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Abstract

For spline regressions, it is well known that the choice of knots is crucial for the performance of 

the estimator. As a general learning framework covering the smoothing splines, learning in a 

Reproducing Kernel Hilbert Space (RKHS) has a similar issue. However, the selection of training 

data points for kernel functions in the RKHS representation has not been carefully studied in the 

literature. In this paper we study quantile regression as an example of learning in a RKHS. In this 

case, the regular squared norm penalty does not perform training data selection. We propose a data 

sparsity constraint that imposes thresholding on the kernel function coefficients to achieve a sparse 

kernel function representation. We demonstrate that the proposed data sparsity method can have 

competitive prediction performance for certain situations, and have comparable performance in 

other cases compared to that of the traditional squared norm penalty. Therefore, the data sparsity 

method can serve as a competitive alternative to the squared norm penalty method. Some 

theoretical properties of our proposed method using the data sparsity constraint are obtained. Both 

simulated and real data sets are used to demonstrate the usefulness of our data sparsity constraint.
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1. Introduction

Regression is one of the most important and commonly used statistical tools. Given a set of 

data points whose predictors and responses are both available, one builds a regression model 

to predict the response variable for any new instance with only predictors observed. When 

solving a regression problem, linear regression can be insufficient. In particular, when the 

response has highly nonlinear dependence on the predictors, linear models can be 

suboptimal. To overcome this difficulty, various nonlinear regression models such as kernel 

smoother (see Hastie et al., 2009, for a review) and splines (De Boor, 1978) can be used. The 
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main idea is to find a regression function in a nonlinear functional class that best fits the 

response variable.

In a typical spline regression problem with a univariate predictor, one can use a piecewise 

nonlinear function as the regression function. The function is smooth everywhere including 

at the knots, where the nonlinear pieces connect. The knots play a crucial role in spline 

regression. For the regular smoothing splines (see, for example, Wahba, 1990; Gu, 2002, and 

the references therein), the knots are located at the observed predictor values automatically. 

For some other types of spline regressions, one needs to determine the knots. For instance, 

B-splines (De Boor, 1978) commonly use a set of equally spaced knots, and certain types of 

P-splines (Eilers and Marx, 1996; Ruppert et al., 2003) take knots based on quantiles of the 

predictor variable.

For spline regression, it is known that too many knots may lead to overfitting and 

unnecessary fluctuation in the resulting estimator. For instance, based on Chappell (1989), 

Koenker et al. (1994) gave an example where the regular smoothing splines perform poorly 

because of too many change points, and the one-change-point method proposed by Chappell 

(1989) works much better. Extensive efforts have been devoted on how to choose the knots 

for B-spline and P-spline methods in the literature (see, for example, Friedman and 

Silverman, 1989; Eilers and Marx, 1996; Zhou et al., 1998; Ruppert, 2002; Hansen and 

Kooperberg, 2002; Mao and Zhao, 2003; Miyata and Shen, 2005; Gervini, 2006; Eilers and 

Marx, 2010, and the references therein).

In this paper, we consider multi-dimensional regression problems with the regression 

function in a Reproducing Kernel Hilbert Space (RKHS, Aronszajn, 1950; Schölkopf and 

Smola, 2002). This is a very general setting, which includes many well known regression 

techniques as special cases, for example penalized linear regressions, additive spline models 

with or without interactions, and the entire family of smoothing splines. Typically, the 

optimization of such a RKHS regression can be written in a loss + penalty form. Since the 

regression function is assumed to be in a RKHS, it is common to take the squared norm of 

the function as the penalty. By the well celebrated representer's theorem (Kimeldorf and 

Wahba, 1971), the resulting regression function can be represented as a linear combination 

of kernel functions determined by the training data.

Our motivation for this paper is based on the following observation. The kernel 

representation of the regression function is similar to the knot structure in smoothing splines, 

in the sense that each observation in the training data can be regarded as a “knot” in a multi-

dimensional space. In particular, when we restrict the RKHS regression to the smoothing 

splines, the kernel function representation is equivalent to the piecewise nonlinear function 

representation. With the regular squared norm penalty, the resulting estimator involves all 

kernel functions on the training data. For large sample size problems, this estimator is 

known to be consistent with desirable theoretical properties. However, for problems with 

relatively smaller numbers of observations, using all kernel functions for the representation 

may introduce a similar issue as using too many knots in spline regressions. Hence it is 

desirable to have a regularization method that can select the kernel functions.
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To this end, we propose a new penalty method to achieve a “data sparsity” model. Through 

simulation studies, we observe that for some cases, the data sparsity model can perform 

better than the regular squared norm penalty method, and for other cases, their performance 

is comparable. See Section 2 for more detailed discussions. Moreover, we provide some 

theoretical insights on the data sparsity method. In particular, we show that under very mild 

conditions, the asymptotic convergence rates of the estimation errors for the two methods are 

the same, and both are close to the “parametric rate”. Furthermore, we give finite sample 

error bounds on the prediction errors for both methods. We show that for a general RKHS 

and problems with small sample sizes, the bound for the squared norm penalty method can 

be large. On the other hand, the data sparsity method can enjoy a better bound because its 

corresponding functional space is smaller. Hence, we propose the data sparsity method as an 

alternative approach to the squared norm penalty for RKHS learning. Note that in the 

literature, Takeuchi et al. (2006) studied kernel based nonparametric quantile regression 

problems, and mentioned a similar method as a natural extension of their formulation. 

However, their work focused on nonparametric quantile regression, whereas the possible 

overfitting of the squared norm penalty wasn't brought to attention. Moreover, Takeuchi et 

al. (2006) didn't perform detailed theoretical or numerical studies with focus on the data 

sparsity constraint. Our important contribution in this paper is to explore the similarity and 

(more importantly) differences between the data sparsity constraint and the regular squared 

norm penalty, through both numerical and theoretical studies.

In a regression problem, one needs to choose the loss function. The commonly used loss 

function is the squared error loss, which estimates the conditional mean of the response 

given the predictors. It is known that compared to the conditional mean estimation, the 

conditional median estimation is more robust against outliers. Therefore, in this paper, we 

consider quantile regression, and the loss function we use is the check function (Koenker 

and Bassett, 1978), although the idea of imposing data sparsity constraint is very general and 

can be applied to many other settings as well. Note that quantile regression with the check 

function provides the conditional median estimation as a special case. Another advantage is 

that it can provide more information on the conditional distribution of the response. Quantile 

regression has been widely used in many scientific fields, including survival analysis 

(Koenker and Geling, 2001), microarray study (Wang and He, 2007), economics (Koenker 

and Hallock, 2001), growth chart (Wei and He, 2006), and many others. Note that quantile 

regression in RKHS with the regular squared norm penalty was previously studied by 

Takeuchi et al. (2006) and Li et al. (2007).

In the machine learning literature, Support Vector Machine (SVM, Boser et al., 1992; Cortes 

and Vapnik, 1995) and Support Vector Regression (SVR, Drucker et al., 1997; Vapnik et al., 

1997; Smola and Schölkopf, 1998; Stitson et al., 1999; Smola and Schölkopf, 2004) have 

been well studied and widely used as classification and regression tools. One attractive 

feature of SVM and SVR is that even with the regular square norm penalty, due to the choice 

of the loss functions, the estimated classification function or regression function has a sparse 

representation in the dual space of the corresponding optimization problem. If the 

classification function or regression function is in a RKHS, sparsity in dual space 

representation is equivalent to sparsity in kernel representation. However, with many other 

loss functions and the squared norm penalty, the advantage of a sparse representation is lost 
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(Smola and Scholkopf, 2004). Our proposed data sparsity constraint is able to provide such a 

sparse representation for general loss functions. Note that in the Bayesian learning literature, 

Tipping (2001) proposed the relevance vector machines to obtain sparse solutions for 

regression and classification problems.

The rest of this article is organized as follows. In Section 2, we first discuss quantile 

regression problems with RKHS, then introduce our data sparsity constraint. In Section 3, 

we derive theoretical results for both asymptotic and finite sample analysis of our data 

sparsity method. In Section 4, we discuss how to derive the solution path of the involved 

optimization problem with respect to the tuning parameter, and tackle the problem of tuning 

parameter selection. In Section 5, we demonstrate the performance of our data sparsity 

method, using both simulated and real data sets. Some discussions are provided in Section 6. 

All technical proofs are collected in the appendix.

2. Methodology

We are given the training data (xi,yi); i = 1,…,n, which are observed according to the model 

Y = f0(X) + ε(X). Let D be the domain of f0, and let the dimensionality of D be p. We 

assume that for any given X, ε(X) has finite mean. This assumption on ε is very general, in 

the sense that both the homoscedastic and heteroscedastic cases are covered, along with 

many commonly used distributions. To estimate the 100τ% quantile of the conditional 

distribution of Y given X for some quantile level τ ∈ (0,1), Koenker and Bassett (1978) 

proposed to use the check loss function, which can be written as

where τ ∈ (0,1) indicates the quantile we are interested in. It is known that for a given X, the 

population minimizer to the check function is the 100τ% conditional quantile. For a given τ, 

suppose that ftrue (X) is the population minimizer to the check function. Note that in general 

f0 ≠ ftrue. A regular quantile regression problem can be typically formulated in terms of the 

following optimization

(1)

where ℱ is the functional class we are interested in, J(·) is a penalty on f to prevent 

overfitting, and λ is a tuning parameter that controls the magnitude of J(·). With p = 1, 

, and appropriately chosen ℱ, Koenker et al. (1994) showed that the 

solution to (1) is a linear spline with knots at xi; i = 1,…, n.

