003).

Although MdmX-S mRNA expression was vastly increased in

MdmX+/ΔE6 mice, MDMX-S protein levels were low, suggesting

that it might be quickly degraded by the proteasome. It also

appears that in vivo MDMX-S is much less efficient than MDMX

at controlling p53 activity. Bardot et al. (2015) propose that the

upregulation of MdmX-S that is observed in cancers could

instead serve to prevent the expression of full-length MDMX,

and tumours containing overexpression of MdmX-S would likely

correlate with mutated p53.

Overall, MDM2 and MDMX deletion models have suggested

the following notions about MDM2- and MDMX-mediated p53

regulation: (i) MDM2 is the master regulator of p53 and is

necessary to prevent p53-dependent cell death at all stages fol-

lowing embryonic day 5; (ii) MDMX may serve to enhance

MDM2-mediated p53 inhibition and/or degradation in a devel-

opmental and tissue-specific manner.

Mechanisms of MDM2- and MDMX-mediated p53 regulation:

lessons from knockin mice

Previous in vitro studies suggested that the primary mech-

anism of MDM2- and MDMX-dependent p53 inhibition was

mediated through direct MDM2 and MDMX binding to the p53

transactivation domain, causing disruption of p53 activity.

These studies also revealed that MDM2 could act as an E3 ubi-

quitin ligase towards p53, causing its degradation by the prote-

asome (Haupt et al., 1997; Honda et al., 1997). Shortly after

this discovery, it was observed that MDM2 harboured autoinhi-

bitory ubiquitination activity, causing its destabilization in the

presence of DNA damage (Honda and Yasuda, 2000; Stommel

and Wahl, 2004) and allowing for further p53 stabilization.

MDM2 and MDMX were also found to be homologous, sharing

highly similar p53-binding domains and RING domains (Shvarts

et al., 1996), but unlike MDM2, MDMX does not harbour E3 ubi-

quitin ligase activity (Jackson and Berberich, 2000). Some

in vitro studies have suggested that through their respective

RING domains (Tanimura et al., 1999), MDMX serves to facilitate

MDM2-mediated p53 ubiquitination (Linares et al., 2003). This

facilitation could occur indirectly, meaning that MDMX could

redirect presumable MDM2 autoinhibitory ubiquitination unto

itself, or it could occur directly, meaning that MDMX could dir-

ectly enhance the transfer of ubiquitin to p53. Several mouse

models (Figure 1A and Table 2) have helped to clarify the

mechanisms of MDM2- and MDMX-mediated p53 regulation.

Figure 1 p53 regulation requirements are context dependent.

(A) Schematic of MDM2 and MDMX protein modifications that have

been generated by knockin mouse models. (B) During embryogen-

esis, both MDM2 and MDMX are required for proper control of p53

activity. The formation of an MDM2–MDMX heterodimer is also

required to restrain p53, but MDM2 E3 ligase activity is dispensable

at this time. (C) In unstressed adult tissues, the necessity of MDMX

or MDM2–MDMX heterodimer formation for proper p53 control is

tissue-dependent. MDM2-mediated p53 ubiquitination may still

occur in these tissues, which may require MDMX. (D) After stress,

such as DNA damage, MDM2 E3 ligase activity is required to return

p53 protein to basal levels and control p53 activity. This may or

may not require MDM2–MDMX heterodimer formation. p53 BD,

p53-binding domain; NLS, nuclear localization signal; NES, nuclear

export signal; ACIDIC, acidic domain; ZINC, zinc finger domain;

RING, RING finger domain; Ub, ubiquitin; E2, E2 ubiquitin-

conjugating enzyme.
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MDM2/MDMX−p53 binding and MDM heterodimer formation

To directly test whether or not MDM2/MDMX−p53 binding

alone could restrain p53 activity in vivo, Itahana et al. (2007)

created mice carrying a mutation in the MDM2 RING domain

(MDM2C462A), thus disrupting MDM2 E3 ligase activity and

MDMX binding. Homozygous MDM2C462A mutation results in

p53-dependent embryonic lethality before embryonic day 7.5,

suggesting that MDM2/MDMX−p53 interaction alone is not suffi-

cient to permit embryonic development. Unpublished observations

in our laboratory also suggest that MDM2−p53 or MDMX−p53
interaction may not be sufficient for p53 suppression in the adult

mouse. In our hands, Mdm2C462A/C462A;p53ER/− mice die within 4–6
days of tamoxifen injection, which is similar to results obtained

from Mdm2−/−;p53ER/− mice, suggesting that MDM2–MDMX het-

erodimer formation and/or MDM2 E3 ligase activity, rather than

MDM−p53 transactivation domain binding, may be the primary

mechanisms for MDM-mediated p53 suppression in vivo.

