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Abstract

The structurally defined ubiquitin-like homology fold (UBL) can engage in several unique 

protein–protein interactions and many of these complexes have been characterized with high-

resolution techniques. Using Rosetta's structural classification tools, we have created the Ubiquitin 

Structural Relational Database (UbSRD), an SQL database of features for all 509 UBL-containing 

structures in the PDB, allowing users to browse these structures by protein–protein interaction and 

providing a platform for quantitative analysis of structural features. We used UbSRD to define the 

recognition features of ubiquitin (UBQ) and SUMO observed in the PDB and the orientation of 

the UBQ tail while interacting with certain types of proteins. While some of the interaction 

surfaces on UBQ and SUMO overlap, each molecule has distinct features that aid in molecular 

discrimination. Additionally, we find that the UBQ tail is malleable and can adopt a variety of 

conformations upon binding. UbSRD is accessible as an online resource at 

rosettadesign.med.unc.edu/ubsrd.
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Introduction

Discrimination between the ubiquitin-like homology folds (UBL) is required for many 

physiological processes, most notably discrimination between ubiquitin (UBQ) and small 

ubiquitin-related modifier (SUMO) [1–3]. UBQ post-translation modifications can elicit a 

wide variety of responses (i.e., proteasome degradation, cellular trafficking, signaling 

transduction, and altering protein activity) and the response to SUMO is also varied; 

however, SUMO functions are primarily nuclear (UBQ- and SUMO-specific functions are 

summarized in these two references [4,5]). Several proteins and protein complexes, such as 
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PCNA (Proliferating Cell Nuclear Antigen), PML (Promyelocytic Leukemia Protein), PTEN 

(Phosphatidylinositol 3,4,5-Trisphosphate 3-Phosphatase and Dual-Specificity Protein 

Phosphatase), and Fanconi Anemia complex are modified by both UBQ and SUMO, 

regulating critical biological processes, such as DNA replication and repair, nuclear/

cytoplasmic shuttling, and protein abundance [6–10]. Importantly, conjugation of UBQ and 

SUMO can result in disparate protein responses, as is the case for PCNA [9]. The versatility 

of the biological response elicited by UBLs is due in part to their ability to participate in a 

multitude of protein–protein interactions (PPIs), many of which are unique to the UBL 

family of proteins: the C-terminus can be covalently conjugated as a thioester to an active-

site cysteine of activating proteins, which include E1, E2s, and E3s, or as an isopeptide bond 

to a lysine on a target protein (for an in-depth review of UBL conjugation, see Ref. [11]); 

covalently linked UBLs can be removed by specific proteases called deubiquitinases and the 

protease reaction coordinate often proceeds through a thioester intermediate [12]; both 

monomeric and geometrically distinct polymeric UBL chains can be specifically recognized 

by a variety of interacting partners [13]; and many UBLs are domains of larger proteins and 

are implicated in self-regulation or association with partners [14].

The biological importance of UBLs has resulted in extensive efforts to structurally 

characterize UBL interactions. These efforts have resulted in co-crystal structures of UBQ 

and SUMO with a number of interaction partners. However, considering that multiple 

lysines on virtually every cellular protein can be conjugated with an assortment of distinct 

UBQ chains, the potential number of conjugated UBQ interfaces is very large. Additionally, 

structural characterization using experimental methods is difficult due to the heterogeneous 

nature, weak affinities, transient lifetimes, and dynamic properties of these complexes. For 

these reasons, computational modeling of UBL interactions represents an attractive avenue 

for future structural characterization.

Computational protein modeling can be aided by implementing knowledge-based scoring 

metrics obtained from native protein structures. Analysis of measurable properties from 

large sets of molecular conformations is challenging, and to this end, structural relational 

databases are powerful tools [15]. The recent addition of structural analysis tools to the 

Rosetta molecular modeling package provides a framework to record various features for 

large sets of protein structures [15,16]. Here we use this methodology to create the Ubiquitin 

Structural Relational Database (UbSRD), which contains a manually curated set of all the 

UBQ homology folds in the PDB grouped by PPIs. The motivation of this study is to 

provide a structural dictionary of UBL-containing structures allowing rapid search of this 

set. As a demonstration of the capabilities of UbSRD, we explored trends of UBQ and 

SUMO recognition in the PDB.