In this article, we consider the case with p ≥ 1 and the regression function in a RKHS, which 

is a more general setting than the regular smoothing splines. To begin with, we introduce 

some notation. A summary of important notation used in this paper can be found in Tables 
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11-14. Assume ℱ = {f = f′ + b : f′∈ ℋ, b ∈ ℝ}, where ℋ is a RKHS over X with the kernel 

function K(·, ·), and b is the intercept of the regression function. Throughout this paper, we 

use the notation f′ for any function when it belongs to a RHKS without an extra intercept 

term. This definition of ℱ allows a more flexible setting than ℱ = ℋ, because some RKHS's, 

for example the very popular Gaussian RKHS, do not include non-zero constant functions 

(Minh, 2010). In this paper, without loss of generality we assume each f ∈ ℱ can be uniquely 

decomposed as f′ + b. Let the norm in ℋ be ‖ · ‖ℋ. For more detailed discussions about ℋ 

and ‖ · ‖ℋ, we refer the readers to Aronszajn (1950), Wahba (1999), Scholkopf and Smola 

(2002), Steinwart et al. (2006), Hofmann et al. (2008), Minh (2010), and the references 

therein. Furthermore, we assume that the RKHS ℋ is separable, and the kernel function K(·, 

·) is upper bounded by 1. Our theory can be generalized to the case where supX1,X2 
K(X1,X2) < ∞. Note that a similar assumption was previously used in Steinwart and Scovel 

(2007) and Blanchard et al. (2008). With a little abuse of notation, we define K to be the n 
by n matrix K(xi, xj) ; i, j = 1,…, n, which we call the gram matrix.

The quantile regression with the regular squared norm penalty (Takeuchi et al., 2006; Li et 

al., 2007) solves

(2)

By the representer's theorem, the solution to (2) can be written as

(3)

where K(xi, ·) is the ith kernel function from the training sample, and α̃ = (α̃1,…, α̃
n)T is the 

estimated kernel function coefficient vector. In this paper, to clarify notation, we denote the 

estimated function using the squared norm penalty by f̃n, and the estimated function using 

our proposed data sparsity constraint by f̂n. Because f̃n possesses such a finite form, (2) can 

be equivalently written as

(4)

Li et al. (2007) provided a solution path for (4), with respect to the tuning parameter λ.

For many commonly used kernel functions, we can assume that the gram matrix K is 

positive definite (Paulsen, 2009). Hence for any αi; i = 1,…, n, the penalty αTKα in (4) 

constrains α in an ellipsoid, which does not have any singularity at αi = 0. This is illustrated 

on the left panel of Figure 1. Note that in the linear learning literature, Fan and Li (2006) 

discussed the effect of singularity of penalties on variable selection. Similarly, in RKHS 

regression problems, because the regular squared norm penalty does not have any singularity 
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at αi = 0, it does not perform “kernel function selection”. As a result, the estimated α̃i ≠ 0 for 

all i = 1,…, n.

As discussed in Section 1, it is desirable to have a method that can deliver estimators with 

sparse kernel function representation. To this end, we propose to penalize directly on the 

kernel function coefficients α such that some estimated αi's will be set to 0. The details of 

our method are as follows. By the representer's theorem (Kimeldorf and Wahba, 1971), the 

estimated fñ in (4) lies in a space linearly spanned by K(xi, ·); i = 1,…,n, and α̃ is 

constrained in an ellipsoid. To have data-sparsely represented function, we propose to 

constrain α in an L1 ball. In other words, we solve the following optimization problem with 

the data sparsity constraint

(5)

where s > 0 is the tuning parameter. Note that Takeuchi et al. (2006) briefly mentioned a 

possible natural extension of their method that is similar to (5).

The constraint in (5) is an L1 type regularization and imposes a soft thresholding (Tibshirani, 

1996) on α. On the right panel of Figure 1, we illustrate the effect of the data sparsity 

constraint. For small s, many of the estimated α̂
i values will be set to 0. Consequently, the 

regression function fn̂ has a parsimonious representation in (3).

Through simulation studies, we demonstrate that for some settings, the data sparsity method 

can have a better performance, compared to the regular squared norm penalty method. For 

other cases, the performance difference between the two approaches is small. In particular,

• when n is small or moderate, and the underlying function can be well approximated 

by a sparse representation  for small m, where zi are fixed points 

in D and c,γi ∈ ℝ, the data sparsity can provide a parsimonious model, and the 

corresponding prediction performance can be better. We demonstrate this issue 

using an example where p = 1 with the Laplacian kernel in Figure 2, and another 

example with p = 2 and the Gaussian kernel in Figure 3;

• when n is small or moderate, and the underlying function does not possess such a 

sparse representation, the data sparsity method tends to choose a large s in (5). As a 

result, the fitted model is not sparsely represented. In this case, the prediction 

performance of the data sparsity method and the squared norm penalty method is 

comparable. This is illustrated in Figure 4;

• and when n is large, there is enough information to estimate the underlying function 

accurately, and both methods can perform well in terms of prediction. In particular, 

we show in Section 3.1 that the estimation errors of (4) and (5) both converge at a 

rate very close to the “parametric rate” OP(n−1/2). In other words, asymptotically 

the data sparsity method can perform as well as the squared norm penalty. 

However, (5) can still provide a data sparse representation model. The advantages 
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of such a parsimonious estimator is that the prediction for new observations can be 

much faster than the regular method, and a sparser model can be easier to interpret.

Therefore, the data sparsity method can be regarded as an alternative learning technique to 

the regular squared norm penalty method.

Notice that although we observe that the data sparsity constraint may work well under some 

settings when n is small or moderate, we still need a certain amount of information from the 

data to estimate the underlying function reasonably well. When the dimensionality p is high 

and the sample size n is small, the curse of dimensionality would prevent most of the kernel 

methods from working well. Therefore, we focus on the case when p is not large in this 

paper.

We would like to point out that besides the data sparsity constraint on α, we also impose 

regularization on b in (5). Although penalizing b may not be standard, some papers, for 

example Fan et al. (2008), also considered penalizing the intercept. The effect of penalizing 

on b is two fold. Firstly, it guarantees the uniqueness of the solution path with respect to s, 

which is discussed in Section 4. Secondly, it prevents b from diverging too fast as n → ∞. 

This helps to bound the complexity of ℱ and the functional space we consider in (5), and 

consequently helps to derive the theoretical properties in Section 3. If we remove b from the 

constraint, more conditions are needed for the corresponding theorems to be valid. In 

particular, in the RKHS learning literature, many theoretical results are derived with f = f′ ∈ 

ℋ without the intercept term. See, for example, Bousquet and Elisseeff (2002), Chen et al. 

(2004), and the discussion on Page 17 of Steinwart and Christmann (2008). Our data sparsity 

constraint can naturally incorporate the intercept in the regularization, and consequently 

provide desirable theoretical properties without additional assumptions. More discussions on 

this issue are provided in Remark 4 and the proofs of the corresponding theorems in the 

appendix. In Section 5, we study the numerical performance of our method with and without 

|b| penalized, respectively. The results demonstrate that the difference between the two 

settings is small, in terms of their empirical performance. In real data analysis, practitioners 

can choose whether to penalize b or not based on the nature of the problem and the model.

Next, we derive some theoretical properties of our data sparsity method, as well as the 

regular squared norm penalty method.

3. Statistical Theory

In this section, we investigate some statistical theory of our data sparsity method. In 

particular, we study the asymptotic behavior of our data sparsity method and the standard 

penalized quantile regression with the regular squared norm penalty as n →∞ in Section 

3.1. An example is given in Section 3.2 to calculate the rate of convergence of the 

approximation error. We discuss the approximation ability of the RKHS in Section 3.3. We 

also derive some finite sample error bounds in Section 3.4. Note that our main results 

(Theorems 1-9) require only that the noise ε(X) has finite mean for all X, therefore they hold 

in general for both homoscedastic and heteroscedastic cases.
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3.1. Asymptotic Results

Before stating our main results, we introduce some additional notation. Let 

 be the functional space of 

the optimization problem (5). Note that we can define the functional space of the regular 

squared norm penalized method in a similar manner. Let ℱ(∞) = lims→∞limn→∞ℱn(s). 

Next, we define  and f(∞) = arginff∈ℱ(∞) Eρτ(Y − f(X)). 

Here the expectation is taken with respect to the joint distribution of X and the noise ε. Note 

that the conditional 100τ% quantile function ftrue may not belong to ℱ(∞). Now let e(f1,f2) 

= Eρτ(Y − f1(X)) − Eρτ(Y − f2(X)). In the following theorem, we explore the convergence 

rate of e(f̂n,f(∞)) by decomposing it into the estimation error  and the 

approximation error , where . We 

also study the convergence rate of e(f̃n, f (∞)) for the regular method using the squared norm 

penalty.

Theorem 1 For the data sparse L1 method (5), we have e(f̂n, f (∞)) = OP(max(sn−1/2log(n), 

dn,s)), where  is the approximation error between ℱn(s) and ℱ(∞).

For the regular squared norm method with |b| penalized, the estimation error of the solution 

f̃n to

(6)

enjoys the same rate as above.

Remark 2 In Theorem 1, the estimation error converges at the rate OP (sn−1/2log(n)), and 

dn,s approaches 0 as s, n → ∞. Therefore the optimal value of the tuning parameter s is 

roughly determined by sn−1/2log(n) ≈ dns. It can be considered as the trade-off between the 

approximation error and the estimation error.

