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1 Introduction

Double field theory (DFT) [1–4] has grown out of a desire to better understand T-duality

by using a formalism in which it is made manifest [5–8]. It does so at the level of the target-

space action by doubling the number of coordinates and introducing the generalised Lie

derivative that generates the local symmetries of the theory. For the toroidal case the extra

coordinates can be understood from string field theory [1] as being dual to momenta and

winding modes. However, the physical fields of the theory do not depend on all coordinates.

They are subject to a constraint, known as the “section condition”, which restricts their

dependence to a maximal isotropic subspace of the coordinates [1, 5]. Using this constraint,

the action of double field theory reduces to that of type II supergravity, the generalised Lie

derivative generates diffeomorphisms and B-field gauge transformations and the resulting

formulation looks reminiscent of generalised geometry [9–11].

The generalisation of double field theory to U-dualities, known as exceptional field

theory (EFT) [12–26],1 uses an “extended coordinate space” which grows quickly with the

rank of the U-duality group, Ed(d). The closure of its algebra of generalised diffeomor-

phisms also requires a section condition [13, 16, 28] which in turn restricts the coordinate

dependence of physical fields. This condition has two inequivalent solutions [17, 29] and

depending on which one is used, the action reduces to that of 11-dimensional supergrav-

ity or type IIB supergravity. With the section condition, the resulting formulation now

resembles exceptional generalised geometry [28].

One of the interesting problems in the field is to determine what the geometry underly-

ing the extended space is. This is pertinent if one wants to better understand non-geometric

flux compactifications for which de Sitter no-go theorems may not apply [30–35]. For ex-

ample, one may wish to generalise the powerful results of [36, 37] to include non-geometry.

Interesting progress has been made on this front by studying the exponentiation of the

local symmetries of the theories [38–46]. One hope is that these transformations can be

used to patch the extended spaces. However, these proposals are either defined on section,

as in [42, 45, 46] or already make use of a flat structure [38–41, 44].

Here we try and understand the extended space as a manifold with reduced structure

group. We make this explicit for the case of the SL(5) EFT relevant to seven-dimensional

compactifications and show that one can define a “curved” exceptional field theory for

any 10-dimensional manifold with GL(5)+-structure,2 not just for locally flat GL(5)+-

structures, as would be required for the usual EFT formulation. Our formulation resembles

that of “DFT on group manifolds” [47–49], which we will henceforth refer to as DFTWZW.

However, the crucial difference is that we do not require the vielbein to be the Maurer-

Cartan form of the gauge group described by the background. The work here also shares

many ideas with [50, 51], whilst extending them to EFT.

We will begin with a review of the essential features of SL(5) exceptional field theory in

section 2 before discussing the geometry of 10-dimensional manifolds with GL(5)+-structure

in section 3. We define the relevant GL(5)+-structure, use it to construct the generalised Lie

1See also [27] for independent but related work.
2GL(5)+ ' SL(5)× R+ in our notation.
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derivative and show that requiring the algebra to close leads to a set of constraints, including

the section condition. We also discuss the case when the GL(5)+-structure is locally flat and

show how this case reduces to the usual EFT. In section 4 we develop the formalism in order

to describe the tensor hierarchy of the EFT, closely following [52, 53]. Finally, in section 5

we give the full action, including the “external” seven-dimensional fields, for any GL(5)+-

structure, not just locally flat ones. The resulting theory is manifestly coordinate invariant,

as well as invariant under generalised diffeomorphisms and external diffeomorphisms. We

discuss background-dependence and comment on further work in section 6.

2 A brief review of SL(5) exceptional field theory

Let us briefly review exceptional field theory, focusing on the SL(5) EFT [12, 13, 26, 29]

which, for example, can be used to describe seven-dimensional maximal gauged supergrav-

ities. The theory has 10 “extended coordinates” Y [ab] and seven “external coordinates” xµ,

with a, b = 1, . . . , 5 and µ = 1, . . . , 7. The bosonic degrees of freedom of the internal sector

are described by a generalised metric

Mab ∈ SL(5)/SO(5) , (2.1)

which can be parameterised by a four-dimensional metric and three-form corresponding

to the internal sector of 11-dimensional supergravity, or by a three-dimensional metric, a

doublet of two-forms and 3 scalars, the internal sector of IIB [29].