Studies in MdmX knockin mice also appear to corroborate that

MDM2/MDMX−p53 binding is insufficient for p53 inhibition,

particularly during embryogenesis. Pant et al. (2011) generated an

allele carrying an in-frame deletion of the MDMX RING domain

(MdmXΔRING). At the same time, Huang et al. (2011) generated an

allele carrying a point mutation in the MDMX RING domain

(MdmXC462A). Both of these alleles disrupt MDMX–MDM2 inter-

action without altering MDM2. However, mice homozygous for

eitherMdmXΔRING orMdmXC462A exhibit p53-dependent embryonic

lethality. In the presence of MDMXΔRING, MDM2 E3 ligase activity

appears to remain intact in MEFs (Pant et al., 2011), suggesting

that MDM2-mediated ubiquitination of p53 and MDM2–p53 or

MDMX–p53 binding in the absence of heterodimer formation is

not sufficient to permit embryonic development. Although these

two mouse models both disrupt MDMX–MDM2 binding and pre-

sent p53-dependent homozygous embryonic lethality, there are

several observations in apparent contradiction. First, when com-

bined with the p53neo allele, which expresses ~15% of wild type

p53 levels, MEFs containing MDMXΔRING appear to display greater

p53 activity with no difference in p53 stabilization compared to

MEFs containing wild type MDMX, suggesting that MDMX does

not necessarily contribute to MDM2-mediated p53 degradation.

On the other hand, MdmXC462A/C462A embryos present both

increased p53 abundance and activity. These observations sug-

gest that the MDM2–MDMX interaction is required for efficient

p53 inhibition, but may or may not be required for p53 degrad-

ation during embryogenesis.

Complicating things further, Pant et al. (2011) also gener-

ated a Cre-inducible MDMX RING deletion allele (MDMXflxRING)

and crossed these mice with mice containing a tamoxifen-

dependent Cre allele (CreER). When adult MdmXflxRING/ΔRING;CreER

mice were injected with tamoxifen to generate recombined

MdmXΔRING/ΔRING mice, the mice appeared healthy. Most p53 target

genes, with the exception of p21, showed little change in expres-

sion, suggesting that MDM2–MDMX heterodimer formation is dis-

pensable for the regulation of p53 activity in adult mice. Whether

p53 stability is affected by this loss has not been determined and

remains an interesting question.

Then, what is the contribution of MDMX to MDM2-mediated

p53 regulation in vivo? It is clear that the necessity of MDMX is

context specific. During embryogenesis, it appears that MDM2–
MDMX heterodimer formation is critical for p53 suppression, but

the mechanism of this inhibition is incompletely understood.

Several possibilities exist, including that the MDM2–MDMX het-

erodimer facilitates more efficient MDM2/MDMX−p53 binding

and transcriptional inhibition than either protein alone. In support

of this idea, Pant et al. (2011) observed somewhat decreased

binding of MDMXΔRING to p53R172H, which harbours a missense

mutation rendering it transcriptionally inactive (Lang et al., 2004).

Table 2 Mdm2 and MdmX knockin mice.

MDM model Modification Phenotypes and p53 responses References

Mdm2C462A Disrupts RING domain and MDMX

interaction

Embryonic lethal, increased p53 stability and activity Itahana et al. (2007)

Mdm2S394A Disrupts ataxia-telangiectasia mutated

(ATM) phosphorylation

Radioresistant, accelerated spontaneous and MYC-induced tumour formation,

resistance to radiation-induced lymphoma

Gannon et al. (2012), Carr

et al. (2016)

Mdm2C305F Disrupts ribosomal protein (RP)

interaction

Decreased p53 stabilization and activity following ribosomal stress, increased

MYC-induced tumours, increased adenomatous polyposis coli (APC)

loss-induced colon tumours

Macias et al. (2010), Meng

et al. (2015), Liu et al.