Remark 3 Theorem 1 is developed for a general separable RKHS such that the kernel 

function K(·, ·) is upper bounded. The results in Section 3 can be refined if one focuses on a 

smaller set of RKHS's that satisfies additional conditions. For example, the Gaussian RKHS 

is commonly used in the literature, and the corresponding theoretical properties are well 

studied (see, for example, Zhou, 2002; Keerthi and Lin, 2003; Steinwart et al., 2006; 

Steinwart and Scovel, 2007; Minh, 2010, and the references within). In Theorem 1, the 

width parameter σ of the Gaussian kernel and the dimensionality of X do not affect the 

convergence rate explicitly. They are both involved in the approximation error dn,s. The 

choice of σ is often data dependent, as described in Section 5. The asymptotic effect of σ is 

studied in many papers, for example Keerthi and Lin (2003). If f is an element in a Banach 

space whose norm is defined to be ‖ f1 − f2‖ = |(Eρτ(Y − f1(X)) − Eρτ(Y − f2(X )))| with 

appropriate definition of limits for Cauchy sequences, then the corresponding theory of dn,s 

can be derived as studied in Cucker and Smale (2002) and Smale and Zhou (2003). In 

Zhang et al. Page 8

J Mach Learn Res. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Section 3.2, we give a simple example in which dn,s can be explicitly calculated and 

vanishes in a rate much faster than the estimation error.

Remark 4 The constraint on |b| in (5) and (6) helps to bound the complexity of ℱn(s) in 

terms of its L2 entropy number. The definition of the L2 entropy number is as follows. Let Q 
be a σ-finite measure on X. One can define the L2(Q) norm of a square integratable function 

f on X to be ‖ f‖L2(Q) = (∫ f2dQ)1/2. An η–net on ℱn(s) is defined to be a set of functions 

= {g1, g2,…} such that for all f ∈ ℱn(s), there exists a g ∈  satisfying ‖ f − g‖L2(Q) ≤ η. For 

any fixed η, the L2(Q) entropy number of ℱn(s) is defined as the logarithm of the cardinality 

of an η–net  on ℱn(s) whose size is the smallest (Van der Vaart and Wellner, 2000). A 

bound on |b| helps to control the L2 entropy number of ℱn(s). See Lemma 14 and its proof in 

the appendix for more details. Our theory can also be valid with some additional 

assumptions if |b| is not penalized. The next corollary discusses a natural generalization of 

our asymptotic results without penalizing |b|, when we impose some assumptions on f0 and 

ε. First, we define

and , ℱ*(∞), and f(*∞) are defined analogously as in Theorem 1. Note that if a random 

variable X is sub-Gaussian with parameter S, then pr(|X| > t) ≤ 2 exp(−t2/S) for large enough 

t.

Corollary 5 Suppose that f0 is uniformly bounded, and the error ε(X) follows a sub-

Gaussian distribution with a common finite parameter for any X. Then the solution  to the 

following optimization

satisfies that , where  is the 

approximation error between  and ℱ*(∞).

In Corollary 5, we impose the assumption that the distributions of error terms εi; i = 1,…, n, 

are all sub-Gaussian, which covers many commonly used distributions. Consequently, the 

probability that any observed yi being significantly away from f0(xi) can be well controlled. 

If the distribution of εi has a heavier tail than sub-Gaussian, and we do not penalize b, the 

convergence rate of the estimation error can be slower than that in Theorem 1. See the proof 

in the appendix for more discussions. Compared to Corollary 5, our asymptotic theory with |

b| in the constraint only requires the noise ε being integrable, hence is more general.

Remark 6 Note that our results in Theorem 1 also apply to the regular squared norm penalty 

method. This suggests that asymptotically, the two methods can both perform well. 
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However, for problems with moderate or small n, asymptotic results may be less useful. In 

Section 3.4, we give bounds on the prediction errors Eρτ(Y − f̂n) and Eρτ(Y − f̃n). In 

particular, we give two such bounds. The first bound works for both the regular method with 

the squared norm penalty and the proposed data sparsity method. The second bound is only 

for the data sparsity method. We show that for small n, the second bound can be better than 

the first one. Therefore, when the true function can be well approximated by functions in 

ℱm(s0) for small m and s0, the data sparsity method can enjoy a smaller prediction error 

bound.

In the next section, we give an example where f0 ∈ ℱm(s0) for some fixed s0 and m, and the 

approximation error dn,s converges to 0 in a speed much faster than OP(n−1/2log(n)). In that 

case, e(f̂n, f(∞)) = Op(n−1/2log(n)).

In the literature, Takeuchi et al. (2006) derived finite sample bounds on the estimation error 

for general quantile regression problems, using the Rademacher complexity technique 

(Mohri et al., 2012). They showed that the estimation error can be upper bounded by the 

Rademacher complexity of the corresponding functional space (plus a small penalty which 

exists only in finite sample problems). under various settings where the Rademacher 

complexity is well studied, one can obtain the asymptotic convergence rate of the estimation 

error accordingly. For example, when we perform learning with a radial basis function 

kernel such that K(·, ·) is upper bounded, or when the functional space has finite VC 

dimensions, one can verify that the corresponding Rademacher complexity converges to zero 

at a rate close or equal to OP(n−1/2). Li et al. (2007) also studied the asymptotic convergence 

rate of e(f̃n, f(∞)) under some assumptions. For example, a bound on the complexity of ℱ in 

terms of the L2 metric entropy was assumed. Our asymptotic theory for quantile regression 

with the data sparsity constraint is more general, as we only use the assumption that the 

RKHS is separable and bounded. This is a very weak assumption and can be satisfied by 

most commonly used kernel spaces. Furthermore, in Section 3.4, we obtain finite sample 

error bounds on the prediction error for our proposed method with data sparsity constraint. 

Our bounds can be directly calculated using the training data and the corresponding tuning 

parameter.

3.2. An Illustrative Example on the Approximation Error

In this section we give an example to calculate dn,s, where we know f0 and the distribution of 

X. The Gaussian RKHS is considered.

For simplicity, let p = 1, τ = 1/2, σ = 1 and X be uniformly distributed on [0, 1]. Moreover, 

assume that ε is symmetric with respect to 0 for all X. Suppose the underlying model is ftrue 

= f0(x) = exp(−x2). One can verify that when s is fixed at 1, 

, where f(1)(x) = exp(−(1 − x(1))2) with x(1) 

being the smallest order statistic of the sample x = (x1,…, xn). Note that the probability 

density function of x(1) is n(1 − x)n−1I[0,1] and . Since the 

largest difference between f0(x) and f(1)(x) occurs at x = 0, 
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. By Taylor's expansion, one can verify that (1 − 

exp(−x2)) ≤ 2x2 for all x ∈ [0,1]. Thus, . 

Hence in this example, dn,s = OP(n−2), which converges to 0 at a much faster rate than 

OP(n−1/2log(n)).

In general, when , where c ∈ ℝ, γj ∈ ℝ, and zj ∈ ℝp are fixed 

points (not the observed data points), we can have s fixed and the approximation error 

vanishes quickly as n → ∞. This is because with growing n, there will be some observed xi's 

that are close to zj; j = 1,…, m, and the approximation error dn,s may converge at a rate faster 

than OP(n−1/2log(n)) with .

3.3. Approximation Ability of ℱ(∞)

We have explored the convergence rate of the estimation errors  and  in 

Section 3.1, and in Section 3.2 we have given an example to illustrate the convergence rate 

of the approximation error . For real applications, it is desirable to study 

the approximation ability of ℱ(∞). In other words, how well f(∞) can approximate ftrue. 

However, this approximation ability depends on the properties of ftrue (i.e., the smoothness, 

etc.), the richness of the RKHS, and the underlying marginal distribution of X. In the 

literature of RKHS learning, Steinwart and Scovel (2007) studied the approximation ability 

of the Gaussian RKHS for support vector machines. In this section, we provide a discussion 

on this issue for quantile regression with a general RKHS. We measure such approximation 

ability by A(∞) := E (ρτ (Y − f(∞))) — E (ρτ (Y − ftrue)). We first show that if ftrue is a 

bounded piecewise step function, an upper bound on A(∞) for the Gaussian kernel learning 

can be obtained. This upper bound depends on the marginal distribution of X. In particular, 

when the marginal distribution of X is absolute continuous with respect to the Lebesgue 

measure, the Gaussian RKHS can approximate ftrue arbitrary well. Then, we extend to the 

case where ftrue is a Lipschitz function. Finally, we note that this upper bound can be 

generalized to other kernels satisfying certain conditions.

We begin with the description of ftrue and some further notation. Recall the definition of D, 

and without loss of generality assume D = ℝp. As mentioned above, we assume that ftrue is a 

bounded step function. In particular, assume ftrue = ai on Di, where ai is a constant, Di is a 

measurable set in D, and D = ∪Di. Let a > 0 be the upper bound of |ftrue|. Next, for any x ∈ 

Di, define the distance of x to other Dj; j ≠ i as ψx = minj≠idis(x,Dj), where dis(x,Dj) = 

infx′∈Dj ‖x − x′‖ and ‖ · ‖ is the usual Euclidean norm in D. By this definition of ψx, one can 

verify that B(x, ψx) ∈ Di for all x, where B(x, ψx) is the ball centered at x with radius ψx. 

Note that B(x, ψx) is well defined for all x ∈ D. Recall that σ is the kernel parameter of the 

Gaussian RKHS.

The next theorem gives an upper bound on A(∞).
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Theorem 7 Suppose ftrue is a piecewise step function with | ftrue |≤ a for some a > 0. Define 

ψx and A(∞) as above. One has

(7)

where PX is the marginal distribution of X, p is the dimensionality of X and σ is the kernel 

parameter of the Gaussian RKHS.

For fixed p, the upper bound in Theorem 7 depends on ψx, σ and the distribution PX. If PX is 

absolute continuous with respect to the Lebesgue measure, one can verify that A(∞) → 0 

with σ → 0. This means that f(∞) can approximate ftrue arbitrarily well almost everywhere.

Next we consider the case where ftrue is a general bounded measurable function. All 

bounded measurable functions can be approximated arbitrarily well by step functions. 

However, if ftrue is too wiggly or is discontinuous at too many points in D, it cannot be well 

approximated by the Gaussian RKHS functions. For example, when ftrue is discontinuous on 

a dense subset of D, ψx = 0 for all x if the step function is close enough to ftrue. This leads to 

the right hand side of (7) being large. Therefore, we need some smoothness condition on 

ftrue. The next corollary shows that when ftrue is Lipschitz, A(∞) → 0 as σ → 0.