UBL evolutionary relationship

The UBL fold is composed of a central β-sheet, containing five β-strands packed against a 

three-turn α-helix (Fig. 1a and Fig. 1 in Ref. [17]) [18]. There is an additional α-helical 

segment in the loop connecting β4 and β5. The UBL fold can accommodate many diverse 

sequences, for example, UBQ and SUMO1 have only 22% sequence similarity using the 

PAM-250 matrix (Fig. 1 in Ref. [17]). To cluster the UBL domains in UbSRD, we 
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calculated a maximum likelihood tree of all identified UBLs using a structure-based 

multiple sequence alignment [19,20]. Several UBLs were distantly related (ATG12, UFM1, 

ElonginC, URM, and UBLs from PDB codes 2BPS, 2YLM, 1WF9, and 2DZM) from the 

rest of the phylogenetic tree, which is clearly demarcated between SUMO-like and UBQ-

like UBLs (Fig. 2 in Ref. [17]). We have named sub-families according to prominent 

members of each branch, and our results are generally consistent with other proposed 

evolutionary histories [21]. Of note, UBQ has the shortest branch length, indicating that 

UBQ is closest to the putative ancestor sequence. This observation is supported by the 

nearly identical UBQ amino acid sequence between humans and yeast and suggestive of 

evolutionary model where UBL domain diversification arose from UBQ gene duplications.

UBQ interaction surface

The Rosetta FeaturesReporter protocol provides a framework to quantitatively record 

measurable properties of protein structures, and for UBQ, we analyzed the number of non-

UBQ amino acid neighbors, inter-molecular hydrogen bonds, and secondary structure of 

interacting motifs [16]. This analysis revealed seven positions that make up the binding 

interface that we have named the canonical binding surface (Leu8, Arg42, Ile44, Gly47, 

His68, Leu70, and Leu73) (Figs. 1a and b and 3 in Ref. [17]), which includes the 

hydrophobic patch (Leu8, Ile44, and Val70) [22,23]. Several of these residues participate in 

hydrogen bonding: the Arg42 side chain is a prominent hydrogen bond donor as are the 

backbones of Leu8, Gly47, and Leu73 (Figs. 1a and c and 5 in Ref. [17]). The canonical 

binding surface has a preference to contact α-helical motifs; however, Gly47 and Leu73 

have an elevated preference to interact with loops and β-sheets (Fig. 5 in Ref. [17]). 

Structures in UbSRD are grouped by the type of PPI, for instance, conjugated or 

deubiquitinase, which allowed identification of less prominent binding surfaces of UBQ, 

such as the alternative epitope, spanning residues 35–40, that is buried in many conjugated 

interfaces. A distinctive feature of this interface is a Gln40 hydrogen bond found at both 

HECT and RING E3 ligase interactions (Figs. 1a and c and 5 in Ref. [17]) [24,25]. 

Deubiquitinases can utilize two additional patches of UBQ, spanning residues 10–15 and 

62–66, and the proximity of these surfaces to UBQ lysine acceptors may provide specificity 

for distinct UBQ chains (Fig. 3 in Ref. [17]). Recently, Ser65 phosphorylation, an important 

post-translation modification to UBQ, has been shown to inhibit some deubiquitinases' 

activity, providing an additional functional role for recognition of residues 62–66 [26]. 

Notably, the UBQ interaction surfaces on deubiquitinases are not α-helical and are largely 

composed of loops and strands (Fig. 4 in Ref. [17]). UBQ forms specific hydrogen bonds in 

different types of PPIs, for example, the backbone of Gly47 is a hydrogen bond donor at 

many noncovalent interfaces and the side chain of Gln49 is a hydrogen bond donor for some 

deubiquitinase interactions (Fig. 5 in Ref. [17]). However, the most distinctive feature of 

deubiquitinase and conjugated interfaces is extensive contacts and hydrogen bonds to the 