(2016)

Mdm2Y487A Disrupts E3 ligase function Increased p53 stability, increased p53 activity after irradiation, increased

radiosensitivity

Tollini et al. (2014)

Mdm2SNP309G Increases Mdm2 expression Increased spontaneous tumourigenesis, reduced p53 levels Post et al. (2010)

Mdm2P2 Disrupts p53-mediated Mdm2

transcription

Prolonged p53 activity after DNA damage, no apparent change in p53 stability,

increased radiosensitivity

Pant and Lozano (2014)

Mdm22DD Mimics constitutive protein kinase B

(AKT) phosphorylation in mammary

tissue

Accelerated ERBB2-induced tumours, decreased p53 expression Cheng et al. (2010)

MdmXΔRING Removes RING domain functions Embryonic lethal, increased p53 activity Pant et al. (2011)

MdmXC462A Disrupts RING domain and MDM2

binding

Embryonic lethal, increased p53 activity and protein levels Huang et al. (2011)

MdmX3SA Disrupts AKT, ATM, and Chk2

phosphorylation

Radioresistant, accelerated MYC-induced tumour formation, decreased p53 protein

levels and activity

Wang et al. (2009)
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We have also noticed that MDM2/MDMX−p53 binding is impaired

in Mdm2−/−;p53ER/− and MdmX−/−;p53ER/− MEFs, respectively,

compared to p53ER/− MEFs (our unpublished data). On the other

hand, it appears that MDM2–MDMX binding is dispensable to

p53 inhibition in the adult mouse (Pant et al., 2011).

MDM2 E3 ligase activity

The recently developed MDM2Y487A mouse model (Tollini et al.,

2014) has provided insight into both basal and stress-dependent

p53 regulation by MDM2 and MDMX. As an extension of the

MDM2C462A model, in which both MDM2 E3 ligase activity and

MDM2–MDMX interaction are disrupted, the MDM2Y487A mutation

disrupts MDM2 E3 ubiquitin ligase activity while maintaining

MDM2–MDMX interaction. Surprisingly, unlike MDM2C462A,

MDMXΔRING, or MDMXC462A mice, MDM2Y487A mice survive into

adulthood, with little phenotypic difference from wild type mice

under normal, unstressed conditions. This clearly indicates that

MDM2 E3 ligase activity is not essential for regulating p53 dur-

ing embryonic development. No degradation of p53 is observed

in MEFs, and although MDMX levels are also increased, p53

activity is greater than in wild type. This perhaps suggests that

either MDM2–p53 or MDMX–p53 binding is not sufficient for

complete p53 activity suppression, or that without E3 ligase-

mediated degradation by MDM2, increased levels of p53 are

also spontaneously more active.

Although Mdm2Y487A/Y487A mice appear normal under un-

stressed conditions, these mice are highly sensitive to even sub-

lethal doses of ionizing radiation (IR), dying within ~20 days after

exposure due to p53-dependent haematopoietic failure, indicat-

ing that the MDM2 E3 ligase activity is necessary for p53 degrad-

ation and suppression during DNA damaging conditions.

MDM2 has been shown to inhibit p53 acetylation by p300

(Kobet et al., 2000; Ito et al., 2001; Jin et al., 2002). Tollini et al.

(2014) also compared the total and acetylated p53 levels of

Mdm2C462A/C462A;p53ER/− and Mdm2Y487A/Y487A;p53ER/− MEFs and

found that although total p53 levels were equivalent between

the two, p53 acetylation levels were much greater in

Mdm2C462A/C462A;p53ER/− MEFs. In addition, p53–p300 binding

was increased in the absence of the MDM2–MDMX heterodimer,

possibly indicating that the MDM2–MDMX heterodimer is more

efficient than MDM2 alone in inhibiting p53 acetylation by p300,

suggesting another mechanism through which the heterodimer

could inhibit p53 activity in vivo.

MDM2–MDMX heterodimerization appears to be particularly

important for suppressing chronic, basal levels of p53 activa-

tion, such as what might occur during embryogenesis, while

MDM2 E3 ligase activity is dispensable under these conditions.