Corollary 8 Assume that ftrue is a bounded Lipschitz function, and PX is absolute 

continuous with respect to the Lebesgue measure on D. Then A(∞) → 0 as σ → 0.

The discussions above have focused on the Gaussian RKHS. We note that it is possible to 

generalize the obtained results to more general RKHS's. For example, using similar 

techniques, one can verify that similar results as in Theorem 7 and Corollary 8 still hold if 

we consider many other radial kernels such as the Laplacian kernel. Other kernels, for 

example the polynomial kernel, may not have such guarantee that functions in the kernel 

space can approximate the underlying function arbitrary well. See the proof of Theorem 7 in 

the appendix for more discussions.

3.4. Finite Sample Error Bounds

The theory in Section 3.1 gives the asymptotic convergence rate of the estimation error. It is 

useful when the sample size is large. In this section, we derive some finite sample bounds on 

the prediction errors Eρτ(Y − f̂n) and Eρτ(Y − f̃n), which can be used to assess the goodness 

of fit of the resulting model, when n is not large. In this section, we focus on the comparison 

between Eρτ(Y − f̂n) and Eρτ(Y − f̃n). In particular, we show that the Rademacher 

complexity for f̂n can be smaller compared to that of f̃n. Hence, the prediction error bound 

for the data sparsity method can be better, and this demonstrates the usefulness of our 

proposed method. Note that Takeuchi et al. (2006) also used the Rademacher complexity to 

bound the estimation error. In this paper, we further consider how to bound the Rademacher 

complexity, especially for the data sparsity method.

To begin with, we introduce the following assumption.

Assumption A: The noise ε is bounded such that |ε| < t for some positive t.
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Theorem 9 Suppose Assumption A holds. Then the solution f̃n to (5) satisfies that, with 

probability at least 1 − δ with a small and positive δ,

Where Zn = 3max(τ,1 −τ)(n−1(2s2+2t2)log(2/δ))1/2 and

Moreover, the solution f̃n to (6) satisfies that, with probability at least 1 − δ,

where Zn is defined as above and

One can see from Theorem 9 that μ for f̂n is much smaller than f̃n. This is because the 

functional space of (5) is smaller than that of (4) (see Lemma 13 in the appendix). The key 

to the proof for f̃n is to control the covering number of the functional space in (4), as in 

Lemma 14. In particular, we study the covering number of a unit ball in ℋ, i.e., {f′: ‖f′‖ℋ ≤ 

1}. On the other hand, the key to the proof for f̂n is that the Rademacher complexity of the 

functional space of (5) is equivalent to the Rademacher complexity of a convex hull of 

functions with 2n + 2 vertices, and the latter enjoys a much better bound compared to the 

Rademacher complexity in (4).

From Theorem 9, one can conclude that when the underlying function can be well 

approximated by a function that has a sparse representation (in other words, the term 

 and s are both small), the prediction error bound for the data 

sparsity method can be better. This observation provides some insight on the usefulness of 

the data sparsity method, which is illustrated by our numerical examples in Section 5, and 

discussed in Section 2.

Notice that our theory is for a general RKHS with very weak assumptions. Thus, the first 

choice of μ, , can be refined if one 

considers specific kernels with additional assumptions, such as the decay rate of the 
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eigenvalues of the corresponding Hilbert-Schmidt integral operator. See, for example, Zhou 

(2002) and Steinwart and Scovel (2007). This can lead to a better bound in Theorem 9. For 

example, with Gaussian kernel learning (including intercepts), an application of the result in 

Zhou (2002) gives μ = 2sn−1/3 + 2p+2p1/2n−1/3 logp/2(n), where p is the dimensionality of X. 

Hence for small p, our μ on f̃n in Theorem 9 can be loose in this case. Nevertheless, one can 

verify that the bound on the data sparsity method is still better than μ = 2sn−1/3 

+ 2p+2p1/2n−1/3logp/2(n). If we use the Gaussian kernel without intercept, then one can verify 

that we have μ = OP(n−1/2) for f̃n (Mendelson, 2003). However, without the intercept, the 

empirical prediction error term might be large for some problems, which can lead to 

suboptimal results.

As a remark, we note that Assumption A ensures that the response variable y is bounded if 

we restrict our consideration to the space ℱn(s). Because we want to bound a finite sample 

error, any large noise in the response data, that is, an observed yi being significantly away 

from its expected value given the predictors, can result in the failure of our bound derived in 

Theorem 9. Assumption A excludes the possibility that this large noise happens. This 

assumption can be removed if one assumes that the tail of the distribution of |ε| satisfies 

certain properties, and similar results can be obtained by modifying the proof of Theorem 9 

accordingly. Corollary 10 gives one possible generalization of the bound in Theorem 9, 

where we make an assumption of the distribution of the error ε. Note that the results in 

Theorem 9 and Corollary 10 can be calculated directly from the data and the tuning 

parameter s we use.

Corollary 10 Suppose that the errors εi; i = 1,…, n follow a common distribution with a 

continuous cumulative distribution function ϕε. For simplicity, assume that the distribution 

of ε is symmetric with respect to 0. Then f̂n and f̃n are controlled by the same finite sample 

bounds as in Theorem 9 except that Zn = 3 max(τ, 1 − τ) (n−1(2s2 + 2t2) log(4/δ)1/2 and 

.

If ε follows a Gaussian distribution, one can verify that for fixed δ, t = OP(log(n)1/2) as n → 

∞. Hence, t diverges in a slow rate. For other error distributions, one can obtain similar 

results by studying the corresponding ϕε, and we omit the details here.

4. Optimization and Tuning Procedure

The numerical optimization of (5) for fixed s and τ can be done by a simple linear 

programming. However, it is often desirable to have the entire solution path of α̂ and b̂ with 

respect to s. For example, when we need to perform a comprehensive tuning procedure for 

choosing the optimal s, the solution path can significantly reduce the computational cost. In 

the literature of penalized quantile regression, Li et al. (2007) developed the solution path 

for (4) with respect to λ, Li and Zhu (2008) derived the solution path for L1 penalized 

quantile regression with linear learning, and Rosset (2009) studied the solution surface with 

respect to both λ and τ in (4). In this section, we first briefly discuss how to derive the 

corresponding solution path with respect to s, then consider how to select the tuning 

parameter s.
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Let K̂ be the n by (n + 1) matrix (1 K), where 1 is a vector of 1 of length n, and let ᾱ = (b, 

α1,…, αn). With b penalized, one can verify that the optimization (5) is equivalent to

where (f(x1),…, f (xn)) = K̃ᾱ. We note that the solution path of this optimization problem 

can be obtained in a similar manner as in Li and Zhu (2008) without an intercept in their 

notation, despite that they only considered linear learning problems. We omit the details 

here.

To illustrate the algorithm, using the data considered in Figure 2, we plot the piecewise 

linear solution path {b(s), α(s)} in Figure 5. Because the entire set {b(s), α(s)} consists of 31 

piecewise linear functions, we only report a subset of {b(s), α(s)} in Figure 5 to make the 

plot clear. Moreover, if we plot the solution path on [0, s1] for large s1, the lines become less 

clear on [0, s2] with s2 ≪ s1. Hence, we only plot the solution path on [0, 20] for a 

demonstration.

Remark 11 As mentioned in Section 2, penalizing |b| helps to guarantee the uniqueness of 

the solution path. In particular, if the intercept is not regularized, when s is large (or 

equivalently, the model is mildly penalized), there exist cases where b is not uniquely 

determined. See Li et al. (2007) and Li and Zhu (2008) for detailed discussions on this issue.

Next, we briefly discuss how to select the optimal tuning parameter s in (5) for a given 

regression problem. Similar to many other penalized techniques, a proper choice of s is 

crucial in practice. In particular, s being too large can lead to an overfitted model, and s 
being too small can lead to an underfitted model. For either cases, the prediction accuracy 

can be low. Here we discuss two commonly used criteria for kernel quantile regression. The 

first criterion is the Schwarz Information Criterion (SIC, Schwarz, 1978; Koenker et al., 

1994), which can be written as

Here df measures the dimensionality of the model, and  balances the model 

complexity and goodness-of-fit. The second criterion is the Generalized Approximate Cross-

Validation criterion (GACV, Yuan, 2006), defined as
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Note that GACV was originally proposed as a stable estimator of the generalized 

comparative Kullback-Leibler distance for the model.

To estimate df, it has been proposed to use the divergence (Nychka et al., 1995; Yuan, 2006)

Li et al. (2007) showed that for the kernel quantile regression with the regular squared norm 

penalty, div(f̂) coincides with the number of interpolated yi's, and this makes the estimation 

of df convenient. The next proposition shows that for the proposed quantile regression with 

the data sparsity constraint, we have the same estimation formula, given the “one at a time” 

condition (Efron et al., 2004).

Proposition 12 Assume the “one at a time” condition holds. For (yi; i = 1,…,n) ∈ ℝn except 

on a set of Lebesgue measure 0 and any fixed s, we have

where ℰ is the set of interpolated yi's.

5. Numerical Examples

In this section, we examine the performance of our proposed method with the data sparsity 

constraint using both simulated and real data sets. We demonstrate the effect of the SIC and 

GACV criteria. As a comparison, we also apply quantile regression in RKHS with the 

regular squared norm penalty, which was previously studied in Takeuchi et al. (2006) and Li 

et al. (2007).

5.1. Simulated Examples

We use three simulated examples to compare the performance of the proposed method with 

the data sparsity constraint and the standard method using the regular squared norm penalty. 