UBQ tail (71–76) that are not observed at most noncovalent interfaces (Fig. 3 in Ref. [17] 

and Fig. 5 in Ref. [17]). In particular, we observe the backbone of the UBQ tail participates 

in hydrogen bonds to interacting motifs that are loops and strands, hallmarks of inter-

molecular β-strand pairing (Fig. 4 in Ref. [17] and Fig. 5 in Ref. [17]).
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Surprisingly, interactions to the backside of UBQ, encompassing α1 and β2, were almost 

nonexistent in structures in the PDB (Fig. 1c, lower panel). This is surprising since strand 

pairings β2 are frequently observed for SUMO interactions and other member of the 

ubiquitin-like fold super-family, like RBD, PIP3K, and Ral-GDS [18]. We hypothesize this 

may be a primary surface for discrimination between UBQ and other UBLs. Two plausible 

explanations for how UBQ may avoid edge–edge β-strand pairings: (1) the side chain of 

Lys29 in α1 may protect the β2 strand by steric occlusion, SUMO variants encode the less 

bulky Ala or Ser, and (2) the flexibility of the β1–β2 loop may hinder edge–edge strand 

pairing [27,28]. It is important to note that the three variations between human and yeast 

UBQ sequences occur in β2α1 and variations to this region are viable in yeast, unlike 

mutations to any of the seven residues that make up the hydrophobic surface [29]. However, 

structures of the HOIP and HOIL domains of the E3 ligase that synthesizes linear ubiquitin 

chains do contact β2α1, albeit not through strand paring to β2, suggesting that this portion of 

the protein may aid in the formation and recognition of distinct ubiquitin polymers [30,31].

We also used UbSRD to analyze amino acid preferences for residues that interact with the 

canonical binding surface. We find a preference for the smaller hydrophobic residues Ile, 

Leu, Val, and Ala, which is most prominent for Leu8, Ile44, and Val70 (Fig. 1d). Another, 

general feature is that interactions with positive residues such as Arg and Lys are disfavored, 

likely due to the overall cationic charge on the canonical binding surface. Although not all 

the residue preferences are hydrophobic, Arg42 and to a lesser extent His68 have elevated 

preferences toward anionic residues, and Leu8 has an elevated number of Gln partners that 

can hydrogen bond with the Leu8 backbone. Leu73 has a surprising number of Tyr 

neighbors (see Leu8 for comparison), which are observed at a number of deubiquitinase and 

noncovalent interfaces (Fig. 1d).

SUMO interaction surface

The SUMO protein sequence, unlike UBQ, is not highly conserved between Saccharomyces 

cerevisiae and humans; humans also have four SUMO isoforms while S. cerevisiae has only 

one. SUMO has two distinct surfaces that contact partners, the hydrophobic surface and the 

β2α1 groove (Figs.2a and 6 in Ref. [17]). SUMO utilizes the canonical binding surface less 

extensively than UBQ and sites in this region have fewer neighbors per structure; in 

particular, positions 29 and 91 of SUMO are under-utilized relative to homologous UBQ 

positions (Fig. 1 in Ref. [17]). We hypothesize that this may be due to the aromatic residues 

found at position 91 preventing extensive contacts with the canonical binding surface. This 

is highlighted by the SUMO protease/SUMO interface that only has neighbors to the C-

terminal half of SUMO (Fig. 6 in Ref. [17]) [32]. Additionally, the motifs that contact the 

canonical binding surface of SUMO primarily are not α-helical, providing another means of 

discrimination between SUMO and UBQ interacting proteins (Fig. 7 in Ref. [17]).

SUMO variants frequently have interactions with the β2α1 groove at conjugated and 

noncovalent interfaces, but not with SUMO proteases (Fig. 2a) [33,34]. These interactions 

are characterized by backbone hydrogen bonds to positions 33, 35, and 37 to primarily β-

strand motifs (Figs. 2b and c, 7, and 8 in Ref. [17]). Also, residues 42, 46, and 50 of α1 

contact interacting proteins and the side chains of these residues participate in hydrogen 
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bonds (Fig. 2b and c and 8 in Ref. [17]). As mentioned above, this surface of UBQ has not 

been characterized interacting in this manner, suggesting that the β2α1 groove may provide 

specificity between the two folds.