However, under stressed conditions where p53 is acutely acti-

vated, such as DNA damaging conditions, the MDM2–MDMX

heterodimer appears to be insufficient for restraining p53 in

the adult mouse. These conditions appear to require the fur-

ther degradation of p53, mandating use of MDM2 E3 ligase

activity.

p53–Mdm2 feedback

In addition to regulating p53 stability and activity, Mdm2 is a

p53 target gene (Barak et al., 1993). This feedback loop of regu-

lation is thought to be important for returning p53 to basal

levels and activity following a p53-activating insult. To directly

address the importance of the p53–MDM2 feedback loop to p53

regulation in vivo, Pant and Lozano (2014) generated the

Mdm2P2 allele, in which point mutations were introduced to two

p53-binding sites within the Mdm2 promoter region. p53 stabil-

ization in response to several stresses occurred in a similar

manner to wild type Mdm2 mice, but p53 activity persisted long-

er in Mdm2P2 mice and MEFs, suggesting that basal levels of

MDM2 are sufficient for p53 regulation in unstressed cells, but

the p53–MDM2 feedback loop is required for restraining stress-

induced p53 in vivo. In addition, the heterozygous deletion of

MdmX appeared to enhance p53 stability in Mdm2P2/P2;MdmX+/−

MEFs, suggesting that MDMX may enhance the degradation of

stress-induced p53.

Disrupting upstream p53 signalling through MDM2 and MDMX

mutation

DNA damage. Knockin mouse models have allowed us to appre-

ciate the complex interactions of MDM2 and MDMX in p53 regu-

lation, but they have also been used by several groups to

determine the contributions of various upstream signals to p53

activation (Table 2). Activation of p53 requires transient inhib-

ition of the activities of MDM2 and/or MDMX, which is thought

to be mediated through upstream signalling factors. For

instance, in vitro studies have shown that in response to DNA

damage, ATM phosphorylates MDM2, inhibiting MDM2 E3 ligase

activity and RING domain-dependent oligomer formation (Cheng

et al., 2009, 2011). To test the importance of MDM2 phosphoryl-

ation at serine 394 (serine 395 in human), Gannon et al. (2012)

generated the MDM2S394A mouse, replacing serine 394 with an

alanine and disrupting MDM2 phosphorylation in vivo. Basal

p53 levels and activity were unchanged in these mice. In

response to lethal doses of IR, MDM2S394A mice experience

reduced p53 stabilization and activation, translating to

increased survival compared to wild type mice, indicating that

MDM2 serine 394 phosphorylation is an important event preced-

ing the propagation of p53 stabilization and activation following

IR-mediated DNA damage. Conversely, Gannon et al. (2012) also

generated mice containing a substitution of serine 394 with a

phosphomimetic aspartate residue (MDM2S394D). Basal p53

levels and activity were unchanged compared to wild type mice,

indicating that phosphorylation at serine 394 is not sufficient

for p53 stabilization. Following IR, however, p53 stabilization

and activation was greater and persisted longer in MDM2S394D

mice, suggesting perhaps that the serine 394 phosphorylation

mark is responsible for maintaining activation of p53 or is typic-

ally removed shortly after p53 activation.

MDMX is also phosphorylated following DNA damage, and

these phosphorylation events are thought to be important for
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MDMX degradation following IR treatment (see next section).

ATM phosphorylates MDMX serine 403 (402 in mouse) (Pereg

et al., 2005), while Chk2 can phosphorylate serine 342 and ser-

ine 367 (341 and 367 in mouse) (Chen et al., 2005; Okamoto

et al., 2005; LeBron et al., 2006; Pereg et al., 2006). To study

the importance of MDMX phosphorylation to p53 activation fol-

lowing DNA damage, Wang et al. (2009) generated MDMX3SA

mice, in which serine 341, serine 367, and serine 402 of MDMX

are replaced with alanine residues. Upon loss of MDMX phos-

phorylation capability, MDMX3SA appears to be stabilized at

basal levels. Following IR treatment, MDMX3SA remains stable

compared to MDMX, and p53 protein levels and transcriptional

activity appear to be lower in MDMX3SA MEFs and thymuses. In

addition, MDMX3SA mice are resistant to lethal IR treatment and

sensitive to MYC-induced lymphomagenesis. These results are in

congruence with the reduced basal and DNA damage-induced p53

activity observed in MDMX3SA mice, suggesting that MDMX phos-

phorylation and subsequent degradation is important for proper

p53 activation. These results also suggest that basal MDMX phos-

phorylation could be required for basal levels of p53 activity.