In particular, we study the three examples given in Section 2, which cover two cases. The 

first case (Examples 1 and 2) considers the situation when f0(x) can be well approximated by 

functions of the form  for some fixed zj and γj, where m is a small positive 

integer. For the second case (Example 3), f0 is constructed to have many fluctuations. In this 

situation, f0 cannot be well approximated by functions of the form  with a 

small m.

For each example, we consider two choices of n: moderate (n ∈ [30,50]) and very large (n = 

1000). We show that for Examples 1-2 and n moderate, the sparsely represented model from 

our method using the data sparsity constraint can have better prediction performance. On the 
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other hand, for the case with moderately large n but with the true function being quite 

wiggly (Example 3), or with very large n, the performance of the two methods is comparable 

in terms of prediction accuracy. This is consistent with our theoretical insights.

We explore the performance under various settings of the noise. In particular, for the 

homoscedastic case, we let ε follow the standard normal distribution N(0,1) (homoscedastic 

normal distribution, ho-norm. in Tables 2-7), and the t distribution with degrees of freedom 3 

(t3). For the case when the noise is heteroscedastic, we let ε(x) ∼ U[− ‖x‖2/1.5, ‖x‖2/1.5] 

(heteroscedastic uniform distribution, unif. in Tables 2-7), and ε(x) ∼ N(0, ‖x‖2/3) 

(heteroscedastic normal distribution, he-norm. in Tables 2-7), where ‖ · ‖ 2 is the usual 

Euclidian norm. Then we generate a training data set. Prediction models that correspond to 

different tuning parameters are built on the training data. We select the best tuning 

parameters by minimizing the SIC and GACV criteria on the training data respectively. The 

kernel parameters are also selected via the tuning procedure. We predict on a separate testing 

data set with size 10000, to compare the performances of the two criteria. For the choice of 

quantiles, since ε follows symmetric distributions with respect to 0, we choose τ = 0.1, 0.3 

and 0.5.

As discussed in Section 3, in this section, we will demonstrate that empirically, the effect of 

whether to penalize the intercept b or not is not large. In particular, for all the examples, we 

fit the models of the two compared methods with or without | b| penalized. Note that for the 

regular squared norm method, we include | b| in the penalty as in (6).

To measure the goodness of fit of the model, we calculate the prediction error

and the L1 norm of f̂n − ftrue. This procedure is repeated 1000 times and we report the 

average prediction error, average L1 norm and average model complexity in terms of d f. For 

our data sparsity method, we also report the percentage of non-zero αi's as a measurement of 

how sparse the model is. Note that this percentage for the regular squared norm method is 

always 100%.

The simulation results are reported in Tables 2-7. For brevity, we only report the results for 

certain settings listed in Table 1. The other results are omitted because the general pattern is 

similar. Notice that for the cases where we compare moderate n to large n, we penalize the 

intercept of the data sparsity method, but not the intercept of the regular squared norm 

method, because the numerical difference is small.

Example 1: We generate the data in the same way as in Figure 2. In particular, x is one 

dimensional and follows the uniform distribution between −6 and 6. The underlying f0(x) = 

10exp(−x2). We use n = 30 for the training data. The Laplacian kernel is used.

Example 2: The data are generated in the same way as in Figure 3. In particular, we let x be 

uniformly distributed in [−3,3] × [−3,3]. The underlying true model is given by 
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. There 

are 50 observations in the training data set. We apply the Gaussian kernel for this example.

Example 3: The data are generated similarly as in Figure 4. To be specific, x is one 

dimensional, uniformly distributed in [−7,7]. We have the underlying function f0(x) = 

5sin(2.5x). The training data consist of 30 observations, and the Laplacian kernel is 

employed.

We summarize our findings from the simulation results as follows.

• For Examples 1 and 2 and moderate n, the data sparsity method tends to choose a 

simpler model than that of the square norm penalty, with either the GACV or the 

SIC criterion. Furthermore, the data sparsity constraint performs better than the 

regular squared norm penalty. This implies that functions estimated by the squared 

norm penalty can have potential overfitting because of too many kernel functions, 

as indicated by Figures 2 and 3. For large n, the prediction performance of the two 

methods is comparable, because asymptotically both methods can perform well.

• For Example 3 with moderate n, the data sparsity method tends to choose a model 

with a large number of non-zero αi's. In this case, the model from (5) is not sparse, 

and the two methods perform similarly.

• For large n in all the examples, the data sparsity method can choose simpler 

representation models than the regular method, while keeping similar prediction 

performance. Consequently, the data sparsity method yields a parsimonious model 

that has advantages in terms of computational efficiency and interpretability.

• The SIC always tends to choose a simpler model than the GACV criterion. In these 

examples, GACV overall works slightly better than SIC, for both the data sparsity 

constraint and the squared norm penalty.

• As τ gets closer to 0.5, the performances of the two penalties and the two criteria 

become better, in terms of the L1 norm.

5.2. Real Data Analysis

In this section, we apply our proposed method (5) to several real data sets. In particular, we 

consider 20 data sets studied in Section 5 of Takeuchi et al. (2006), and the well known 

annual salary of baseball players data studied in He et al. (1998), Yuan (2006) and Li et al. 

(2007). The description and a summary table of the first 20 data sets can be found in 

Takeuchi et al. (2006), and we do not repeat it here. For the baseball data, it consists of 

statistics for 263 North American major league baseball players in the year 1986. The 

original data set has 22 predictors and the players' 1987 annual salary as the response, and 

we use the whole data for our analysis reported in Tables 8-10. Furthermore, following He et 

al. (1998), Yuan (2006) and Li et al. (2007), we use two representative predictors from the 

baseball data to perform an illustrative analysis, which is reported in Figure 7. In particular, 

we measure players' performance by the number of home runs in the latest year, and 

measure player's seniority by the number of years played.
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For all real data analysis, the Gaussian kernel is used. For the results reported in Tables 8-10, 

we first standardize the predictors and response to make the results comparable. We split 

each data set into 10 parts of roughly the same size. We choose 1 part as the testing data set, 

and the remaining as the training data. Then we select the best tuning parameter and kernel 

parameter on the training data, and predict on the testing data. We continue to the next 

random split once all the 10 parts have served as the testing data. This random split is 

repeated 100 times for each data set, and we report the average prediction error (Pred) and 

its sample standard deviation (SSD) in Tables 8-10 for τ = 0.1, 0.5,0.9. We only report the 

results where the intercept is penalized for the data sparsity method, but not for the standard 

method with the squared norm penalty. Similar to the results in Section 5.1, the numerical 

difference of whether the intercept is penalized or not is not large. For the results reported in 

Figure 7, we train the model using the entire data set. We then plot the predicted values 

against the two dimensional input space.

Similar to Takeuchi et al. (2006), we perform a two-sided paired-sample t-test to compare 

the prediction performance of the two methods. In Tables 8-10, we can see that for the 

caution, sniffer, GAGurine, topo, CobarOre, and baseball data sets, the performance of the 

data sparsity method is overall better than that of the squared norm penalty method. For 

birthwt, engel, gilgais, and mcycle, the data sparsity method is slightly better. For 

BostonHousing and cpus, the squared norm penalty is slightly better. For the other data sets, 

their performance is comparable. This demonstrates the usefulness of the data sparsity 

method. Moreover, we plot the fitted functions f̂n and f̂n with τ = 0.5 for the mcycle data on 

the left panel of Figure 6. Compared to Figure 3 in Takeuchi et al. (2006), one can see that 

the data sparsity model has less wiggles, and yields a more interpretable result. We also plot 

the fitted functions with τ = 0.1 on the right panel of Figure 6. In this case, one can see that 

f̃n is quite wiggly compared to f̂n.

For the results on the illustrative analysis of the baseball data, from the right panels of Figure 

7 (our data sparsity constraint), we can see that for all players, the income increases with 

their performances. On the other hand, the salary does not necessarily increase with the 

seniority. For many players, especially the high income ones (τ = 0.75), the salary increases 

with the seniority until a golden age, then it decreases. This is consistent with our intuition. 

For the results with the squared norm penalty (the left panels), we can see the same trend. 

However, for the very senior players, because the estimated salary function has fluctuations 

from kernel functions, the salary decreases if their performances increase from 20 to 30. 

This is against our intuition. Therefore, in this data set, our data sparsity constraint performs 

well and gives a good interpretation of the data.

6. Discussion

In this paper, we study the learning problem in a RKHS. In particular, we propose a data 

sparsity constraint that can achieve a parsimonious representation of the resulting learning 

function. Using quantile regression as an example, we numerically show that when the 

underlying function can be well approximated by functions that have sparse representation 

in the corresponding RKHS and n is not large, the data sparsity method can perform better 

than the regular squared norm penalty method.
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For other cases, such as when the true function is relatively difficult to be approximated by 

functions in the RKHS, or when n is large, the data sparsity method can have comparable 

performance as the regular method. Therefore, the data sparsity method can be regarded as 

an alternative penalization method to solve learning problems in RKHS. Moreover, because 

of the sparsity in the kernel representation, the prediction for new data sets can be 

computationally faster. Through theoretical comparisons, we demonstrate that the data 

sparsity method can achieve the same convergence rate of the estimation error, compared 

with the squared norm penalty method. Furthermore, we show that for certain cases, the data 

sparsity method can enjoy a smaller bound on the finite sample prediction error. This helps 

to shed some light on the usefulness of the data sparsity constraint. We also discuss how to 

obtain a solution path with respect to the tuning parameter s.

We would like to point out several open problems for the theory developed in Section 3. The 

technique used to prove Theorems 1 and 9 there does not take into account the fact that the 

“active functional space” of the estimated function is often smaller than the entire ℱn(s). 