Just as the bosonic degrees of freedom can be unified in the generalised metric Mab,

its symmetries, corresponding to diffeomorphisms and p-form gauge transformations, are

combined into the generalised Lie derivative

LΛV
a =

1

2
Λbc∂bcV

a +
1

5
V a∂bcΛ

bc − V b∂bcΛ
ac . (2.2)

Here the parameter of generalised diffeomorphisms, Λab, has weight 1
5 under the generalised

Lie derivative, so that under a generalised Lie derivative it transforms as

LΛ1Λab2 =
1

2
Λ1

cd∂cdΛ
ab
2 +

(
2

5
+

1

10

)
Λab2 ∂cdΛ

cd
1 − Λcb2 ∂cdΛ

ad
1 − Λac2 ∂cdΛ

bd
1 . (2.3)

In order for these transformations to close into an algebra

[LΛ1 ,LΛ2 ]V a = L[Λ1,Λ2]EV
a , (2.4)

where the E-bracket is the antisymmetrisation of the generalised Lie derivative, i.e.

[Λ1,Λ2]E =
1

2
(LΛ1Λ2 − LΛ2Λ1) , (2.5)

one imposes the so-called “section condition”

∂[abf ∂cd]g = 0 , ∂[ab∂cd]f = 0 , (2.6)

– 3 –
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when acting on any pair of fields f and g. There are two inequivalent solutions (i.e. not

related by SL(5) transformations) to the section condition [17, 29], given by

(i) ∂ij = 0 , where i = 1, . . . , 4 ,

(ii) ∂Aα = ∂αβ = 0 , where α, β = 4, 5 , A,B = 1, . . . , 3 .
(2.7)

The first, where fields only depend on the four coordinates Y i5 corresponds to

11-dimensional supergravity while the second, with dependence on only three coordinates

Y AB, corresponds to type IIB supergravity. One way this manifests itself is that the gen-

eralised Lie derivative of the generalised metric generates exactly the diffeomorphisms and

p-form gauge transformations of the bosonic fields of 11-dimensional/IIB supergravity.

Furthermore, one can define a unique action which is invariant under generalised Lie

derivatives. Upon using the appropriate solution of the section condition this reduces to the

four-dimensional/three-dimensional internal sector of 11-dimensional/IIB supergravity [12,

29]. This can be extended by introducing fields related to the tensor hierarchy of gauged

supergravities [54, 55], so that the resulting action reduces to the bosonic part of the full

11-dimensional or IIB supergravity [17, 19, 26]. We will describe this construction in more

detail in sections 4, 5 and appendix D, albeit in our geometric formulation.

3 Structure group, generalised Lie derivative and GL(10) connection

3.1 10-manifolds with GL(5)+-structure

3.1.1 GL(5)+-structure

In this paper we define a “curved” version of the SL(5) EFT on a 10-dimensional manifold

M which admits a GL(5)+-structure. In order to do this, consider first the usual frame

bundle π10 : F10M −→ M whose fibre consists of all ordered bases of the tangent bundle

and can thus be identified with GL(10). We will label the bases as Eab. The structure

group of M can be reduced to GL(5)+ if F10M/GL(5)+ admits a global section and each

such global section defines a GL(5)+-structure on M . In other words, a GL(5)+-structure

is defined by an equivalence class of frame fields Eab,

Eab ∼ E′ab ⇐⇒ Eab = ua
cub

dE′cd , (3.1)

where u ∈ GL(5)+. Here a, b = 1, . . . , 5 and the pair of indices ab is antisymmetrised, thus

denoting the 10-dimensional representation of GL(5)+. In local coordinates we will write

the frame fields as

Eab = EabM∂M , (3.2)

with M = 1, . . . , 10 denoting “curved” 10-dimensional indices. A global section of

F10M/GL(5)+ then implies that the transition functions of the frame bundle can be chosen

to be GL(5)+-valued. For each GL(5)+-structure, we can define a principal GL(5)+-bundle

π5 : F5M −→ M , whose fibres consist of the equivalence class of frame fields defining the

GL(5)+-structure and can thus be identified with GL(5)+.

– 4 –
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Note that the GL(5)+-structure can also be defined using an invariant tensor. The

product 10⊗10⊗10⊗10 of GL(10) contains a singlet in the decomposition under GL(5)+,

corresponding to a GL(5)+-invariant tensor, Y ab,cd
ef,gh = εabcdiεefghi, the “Y -tensor” in the

nomenclature of [16]. However, here we will find it more useful to use the equivalence class

of frame-fields (3.1) instead of the Y -tensor when discussing the GL(5)+-structure.