Oncogene activation. It is known that p53 responds to a variety

of stresses in order to perform various pro-survival or pro-

apoptotic functions, but the upstream signals of p53 activation

are still being elucidated. MDM2S394A mice are somewhat sus-

ceptible to tumour formation, indicating that ATM-mediated

MDM2 phosphorylation is likely important for allowing proper

p53 activation in response to endogenous, cancer-causing DNA

damage events. Carr et al. (2016) analysed this propensity for

tumourigenesis in mice harbouring the MDM2S394A mutation by

performing a regimen of repeated low doses of IR and by cross-

ing Mdm2S394A mice with Eµ-Myc mice. MDM2S394A mice are

resistant to IR-induced lymphomagenesis yet are highly suscep-

tible to c-MYC-induced tumourigenesis, suggesting that the role

of MDM2 phosphorylation in p53 regulation and tumour preven-

tion is highly context- and stress type-specific.

Although oncogenes can invoke p53 stabilization by inducing

DNA damage, it has been recently appreciated that the acceler-

ated growth of cancer cells can also invoke p53 stabilization. For

instance, accelerated cell growth mandates the increased pro-

duction of ribosomes. The c-MYC oncogene is a master regulator

of ribosomal biogenesis and directly upregulates the transcrip-

tion of many RPs (Van Riggelen et al., 2010). Several RPs have

been found in vitro to bind to the central zinc finger domain of

MDM2 and prevent p53 inhibition (Zhang et al., 2003; Dai and

Lu, 2004; Dai et al., 2004; Chen et al., 2007; Zhang and Lu,

2009). In order to directly test the role of RP–MDM2 interaction

towards p53 activation in vivo, Macias et al. (2010) generated

the MDM2C305F mouse. The MDM2C305F mutation resides in the

region of RPL11 and RPL5 binding and thus prevents their inter-

action with MDM2. Mice with the MDM2C305F mutation display

normal responses to DNA damage, but are highly susceptible to

c-MYC overexpression- and adenomatous polyposis coli loss-

induced lymphomagenesis and colorectal tumourigenesis,

respectively (Macias et al., 2010; Meng et al., 2015; Liu et al.,

2016). On the other hand, MDM2C305F mice are surprisingly

resistant to HRASG12V-mediated melanomagenesis (Meng et al.,

2016), possibly due to increased MDM2–RPL23 interaction

mediated by the MDM2C305F mutation.

Nutrient availability. It has become increasingly apparent that

MDM2 and MDMX also serve to regulate p53 in response to

nutrient availability. This is not surprising, as it is clear that

p53 itself regulates cellular energy homoeostasis (Vousden

and Ryan, 2009; Zhang et al., 2010). It has also been reported

that changes in nutrient abundance can drastically alter riboso-

mal biogenesis (Boulon et al., 2010). Altered ribosomal biogen-

esis induces the binding of RPs to MDM2 (Zhang and Lu, 2009),

which inhibits MDM2-mediated p53 degradation, activating p53-

induced (or dependent) metabolic alterations. Consistently, the

MDM2C305F mouse, with its impaired RP–MDM2 binding, is defi-

cient in p53-mediated fatty acid oxidation in response to fasting

(Liu et al., 2014) and p53-mediated fat storage in response to

sustained high-fat diet feeding (unpublished data). Although

fasting or high-fat diet treatments appear to activate p53 sig-

nalling through the RP–MDM2 interaction, p53 activation in

response to glucose deprivation appears to be MDMX-dependent

(He et al., 2014). He et al. (2014) showed that glucose depriv-

ation enhances 5´ adenosine monophosphate-activated protein

kinase (AMPK) phosphorylation of MDMX at serine 342 (serine

341 in mouse). They suggest that MDMX S342 phosphorylation

reduces its activity against p53 by enhancing MDMX interaction

with 14-3-3, which allows p53 to become stabilized. Using the

MDMX3SA mouse, this study suggested that loss of MDMX phos-

phorylation is correlated with reduced p53 stability and activity

in response to AMPK induction.