Therefore, one possible way to obtain better results is to consider the “localized” covering 

number of the active functional space of (5). See the discussion of localization idea in, for 

example, Bartlett et al. (2005). In that case, we can expect a faster convergence rate and a 

tighter bound on the prediction error. Another open problem is to consider a combination of 

the L2 and L1 penalties, which can be a more general form than the pure L1 or L2 penalty. In 

the literature of linear learning, Zou and Hastie (2005) proposed the elastic net penalty as a 

convex combination of the L2 and L1 penalties. In kernel learning, how to perform such a 

generalization effectively can be an interesting problem to pursue.
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Appendix A. Proof of Theorem 1

In the following proofs, when the technique can be applied to both the proposed data 

sparsity constraint and the regular squared norm penalty, we omit the difference between f̃n 

and f̃n for brevity.

Before giving the proof of Theorem 1, we first introduce a lemma.

Lemma 13 Suppose the RKHS is separable and supX1,X2 K(X1, X2) = 1. Then 

 implies .

Lemma 13 indicates that a bound on  is a stronger constraint than the usual squared 

norm constraint. Hence the effect of our data sparsity penalty is two fold: control the 

complexity of f and impose a soft threshold to gain data sparsity. Lemma 13 helps to bound 

the covering number of the functional class in Lemma 14.
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Proof of Lemma 13: For any  with , we have that 

, because K(·, ·) 

≤ 1.

To prove Theorem 1, note that ρτ(y — f) ≤ |y — f|. Hence in the following arguments, we 

can consider the loss L(a, b) = |a — b| instead of the check function. Recall that the 

definition of  is . Define , 

and  = {gf : f ∈ ℱn(s)}.

First we provide a lemma that controls the complexity of  in terms of its covering number. 

Notice that this technique can also be applied to the regular squared norm method, therefore, 

the result in Theorem 1 is also valid for the regular method that penalizes |b| (or make 

additional assumptions to avoid this penalty on |b|). Before that we introduce some further 

notation. Let TX be the empirical measure of a training set ((x1,y1),…,(xn,yn)), and the L2 

norm be defined as . For any η > 0, define ℳ to be a η-

net of a class of function ℱ if, for any f ∈ ℱ, there exists m ∈ ℳ such that ‖m — f‖L2(TX) ≤ 

η. Now let the L2(TX) covering number N(η, ℱ, L2(TX)) be the minimal size of all possible 

η-nets.

Lemma 14 For η > 0 small enough and C0 = 210, we have that

Proof of Lemma 14: The proof consists of two steps. The first step is to bound the entropy 

number when there is no intercept in the regression function. The second step is to add the 

intercept into consideration, and bound the corresponding entropy based on the results 

obtained in the first step.

Here we focus on the covering number of ℋ,b := {(2s)–1 L(·,f) : f ∈ ℱn(s)}, because ℋ,b 

has the same covering number as . To that end, we first calculate the covering number of 

. Define

Define  to be the empirical measure of the set (x1,…,xn). For any 

. Hence, an 

 net on  naturally introduces an L2(TX) net on Gℋ, and furthermore the L2(TX) 

covering number of ℋ is upper bounded by the  covering number of . Moreover, 
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by Lemma 13, ‖(2s)−1 f′‖ℋ ≤ 1. Thus, , where Bℋ is the unit ball in ℋ. Hence, we 

only need to bound . This can be done by a similar argument as in 

Theorem 2.1 of Steinwart and Scovel (2007). In particular, from analogous arguments as 

those that lead to (21) in Steinwart and Scovel (2007), we have that 

, where one can choose C0 = 210 (Carl and 

Stephani, 1990). In one words, we have that 

. Note that Theorem 2.1 of Steinwart and Scovel (2007) considered only the Gaussian 

RKHS, however the proof of the entropy bound for p = 2 in their notation only requires that 

the RKHS is separable.

We proceed to bound the entropy number of ℋ,b. Define . By 

similar arguments as above, . Suppose ″ is a 

minimal -net of . One can verify that the union  is an η-net of , 

where S is the smallest integer that is larger than . To see this, let  be an 

arbitrary point in , and , with  being the corresponding point 

in ″ that has an  distance to  smaller than , and  for some integer i 

∈ [–S,S], such that . Now the  distance between  and  is

where the integral is taken with respect to the counting measure on . Therefore, the 

covering number of  is less than . Consequently, the covering 

number of ℋ,b is upper bounded by . The desired result follows when η 

is small enough.

Proof of Theorem 1: The outline of the proof is as follows. First, we define M = 

√2n–1/2log(n). Notice the difference between M (a number) and ℳ (a functional space used 

for the definition of the entropy number introduced just before Lemma 14). Then we bound 

the probability P(e(f̄n, f(∞)) ≥ 8sM + dn,s). In particular, we show that 

, then apply the Borel-

Cantelli Lemma to obtain the result.

For M = √2n−1/2 log(n), we first verify that for large n, this M satisfies
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(8)

where ηn,0 > 0 is chosen to satisfy

(9)

and C0 = 210 is a constant as in Lemma 14. From (9), one can verify that ηn,0 goes to 0. Now 

(8) is equivalent to . Note that  is of the order 

OP(log(n))2. The order of  is less than that of , which is 

, and . Thus with n large enough, (8) holds.

Now we prove . We have, by 

definition of dn,s,

Then because , we have

Here P* denotes the outer probability, and the expectation is taken jointly with respect to the 

distribution of X and the noise. In the last inequality, for brevity we have the empirical 

process gf → Pngf – Pgf, where gf ∈ G, Pgf = ∫ gf and .

Now we show that .

This part of proof follows a similar line as Theorem A.2 in Wang and Shen (2007). There are 

two steps involved. The first step is to sample n observations without replacement from N = 

Zhang et al. Page 23

J Mach Learn Res. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2n instances, which are i.i.d. samples from P, and let (W1,…, WN) be uniformly distributed 

on the set of all permutations of 1,…,N. Define , and 

, where δ(X)i is the Dirac measure at the observation Xi. Then we can 

bound the LHS of the required inequality by Lemma 2.14.18 in Van der Vaart and Wellner 

(2000),

(10)

where P|N is the conditional probability given N observations.

The second step is to bound . We apply the chaining 

technique here. Let ηn,0 > η1>· · · > ηT > 0 be a sequence of positive numbers to be 

determined later on. Let q be the minimal ηq-net for  with respect to the L2(TX) norm. For 

each q, let πqg = argminh∈ q ‖g – h‖L2(TX). That means, πqg is the closest point to g within 

q. By definition, | q| = N(ηq, ,L2(TX)), and ‖πqg − g‖L2(TX) ≤ ηq. Hence, decompose 

 into
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where Tχ ≤ M/16. Next, we bound P1, P2 and P3 individually.

For P3, one can verify that P̃
n,Nf ≤ 2PN f for any non-negative f. Note that we have ((P̃

n,N – 

PN)z)2 ≤2(P̃
n,Nz2 +PNz2) for any z. Thus, 

. This yields P3 = 0 if we 

choose .

For P1, note that 0 ≤ π0gf ≤ 1 for any gf ∈  because  is scaled. By Hoeffding's inequalities 

for sums of bounded random variables (Hoeffding, 1963), 

. Thus by assumption (9) and 

Lemma 14,

For P2, if , then let ηq = ηn,0;q = 1,…,T, and we have P2 = 0 by similar 

argument as in the P3 part discussed above. So suppose . Note that 

. By Massart's 

inequality from Lemma 2.14.19 in Van der Vaart and Wellner (2000), we have 

 with 

. So,

Let ηq = 2−qη;q = 1,…,T, and let T be the greatest integer that does not exceed 

. Then let . By assumption (8), we can verify that Tχ ≤ M/16 as 

satisfied. Because when η is small enough, , and this leads to
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Thus, . The desired result follows after we 

take expectation with respect to the distribution of N observations. We have proved 

.

Finally, observe that nM2 = 2(log(n))2 > 2log(n). We have 

. The desired result in Theorem 1 then follows from 

Borel-Cantelli Lemma.

Appendix B. Proof of Corollary 5

The key to the proof is to show that with a high probability, the estimated b would be 

bounded in a range. Then we can apply the same technique as that in the proof of Theorem 1 

to prove the desired result.

Without loss of generality, assume |f0(X)| < ζ for a fixed ζ > 0. Moreover, for simplicity, we 

assume that ε(X) follows a common sub-Gaussian distribution with c.d.f. Φε. The 

generalization to heteroscedastic cases is straightforward, because we are only concerned 

with the tail probability pr(|ε(X)| >t). Next, for a small positive number δ, define 

. One can verify that with probability at least 1 − δ/2, all the 

errors εi; i = 1,…,n are in [−t*, t*]. Therefore, for any τ, we have that with probability at 

least 1 − δ/2, |b| ≤ ζ + t*. This is because the estimated function cannot be smaller (or larger) 

than all the observations. Hence, letting s* = s + ζ + t*, M* = √2n−1/2 log(n)/t* and using 

similar techniques as that in the proof of Theorem 1, we have 

. Let δ converge to 

zero at the rate OP(n−2 log(n)). The last step is to check that (8) and (9) are both true with 

our new choice of M*. Because we assume that Φε is the c.d.f. of a sub-Gaussian distribution 

with a fixed parameter, one can verify that t* diverges at a rate slower than OP(log(n)). 

Hence, (8) and (9) remain valid, and the Borel-Cantelli Lemma as in the final step of the 

proof of Theorem 1 holds. This completes the proof.

Appendix C. Proof of Theorem 7

The proof uses a similar technique as Theorem 2.7 in Steinwart and Scovel (2007). Consider 

the function

(11)

where C is a constant that depends only on σ and p and is to be determined later on. One can 

verify that V(x) ∈ ℱ(∞) (Steinwart et al., 2006). Hence,
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Therefore, one only needs to bound EPX (ρτ(V – ftrue)). We have

where the first inequality is because ftrue(x′) + a is lower bounded by 0, and on B(x, ψx) the 

function ftrue is constant. Here one chooses C such that P′ is the measure of a spherical 

Gaussian in D (see the definition of spherical Gaussian in, for example, Steinwart, 2002). By 

the inequality (3.5) on page 59 of Ledoux and Talagrand (1991), 

, and consequently we have that on Di,

An analogous derivation on −ftrue and −V gives

Therefore

This completes the proof.