We also observe extensive contacts to the SUMO tail at both conjugated and deubiquitinase 

interfaces, but not at noncovalent interfaces (Fig. 6 in Ref. [17]). As we observed for UBQ 

interfaces, there are extensive backbone hydrogen bonds to the tail indicating that this mode 

of interaction is conserved between the two UBLs, implicating that the general mode of tail 

recognition is similar for UBQ and SUMO despite the difference in amino acid identity 

(Figs. 1 and 8 in Ref. [17]). Several other sites of SUMO can participate in hydrogen bonds, 

most notably residues 60, 67, and 70. In particular, the side chains of several residues in the 

C-terminal portion of SUMO function as hydrogen bond acceptors at many interfaces, 

indicating that electrostatic differences between UBQ and SUMO aid in discrimination.

Plasticity of the UBQ tail

To explore the conformational freedom of the UBQ tail, we constructed Ramachandran plots 

for all the deubiquitinase and conjugated complexes. We find that the φ/ϕ angles of the 

UBQ tail primarily reside within the β-strand boundary; however, the backbone 

conformational freedom increases toward the C-terminus (Fig. 3a). Beginning with Arg72, 

the UBQ tail residues can adopt a diverse set φ/ϕ angles found within the βs, βp, γ-turns, and 

α-helical conformations [35]. This trend is particularly evident for Leu73 where the UBQ 

tail can adopt both L-handed and R-handed α-helices. Recently, it has been discovered that 

deubiquitinases cannot cleave conjugated UBQ variants containing Leu73Pro substitutions 

and this may be due in part to restrictions that Pro would impose on the backbone 

conformation of the UBQ tail [36].

We also classified the UBQ tail conformation by the family of interacting proteins (see the 

methods section). We observe that families of interacting proteins tend to recognize similar 

tail conformations, although a variety of tail conformations can exist between families of 

proteins. Leu73 exemplifies this observation: all four characterized E2/RING E3 complexes 

have Ramachandran angles in the β-region, but for HECT E3 ligases, the backbone torsion 

angles are within the α-helical boundary. For OTU, Leu73 φ/ϕ resides in both the R-handed 

and L-handed α-helices, and for UCH UBQ complexes, Leu73 is found within the γ-turn 

region of Ramachandran space. The differences in the UBQ tail backbone conformations 

when coordinated to deubiquitinase and conjugated proteins provide an additional layer of 

specificity.

UbSRD, the Web resource

One of the motivating factors of this study was to create a tool broadly accessible to 

researchers that can be easily updated as the PDB expands. To this end, we created a Web 

site for simple browsing of UbSRD. Users can browse the structures by phylogeny, PPI, 

UBL type, UBQ chain linkage, and the partner identity (for conjugated and deubiquitylase 

interfaces). Also users can search for amino acid partners to UBQ and SUMO residues. The 

entire SQL database, the Newick format of the phylogenetic tree, and the multiple sequence 

alignment used to construct the phylogram are available for download. When creating 
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UbSRD, we collected many more features than we included in our analysis, such as 

crystallographic waters, side-chain rotamers, and global data about protein interfaces and 

there are example queries available to help users get started with querying UbSRD. 

Moreover, the customizable nature of the Rosetta features reporter framework allows for the 

simple generation of additional features†.

Discussion

Here we present UbSRD, an SQL database of Rosetta-derived structural features from all 

UBL domains we identified in the PDB. Each UBL-containing structure is classified by type 

of protein interface, which allowed us to examine features of UBQ and SUMO recognition 

while engaged in different types of interactions. The most notable difference is that 

interactions with the β2α1 groove of UBQ are rare; conversely, for SUMO, this region is a 

primary recognition surface [37]. UBQ interactions rely heavily on the canonical binding 

surface, which includes Leu8 of the β1–β2 loop; SUMO infrequently uses this loop for 

binding. The UBQ canonical binding surface is extensive and we were surprised by the 

extent that Leu73 was utilized in all types of PPIs compared to other residues in the UBQ 

tail. Moreover, the quantity of inter-molecular hydrogen bonds to the canonical binding 

surface is also surprising, as Leu8, Arg42, Gly47, and Leu73 are all hydrogen bond sites; the 

hydrophobic patch is often discussed as the primary determinant of UBQ binding in the 

literature. A commonality in both UBQ and SUMO binding is the role of Arg42/Arg63. 