MDM2 and MDMX stability regulation in vivo

Previous hypotheses proposed that MDM2 E3 ligase activity

was important not only for p53 regulation, but also for stability

of MDM2 and MDMX. In fact, in vitro mutations in the MDM2

RING domain result in increased stability of overexpressed

MDM2 protein (Honda and Yasuda, 2000). However, mouse

models have opposed these observations. The MDM2C462A and

MDM2Y487A mouse models have specifically challenged the

notion that MDM2 autoubiquitination occurs in vivo.

The MDM2C462A and MDM2Y487A mutations disrupt MDM2 E3

ligase activity in vivo, yet the half-life and ubiquitination levels

of MDM2 do not change in these mice (Itahana et al., 2007;

Tollini et al., 2014), suggesting that in the live mouse, MDM2

stability is mediated by the activity of other E3 ligases.

However, some discrepancies exist between these models and

other knockin mice. For example, the MDM2C462A mutation dis-

rupts MDM2–MDMX interaction but does not affect MDM2 deg-

radation (Itahana et al., 2007). Yet, the MDMXC462A mutation

also disrupts MDM2–MDMX interaction without directly altering

MDM2, and in the absence of MDM2–MDMX binding, Huang

et al. (2011) observed that MDM2 ubiquitination was disrupted.

However, since the MDM2C462A mutation and the MDMXC462A

mutation reside in the RING domains of MDM2 or MDMX, which
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is thought to be important for the structure of these proteins

(Poyurovsky et al., 2007), it is possible that these mutations

alter the functions of the proteins beyond simple loss of RING

domain function. In addition, mice containing MDMXΔRING, which

also does not interact with MDM2, display no difference in

MDM2 half-life compared to mice containing wild type MDMX

(Pant et al., 2011). Resolving these conflicting observations is

important to understand MDM2 stability in vivo. The MDM2Y487A

mouse has provided some clarification of this problem, because

the MDM2Y487A mutation does not occur in the RING domain of

MDM2, and would not likely alter MDM2 structure greatly.

Lacking MDM2 E3 ligase activity and maintaining MDM2–MDMX

binding, MDM2Y487A is degraded equally quickly compared to

MDM2 (Tollini et al., 2014). Two independent E3 ligase activity-

disrupting mutations of MDM2 have shown that MDM2 E3 ligase

activity is not required for basal MDM2 degradation in vivo

(Itahana et al., 2007; Tollini et al., 2014), although whether or

not MDM2–MDMX interaction is required for MDM2 ubiquitina-

tion is still unclear in the present mouse models. In vitro MDMX

overexpression has been shown to stabilize MDM2, and this sta-

bilization is dependent on the RING domain of each protein

(Tanimura et al., 1999; Linares et al., 2003). Conversely, knock-

down of MDMX has resulted in reduced MDM2 expression (Gu

et al., 2002). Because of this, it was previously proposed that

MDMX could redirect MDM2 E3 ligase activity from MDM2 unto

itself and stabilize MDM2, but if MDM2 autoubiquitination does

not truly occur in vivo, this may not be the case.

In vivo models have advocated that MDM2 does in fact con-

trol MDMX stability. For example, MDM2Y487A mice lacking

MDM2 E3 ligase activity have increased protein levels of

MDMX (Tollini et al., 2014), which is in line with in vitro studies

suggesting that MDM2 E3 ligase activity acts to ubiquitinate

MDMX (Kawai et al., 2003; Pan and Chen, 2003). In addition,

MDMXΔRING, which does not have the ability to interact with

MDM2, is not degraded compared to MDMX in untreated or

IR-treated MEFs (Pant et al., 2011).

MDM2 and MDMX degradation following IR has been observed

by many groups in cell culture (Kawai et al., 2003; Stommel and

Wahl, 2004). This regulation has been recapitulated in several

mouse models. For example, MDM2S394A, which cannot be phos-

phorylated by ATM, appears to be resistant to IR-induced deg-

radation (Carr et al., 2016). MDMX3SA is also more stable than

MDMX in multiple tissues and is resistant to DNA damage-

induced degradation (Wang et al., 2009). This indicates both that

MDMX may have some level of constitutive phosphorylation that

is important for its normal degradation in vivo and that DNA

damage-induced phosphorylation is necessary for proper regula-

tion of MDMX stability. Following IR treatment, MDMX3SA also

interacts with MDM2 similarly to MDMX, which suggests that

DNA damage-induced phosphorylation does not hinder MDM2–
MDMX interaction.