Notice that the core part of the proof is at the inequality (3.5) on page 59 of Ledoux and 

Talagrand (1991). For Gaussian kernel (and other radial kernels), the probability P′(|u| ≥ ψx) 

vanishes as σ → 0. However, for other kernels this may not be true. Take the polynomial 

kernel as an example. One can verify that when |x1 − x2| is large, K(x1, x2) is large, and this 

leads to P′(|u| ≥ ψx) being large. Therefore, the result here does not hold true for general 

RKHS's.
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Appendix D. Proof of Corollary 8

Without loss of generality, let the Lipschitz constant of ftrue be 1. In this proof, let ε be a 

small positive number, instead of the noise as Y = f0 + ε. We first consider the 

approximation of V to ftrue on [0, 1]p, where V is defined as in the proof of Theorem 7. 

Because [0, 1]p is a compact set, there exists a finite set of B(xj, ε); j = 1,…,J that covers [0, 

1]p. Here B(xj, ε) is a ball with center at xj and radius ε, and J is a positive integer. Based on 

B(xj, ε); j = 1,…,J, one can construct sets Sxj ⊂ B(xj, ε); j = 1,…,J such that Sxi and Sxj are 

non-overlapping for i ≠ j, and . On each Sxj, one can verify that

Now on Sxj, define f̅true = ftrue(xj). We have that

(12)

By Theorem 7 and the discussion thereafter, the first part on the right hand side of (12) goes 

to 0 with σ → 0, and the second part is upper bounded by ε. Let ε → 0 and this proves that V 
can approximate ftrue arbitrarily well on [0, 1]p. For approximation on D, notice that D can 

be decomposed into countably many sets such as [0,1]p, and similar argument as above 

proves the corollary.

Appendix E. Proof of Theorem 9

To prove Theorem 9, we need to introduce the Rademacher variables (see, for example, 

Bartlett and Mendelson (2002), Koltchinskii and Panchenko (2002), Shawe-Taylor and 

Cristianini (2004), Bartlett et al. (2005), Koltchinskii (2006), Mohri et al. (2012) and the 

references therein). With a little abusing of notations, let σi; i = 1,…,n be i.i.d. random 

variables that take 1 with probability 1/2, and –1 with probability 1/2. Denote by S a sample 

of (xi, yi); i = 1,…,n, i.i.d. from the joint distribution of X and Y. Recall the definition of 

ℱn(s) in Section 3.1. With S fixed, we define the empirical Rademacher complexity of the 

function class ℱn(s) as

where Eσ represents the expectation with respect to σ = (σ1,…,σn). Moreover, let the 

Rademacher complexity of ℱn(s) be

where ES is the expectation with respect to the distribution of S.
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The proof of Theorem 9 follows directly from Lemmas 15, 17 and 18. Lemma 15 bounds 

Eρτ(Y − f̂n) or Eρτ(Y − f̃n) in terms of the sum of its empirical measurement, the 

Rademacher complexity of the function class ℱn(s), and a penalty term on δ, where δ is the 

small probability that the bound fails. Lemma 17 and Lemma 18 bound the Rademacher 

complexity. In particular, Lemma 17 provides the bound with 

 that works for both the regular squared norm 

method and the data sparsity method. This is because the complexity bound of ℱn(s) is from 

Lemma 14, which holds for both methods. As discussed in the main text, we provide another 

bound that only works for the data sparsity method in Lemma 18, which leads to 

.

Lemma 15 Define Rn(ℱn(s)) and R̂
n(ℱn(s)) as above. Suppose Assumption A holds. With 

probability at least 1−δ,

(13)

where Tn(δ) = max(τ,1 − τ) (n−1(2s2 +2t2)log(1/δ))1/2. Moreover, with probability at least 

1−δ,

(14)

Moreover, (13) and (13) hold for f̃n.

Proof of Lemma 15: We divide the proof into three parts. In the first part, we bound the left 

hand side of (13) in terms of its empirical estimation and the expectation of their supremum 

difference, by the McDiarmid inequality (McDiarmid, 1989). The second part bounds the 

expectation of the supremum difference from the first step by the previously defined 

Rademacher complexity with a symmetrization technique. In the third part, we bound the 

Rademacher complexity by its empirical version. In this proof, we focus on f̂n, as the proof 

for f̃n is the same.

We begin the proof by introducing some notation. For a given sample S, let

Define  to be another sample from the joint 

distribution of X and Y. Notice that the difference between S and S(i,x) is only on the x value 

of their ith pair. Similarly, define  with the y 
values in the ith pair differ. Then we have
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(15)

For simplicity, we consider only the case where there exists a measurable function fS ∈ 

ℱn(s) that achieves the supremum of ϕ(S). Note that the case of no function achieving the 

supremum can be treated similarly, with only minor modification on the proof, and the 

details are omitted. Substitute fS in (15) and after some calculation, we have that

Similarly, one can verify that . Hence, by the 

McDiarmid in-equality, for any z > 0, 

. Therefore, with 

probability at least 1 – δ, ϕ(S) − Eϕ(S) ≤ Tn(δ). This proves the first part of the lemma.

In the second step, we bound E{ϕ(S)} by the Rademacher complexity Rn(ℱn(s)) using a 

symmetrization technique. To this end, define  as a duplicate 

sample of S with size n, and assume the distribution of S′ is the same as S. Recall the 

definition of ES. Moreover, notice that

and

Hence, with Jensen's inequality and the definition of σ, we have
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This completes the proof of the second step.

The third step bound Rn(ℱn(s)) by the empirical counterpart R̂
n(ℱn(s)). This part of proof is 

similar to that of the first part, in the sense that we apply the McDiarmid inequality on 

R̂
n(ℱn(s)) and its expectation Rn(ℱn(s)). One cam verify that we then have with probability 

at least 1 − δ, Rn(ℱn(s)) ≤ R̂
n(ℱn(s)) + Tn (δ).

The proof of Lemma 15 is thus completed, once one combines the results in Steps 1-3 and 

replace δ by δ/2.

The next lemma, Lemma 17, bounds Rn̂(ℱn(s)) with the data and tuning parameter that we 

use. It employs the result obtained in Lemma 14, and is a direct application of the “η-net” 

idea (Van der Vaart and Wellner, 2000). Because the result in Lemma 14 can be applied to 

both the regular squared norm method and the data sparsity method, so does the result 

obtained in Lemma 17. Before Lemma 17 and its proof, we first introduce Hoeffding's 

Inequality.

Proposition 16 (Hoeffding's Inequality). Let X be a random variable with mean 0 and range 

in [a, b]. Then for any fixed z > 0, E(exp(zX)) ≤ exp(z2(b − a)2/8).

Lemma 17 The empirical Rademacher complexity R̂
n(ℱn(s)) for f̃n satisfies that

Zhang et al. Page 31

J Mach Learn Res. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proof of Lemma 17: Let . We consider the following function hf(·) = (2s)−1 

ρτ(f − ·), and the corresponding class ℋR = {hf : f ∈ ℱn(s)}. From the proof of Lemma 14, 

one can verify that the entropy number of ℋR is bounded by that of , because the check 

function is upper bounded by L(f, ·) defined after the proof of Lemma 13. Next, we construct 

the smallest η-net of ℋR, , such that for all f ∈ ℱn(s), there exists an element g  ∈  with 

the L2(TX) distance between f and g  smaller than η, for any arbitrary empirical measure 

TX. Therefore, one can verify that

Here “f, g  close” means that the L2(TX) distance between f and g  is smaller than η. 

Consequently, we have that R2 is bounded by η, by Hölder's Inequality.

Now we bound R1. To this end, let z be a positive number to be determined later. From 

Jensen's Inequality, we have

Observe that Eσi [σiρτ(g (xi) − yi)] = 0, and

Therefore, by Hoeffding's Inequality, we have

Equivalently, we have . Choose 

, and we have
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or equivalently,

Combine the bounds of R1 and R2, choose η = n−1/4, and the results follows.

Next, we focus on the data sparsity method. In Lemma 18 we would prove that the empirical 

Rademacher complexity of the functional space in (5) can be smaller than that of (4). As we 

will see, the technique we use only works for the data sparsity constraint. This bound then 

leads to another finite sample bound on the prediction error, namely, . As 

discussed in the main text, when n is small or moderate, this bound can be much better than 

the one derived from Lemma 14.

Lemma 18 The empirical Rademacher complexity R̂
n(ℱn(s)) for f̂n in (5) satisfies that

Proof of Lemma 18: We first consider the empirical Rademacher complexity of the 

functional space ℱn(s) without taking the check loss function into consideration. To this end, 

let us define . Recall the definition of ᾱ from 

Section 4, and define the augmented vector K̃
i = (1, Ki) for i = 1,…,n, where Ki is the ith row 

of the gram matrix K. We can now rewrite R̂
f(ℱn(s)) as

where ‖ · ‖∞ is the L∞ norm, K̃
i(j) is the jth element of K̃

i, and σ′ is an independent 

Rademacher variable. Notice that the new functional space defined by

consists of 2n+2 elements.

Next, apply the same technique as we used in the proof of Lemma 17 to bound R1, we can 

show that
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The rest of the proof is to apply Talagrand's lemma (Lemma 4.2 on page 78 in Mohri et al., 

2012). In particular, as the check loss function is max(τ, 1 − τ)-Lipschitz, we have

This completes the proof.

Appendix F. Proof of Corollary 10

With the t defined in Corollary 10, one can verify that with probability at least 1 − δ/2, all 

the errors εi; i = 1,…,n are in [−t, t]. Conditioning on this, the claim follows from Theorem 

9.