Interestingly, Arg42/63 and Gly47/68 are the only identical residues in the canonical binding 

surfaces of UBQ and SUMO, but unlike Arg42/Arg63, Gly47/Gly68 is utilized differently 

between these two molecules; we did not observe hydrogen bonds to position 68 of SUMO 

but instead observe them to the preceding residue at deubiquitinase and some conjugated 

interfaces. This distinction may aid in discrimination of β3 between the two molecules.

A striking feature of UBQ interactions is the conformational plasticity of the UBQ tail while 

participating in different types of interactions. Available hydrogen bond sites on interacting 

proteins likely direct these conformations; however, this feature will require further 

examination. Leu73 and Arg74 can occupy a variety of regions of Ramachandran space 

demonstrating a challenge associated with modeling tethered UBQ; however, the insights 

gained from UbSRD will aid in restricting the degrees of backbone freedom allowed during 

computational modeling of the UBQ tail.

UbSRD is designed to provide a searchable structural dictionary of UBL-containing 

structures, allowing users to query the structures by features of the set. UBLs engage in 

many thousands of diverse interactions and the biological effects of mono-UBQ have been 

shown to vary between targets [4,5]. Computational protein modeling is an attractive 

method for probing the structural details of UBL interactions and can serve as a valuable 

starting point in delineating potential mechanisms of UBL regulation. The insights described 

here will serve as a general tool to better understand UBQ and SUMO recognition and guide 

future computational modeling efforts.

†UbSRD is available at rosettadesign.med.unc.edu/ubsrd.

Harrison et al. Page 6

J Mol Biol. Author manuscript; available in PMC 2017 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://rosettadesign.med.unc.edu/ubsrd


Methods

Populating UbSRD

To populate UbSRD with all UBLs in the PDB, we used seven iterative rounds of delta-PSI-

BLAST using the UBQ sequence as a query [38]. Additionally, we used the yeast SUMO 

homolog, Smt3, since we could not identify these sequences with the UBQ sequence. These 

results were classified into six groups based upon the mode of PPI. The interaction types are 

monomeric UBL (MU), free ubiquitin chains (UC), noncovalent (NC), conjugated (CJ), 

deubiquitinase (DB), and chimeric fused (FU). The structures were also grouped by the type 

of UBL: small ubiquitin-like modifier 1–4 (SUMO1–4), neural precursor cell expressed 

developmentally down-regulated and the yeast homolog Rub1 (NEDD), autophagy-related 

protein (ATG), interferon-simulated gene (ISG), ElonginB (ELOB), ubiquitin-like domain 

(UBLD), ubiquitin mutants (UBQ_M), ubiquitin-like domain mutant UBQ-like 3 (UBL3), 

UBQ-like 5 and the yeast Hub1 (UBL5), and UBQ fold modifier (UFM). The conjugated 

and deubiquitinase interfaces were further classified by the type of interacting protein. For 

conjugated complexes, these groups include E1, E2, HECT E3, E2/RINGE3, E2/DB, and 

substrates (Sub). We included E1 in the conjugated set due to the thioester-linked 

intermediate formed as UBLs are transferred to E2 enzymes despite several structures co-

crystallized with the enzymatic substrates. For deubiquitinase complexes, these groups 

include UBQ-specific peptidase (USP), UBQ C-terminal hydrolase (UCH), ovarian tumor 

(OTU), Josephin (Jose), JAMM, ubiquitin-like deubiquitinases (ULD), and viral 

deubiquitinases that have homology to papain proteases (Pap).

Renumbering UBQ and SUMO chains and executing the Rosetta feature reporter

To prepare the PDBs for database analysis, it was first necessary to renumber the UBL 

chains; even for proteins with canonical numberings such as UBQ, alternative numbering 

schemes are prevalent in some PDBs. For SUMO, all variants were converted into the 

human SUMO1 numbering scheme (for alignment, see Fig. 1 in Ref. [17]). We created a 

python script to renumber the PDBs that (1) scores each chain for similarity to a target 

sequence, (2) extracts chains above a certain threshold, (3) uses MUSCLE [39] to create a 

multiple sequence alignment of the selected chains, (4) creates renumbered PDBs to the 

canonical chain numbering, and (5) creates a table of the chains in the SQL database (this 