Using mouse models to inform future therapies

p53 mutation occurs in ~50% of human cancers, and p53 is

often functionally inactivated in tumours harbouring wild type

p53, due to aberrantly expressed MDM2 or MDMX (Tovar et al.,

2006). A cancer-associated human single nucleotide polymorph-

ism (SNP) (Bond et al., 2004) in the second promoter of Mdm2

contributing to increased Mdm2 transcription was recently

modelled in the mouse (Post et al., 2010). Mice containing a

T to G human SNP (SNP 309) were susceptible to decreased p53

function and increased tumourigenesis. This model suggests

that even naturally occurring MDM2 ‘overexpression’ (as

opposed to transgenic overexpression) does in fact contribute

to p53 functional inactivation.

A growing number of studies have suggested targeting

mutant p53 or restoring wild type p53 as cancer treatment strat-

egy (Burgess et al., 2016; Soragni et al., 2016). Many drugs

specifically targeting MDM2–p53 interaction, MDMX–p53 inter-

action, or MDM2-mediated ubiquitination of p53 have been

developed (Vassilev et al., 2004; Wade et al., 2013; Burgess

et al., 2016). For example, MDMX loss in c-MYC-driven tumours

extends survival after p53ER restoration (Garcia et al., 2011). In

addition, CreER-mediated p53neo restoration in transplanted

MDM2-overexpressing tumours also appears to extend survival

in mice (Li et al., 2014). However, so far these treatment strat-

egies have enjoyed limited efficacy in the clinic.

In vivo studies have also suggested that other approaches

could be taken to restore p53 function in human cancers har-

bouring wild type p53, such as inhibiting MDM2–MDMX binding

or inhibiting MDM2 E3 ligase activity. The inhibition of MDM2

E3 ligase activity may be especially attractive as a treatment

strategy, because the MDM2Y487A mouse model shows that gen-

etic ablation of MDM2 E3 ligase activity is tolerated by the adult

mouse as well as the developing embryo (Tollini et al., 2014),

which suggests that this strategy could avoid toxicity issues. In

response to p53-activating stimuli, cells containing MDM2Y487A

demonstrate increased p53 stability and activity. Observations

from our laboratory support this strategy in principle, as homozy-

gous MDM2Y487A mutation appears to allow for prolonged survival

in response to c-MYC-induced tumourigenesis (our unpublished

data). Although several inhibitors of MDM2 E3 ligase activity have

been identified and shown to stabilize p53 (Yang et al., 2005;

Herman et al., 2011; Roxburgh et al., 2012), their activity and spe-

cificity may not yet be sufficient for human use. To our knowl-

edge, MDM2 E3 ligase inhibitors have not been tested in humans,

but several other small-molecule MDM2 antagonists are currently

in Phase I trials (Burgess et al., 2016).

Mouse models have also suggested that complete restoration

of p53 function in the presence of radiation should be used with

caution, as abundant p53 activity is especially toxic to radio-

sensitive tissues (Ringshausen et al., 2006; Tollini et al., 2014;

Zhang et al., 2014a). It is possible that tissue-targeted therapies

will need to be used in combination with any p53-reactivating

therapies to avoid this problem.

Concluding remarks

Mouse models altering MDM2 and MDMX have given us a

clearer understanding of the in vivo roles of MDM2 and MDMX

in p53 regulation (Figure 1) and established that MDM2 and
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MDMX proteins are master p53 regulators. However, several

questions remain. Although several in vitro studies suggest

that MDMX may facilitate MDM2-mediated p53 degradation,

we still do not have a clear understanding of whether this

occurs in vivo. We still do not completely understand how

MDM2 is degraded. In addition, MDM2 and MDMX appear to

have differing activities in p53 transcriptional inhibition, but

we do not understand how or why this may occur. Although

many questions remain, the tools presented in this review are

indicative of the importance of in vivo modelling and point to

a bright future of continued research in the MDM2/MDMX–
p53 field.
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