Appendix G. Proof of Proposition 12

The proof follows directly from that of Theorem 1 in Li et al. (2007) and is omitted.
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Figure 1. 
The left panel demonstrates the contour of the regular squared norm penalty αTKα = 1 with 

K = [(1,0.3)T (0.3,1)T]. The right panel plots the contour of our data sparsity constraint |α1| + 

|α2| = 1. For the regular squared norm penalty, there is no singularity at the intersections of 

the contour and the axes (α1 = 0, α2 = 0), thus it does not encourage sparsity in the estimated 

kernel function coefficients. In contrast, the data sparsity penalty has singularity at the 

intersections and is able to achieve sparsity in the estimated kernel function coefficients.
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Figure 2. 
Plot of the fitted f̃n and f̂n (solid lines) in a simulated example with n = 30 and τ = 0.5, using 

the regular squared norm penalty (left panel) and the proposed data sparsity constraint (right 

panel). The kernel used is the Laplacian kernel. The error ε follows U(−2,2). The best tuning 

parameters (λ, s and the kernel parameter) are selected by the GACV criterion (Yuan, 2006). 

The dotted line is the true regression function. Note that as the regular squared norm does 

not have sparsity in the estimated kernel function coefficients, the estimated regression 

function has quite a few wiggles which degrades the prediction performance. On the other 

hand, our data sparsity method performs remarkably well in this example.
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Figure 3. 
Panel (a) displays the underlying function f0(X), which has a sparse representation in the 

Gaussian RKHS. Panel (b) shows the estimated regression function f̃n from (4), using a 

simulated example of size 50 with Gaussian RKHS and the regular square norm penalty. 

Panel (c) shows the estimated regression function f̂n from the same example with our data 

sparsity constraint in (5). The error ε follows N(0,1), and we use τ = 0.5. We select the best 

tuning parameters (λ, s and the kernel parameter) over a grid of candidates by the GACV 

criterion (Yuan, 2006). On Panel (b), one can see that there are fluctuations in f̃n which 

degrade its prediction performance. On the other hand, f̂n from our data sparsity method has 

less fluctuations.
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Figure 4. 
The left panel shows the fitted f̃n from (4) with a simulated example of size 30 and the 

Laplacian kernel for τ = 0.5. The right panel shows the fitted f̂n from (5) using the same 

sample data and τ. The error follows N(0,1). The best tuning parameters (λ, s and the kernel 

parameter) are selected by minimizing the GACV criterion (Yuan, 2006). Because the 

underlying function is quite wiggly, a sparse representation in this case cannot perform well. 

However, by allowing a large s, the data sparsity constraint yields a model that is not 

“sparse”. Therefore one can see that the two methods give comparable performance.
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Figure 5. 
A subset of the solution path {b(s), α(s)} as a function of s. Notice that for brevity, we only 

plot five α̂
i(s) 's and the intercept b, and we restrict s such that s ∈ [0,20] to illustrate the 

solution path. The solid line corresponds to b(s).
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Figure 6. 
The estimated functions for the mcycle data with τ = 0.5 and τ = 0.1. The dashed lines 

correspond to f̃n using the squared norm penalty method, and the solid lines correspond to f̄n 

using the data sparsity method. Note that Takeuchi et al. (2006) also plotted the estimator for 

the squared norm penalty in their Figure 3. Compared to the dashed lines, the solid lines on 

both panels have less fluctuations especially when the predictor value is large, and are more 

interpretable. (a) The fitted regression functions with τ = 0.5 in the (b) The fitted regression 

functions with τ = 0.1 in the mcycle data. mcycle data.
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Figure 7. 
Estimated salary for the Baseball data using the number of home runs and the number of 

years played as the predictors.
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Table 1

Summary of the settings for the reported simulation results.

Example τ Compare

Ex 1 τ = 0.1 Penalize b or not

τ = 0.3 Moderate or large n

Ex 2 τ = 0.3 Penalize b or not

τ = 0.5 Moderate or large n

Ex 3 τ = 0.5 Penalize b or not

τ = 0.1 Moderate or large n
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Table 11

Important notation introduced in Section 2.

Section 2 Methodology

x, X Predictor variable

y, Y Response

n Number of observation

p Dimensionality of x

τ Quantile level

ε(·) Noise, may depend on x

f0(·) Defined as Y = f0 +ε

D Domain of f0

ρτ(·) The check function

ftrue The population minimizer of the check function

J(·) Penalty on the regression function

λ, s Tuning parameters

ℱ Functional class

ℝ The real line

ℋ A RKHS

‖·‖ℋ The norm in the RKHS ℋ

b Intercept

f′ Regression function in ℋ without an explicit intercept

f Regression function in ℋ ⊕ ℝ

K(·,·) The kernel function

K The gram matrix

α = (α1,…,αn) The kernel function coefficients

f̂n The estimated regression function using the proposed data sparsity constraint

f̃n The estimated regression function using the squared norm penalty
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Table 12

Important notation introduced in Section 3.

Section 3 Statistical Theory

ℱn(s)

ℱ(∞) lims→∞limn→∞ ℱn(s)

arginff∈ℱn(s) Eρτ(Y − f(X))

f(∞) arginff∈ℱn(s) Eρτ(Y – f(X))

e(f1, f2) Eρτ(Y − f1(X)) – Eρτ(Y − f2(X))

dn,s

, the approximation error between ℱn(s) and ℱ(∞)

The estimated function using the data sparsity constraint, without penalty on|b|

‖f‖L2(Q) (∫ f2dQ)1/2, the L2(Q) norm of f

A(∞) E(ρτ(Y − f(∞)) − E(ρτ(Y −ftrue))

ai Constants

Di A partition of D, and ftrue = ai on Di

a Upper bound on |ftrue |

dis(x,Dj) The distance between the point x and the set Dj

ψx minj≠i dis(x,Dj)

B(x,ψx) The ball centered at x with radius ψx

σ Kernel parameter for Gaussian/Laplacian kernels

PX The marginal distribution of X

t The upper bound of |ε| in Assumption A

δ A small probability

μ

Φε The common cumulative distribution function of ε
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Table 13

Important notation introduced in the Appendix (Part 1).

Appendix

L(a,b) |a−b|

gf(·)

, a scaled empirical process

{gf:f∈ℱn (s)}

TX The empirical measure of a training set

‖f|L2(Tx)

ℳ A η-net with respect to the ‖ · ‖L2(TX) distance

N(η, ℱ, L2(TX) The η-covering number of ℱ with respect to the ‖ · ‖L2(Tx) distance

M √2n−1/2log(n)

ηn,0 A number depending on n, chosen to satisfy (9)

C0 210, a large constant

Pngf

Defined as 

Pgf ∫gf

P* The outer probability

N N = 2n

(W1,…,WN) A permutation of 1,…,N whose distribution is uniform

δ(X)i Dirac measure at the observation Xi

P̃n,N

PN

P|N The conditional probability given N observations

T A positive integer

η1,…,ηT A sequence of T positive numbers

q ηq-net of 

πqg The projection of g on q

P1,P2,P3 Three probabilities to be bounded

χ A number such that Tχ ≤ M/16

Defined as 

ℋ,b {(2s)–1 L(·, f): f ∈ ℱn(s)}

ℋ

J Mach Learn Res. Author manuscript; available in PMC 2016 April 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 58

Appendix

The empirical measure of the set (x1,…,xn)

Bℱ The unit ball in ℱ

{(2s)–1f : f ∈ ℱn(s)}

″

A minimal η/2-net of 
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Table 14
Important notation introduced in the Appendix (Part 2)

Appendix

ζ Upper bound on f0. Assumed in the proof of Corollary 5.

t*

s* s* = s+ζ + t*

M* M* = (√)2n −1/2log(n)/t*

V(x)

C A constant such that V(x) can be used to estimate ftrue

P′ The measure of a spherical Gaussian in D

f̃true
A piecewise constant function used to approximate ftrue

σ = (σi; i = 1,…,n) A set of n Rademacher random variables, where P(σi = 1) = 1/2 and P(σi = − 1) = 1/2

S A sample of (x1,y1),…,(xn,yn) i.i.d. from the joint distribution of X and Y

R̂n(ℱn(s))

Rn(ℱn(s)) ESR̂n(ℱn(s))

Tn(δ) max(τ, 1 − τ)(n−1(2s2 + 2t2)log(1/δ))1/2

ϕ(S)

S(i,x)

, the difference between S(i,x) and S is only on the x value of their ith pair

S(x,y)

R

hf(·) (2s)−1ρτ(f −·)

ℱR {hf: f∈ℱn(s)}

The smallest η-net on ℱR

g The projection of f on 

R1

R2

Λ

(Λ1,…, Λ2n), convex combination parameters of any element in 

F1,…,Fk i.i.d. random elements with pr(F1 = ei) = Λi; i = 1,…,2n
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Appendix

F̄ The average of F1,…,Fk

J Mach Learn Res. Author manuscript; available in PMC 2016 April 28.


	Abstract
	1. Introduction
	2. Methodology
	3. Statistical Theory
	3.1. Asymptotic Results
	3.2. An Illustrative Example on the Approximation Error
	3.3. Approximation Ability of ℱ(∞)
	3.4. Finite Sample Error Bounds

	4. Optimization and Tuning Procedure
	5. Numerical Examples
	5.1. Simulated Examples
	5.2. Real Data Analysis

	6. Discussion
	Appendix A. Proof of Theorem 1
	Appendix B. Proof of Corollary 5
	Appendix C. Proof of Theorem 7
	Appendix D. Proof of Corollary 8
	Appendix E. Proof of Theorem 9
	Appendix F. Proof of Corollary 10
	Appendix G. Proof of Proposition 12
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Table 10
	Table 11
	Table 12
	Table 13
	Table 14