script is available to download on the example analysis page). These renumbered PDBs 

were used for feature extraction with Rosetta feature reporter. The necessary flags and the 

executable are found in the accompanying data in brief article [17]. Additional several 

manually generated tables were also added to the SQL database: interaction_type that 

classifies each PDB by the type of PPI; cj_type and db_type that have detailed information 

about the interacting proteins and the type of chemical linkage that connects the tail; 

ubq_chains and sumo_chains that store the chain ids of UBQ and SUMO chains; 

ubq_numbering and sumo_numbering that are a numbering key for the different schemes 

used in the database; and ubl_id, ppi_id, partner_id, and chain_id tables that are foreign keys 

for each classification. The UbSRD SQL database can be downloaded on the UbSRD Web 

site.
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Phylogenetic groupings

Amino acid sequences were extracted from individual PDB files and aligned using 

PROMALS3D [20]. Maximum likelihood phylogenetic tree reconstruction was performed 

using PhyML, while implementing the WAG + I + G model (as selected by the AIC 

criterion as implemented within ProtTest 3 [19,40]). The phylogenetic tree was rooted at the 

midpoint.

Neighbor counts

We used a 6-Å cutoff to define amino acid neighbors. These measurements are from the 

action coordinate, which is an approximation of the average geometric center of the side 

chain. For all analyses, we removed self-neighbors and neighbors with other UBQ chains, 

and for each PDB, we divided the total number of neighbors by the number of UBL chains 

found. To define the secondary structure of the neighbors, we used a simplified DSSP code 

that only includes loops (L), helix (H), and strands (E). Hydrogen bonds were identified 

using the Rosetta score function and all hydrogen bonds detected by Rosetta were included 

regardless of the weight assigned to them. We used a python script to select only unique 

hydrogen bonds found in PDB structures. We did not attempt to address redundancy in our 

data set. We reasoned that redundant sequences may be involved in many different 

conformations with UBQ, the many different structures of UBQ with Ubc5 exemplifies this 

dilemma.
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Fig. 1. 
(a) Cartoon representation of UBQ. Positions that belong to the canonical binding surface 

are colored yellow while sites of inter-molecular hydrogen bond are colored purple. 

Residues in the hydrophobic face that can form hydrogen bonds are denoted with an 

asterisk. (b) UBQ surface heat map is colored by average number of neighbors per PDB 

using a 6-Å cutoff. (c) Table of hydrogen bond sites on UBQ. Hydrogen bond sites are 

labeled by the following classifications: Bb, backbone; Sc, side chain; D, donor; A, acceptor. 

(d) Amino acid partner preference for the residue in the hydrophobic surface. We grouped 
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and colored amino acids by properties AG (yellow), STP (gold), FWY (cyan), CM (green), 

ILV (hunter green), RKH (blue), DE (red), and NQ (pink). The asterisk denotes the 

difference in Tyr neighbors for Leu8 and Leu73.
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Fig. 2. 
(a) SUMO surface heat map is colored by average number of neighbors per PDB using a 6-

Å cutoff. (b) Cartoon representation of SUMO. Positions that belong to the hydrophobic 

surface are colored yellow while sites of inter-molecular hydrogen bonds are colored purple. 

Residues in the hydrophobic face that can form hydrogen bonds are denoted with an 

asterisk. (c) Table of hydrogen bond sites on SUMO. Hydrogen bond sites are labeled by the 

following classifications: Bb, backbone; Sc, side chain; D, donor; A, acceptor.

Harrison et al. Page 13

J Mol Biol. Author manuscript; available in PMC 2017 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Ramachandran plots of the residues in the UBQ tail found at conjugated and deubiquitinase 

interfaces. We have grouped each UBQ tail by the interacting partner. For conjugated 

interfaces, these groups include E1, E2, HECT E3, E2/RING E3 (E2/E3), E2/deubiquitinase 

(E2/DB), and substrates (Sub). For deubiquitinase interfaces, these groups include UBQ-

specific peptidase (USP), UBQ C-terminal hydrolase (UCH), ovarian tumor (OTU), 

Josephin (Jose), JAMM, ubiquitin-like deubiquitinases (ULD), and viral deubiquitinases that 

have homology to papain proteases (Pap).
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