Unlike in the usual EFT formulation, we do not assume that our GL(5)+-structure

is locally flat. The obstruction to local flatness of this structure introduces a manifest

background-independence into our theory. We will return to this point briefly in the dis-

cussion 6. Finally, let us emphasise that in general the representative of a GL(5)+-structure

cannot be written in the form

EabM X−→ Eabij = E[a
iEb]

j , (3.3)

for some Ea
i, where i, j = 1, . . . , 5. When this can be done, the GL(5)+-structure is called

locally flat.

3.1.2 Fundamental vector fields

Equipped with F5M we can construct a 5-dimensional vector bundle, the associated bundle

E5 on which GL(5)+ acts in the fundamental representation. The sections of this bundle

are “fundamental vector fields” with basis Ea, so that we can write

V = V aEa , for V ∈ E5 . (3.4)

Because the vector bundle E5 has structure group GL(5)+, we can define a

“5-dimensional volume-form”, η, as a global section of Λ5E∗5 . In the Ea basis we denote

this by

ηabcde = |E|1/2εabcde , (3.5)

where |E| is the determinant of EabM and εabcde is the alternating symbol which equals the

sign of the permutation (abcde). We will often find it useful to use the tensor density εabcde
instead of ηabcde itself.

3.1.3 GL(10) diffeomorphisms and Killing vectors

We know that GL(10) diffeomorphisms act on tangent vectors via the usual Lie derivative

LUV
M = UN∂NV

M − V N∂NU
M . (3.6)

How does a GL(10) diffeomorphism act on a fundamental vector? A general diffeomorphism

will not preserve the GL(5)+-structure and thus not act as an automorphism of E5. In

order to obtain an action on E5, we have to restrict ourselves to automorphisms of the

GL(5)+-structure, or infinitesimally to GL(5)+-Killing vectors.3 These satisfy

LUEab =
1

2
λab

cdEcd , (3.7)

3We would like to thank Daniel Waldram for helpful discussions on this point.
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where λab
cd ∈ gl(5)+. Thus,

EcdMLUEabM ∈ gl(5)+ . (3.8)

We can express this in terms of the projector onto the adjoint of GL(5)+, Padj , as

(I− Padj)cd,ghab,ef E
ef
MLUEghM = 0 . (3.9)

The projector is explicitly given by

(Padj)
ab,ef
cd,gh = −2

3
δabcdδ

ef
gh +

8

3
δabd[gδ

ef
h]c −

8

3
δabc[gδ

ef
h]d . (3.10)

Finally, it is useful to write this condition on Killing vectors UM in terms of an E-compatible

connection ∇ with GL(10) torsion TMN
P .(

δcdefδ
gh
ab −

1

4
(Padj)cd,ghab,ef

)
EefMEghN

(
∇NUM + UPTPN

M
)

= 0 . (3.11)

This implies that a Killing vector UM must satisfy

0 =
1

4
∇NUM +

1

24
δMN ∇PUP −

1

12
EdgMEcdN∇hcUgh

+
1

4
ULTLN

M +
1

24
δMN U

LTLP
P − 1

12
EdgMEcdNULTLPQEhcPEghQ .

(3.12)

We can now define the Lie derivative of fundamental vector fields with respect to Killing

vectors (3.12), in terms of the connection ∇, as follows

LUV
a = UM∇MV a +

1

6
(Padj)a,cdb,ef V

bEcdMEefN∇MUN

− 5

24
V aTMN

MUN + EbcPEacNV bTPM
NUM .

(3.13)

Here

(Padj)
a,ef
b,cd =

1

8
δab δ

ef
cd + δa[cδ

ef
d]b , (3.14)

denotes the adjoint action on the fundamental representation of GL(5)+. The coefficient

in front of Padj and the torsion terms are chosen in order for (3.13) to be independent of

the choice of GL(5)+-connection.

Let us briefly expand on the connections appearing here. We require the connections

in (3.11), (3.12) and (3.13) to be compatible with Eab, i.e. they induce a “spin connection”

ωM,a
b in order to satisfy the Vielbein principle

∇MEabN = ∂MEabN + ΓMP
NEabP + 2ωM,[a

cEb]cN = 0 . (3.15)

We have a GL(5)+-connection when

∇Mηabcde = ∂Mηabcde −
1

5
ηabcdeωM,f

f = 0 . (3.16)

This fixes

ωM,a
a =

1

2
∂M ln |E| , (3.17)

so that ωM,a
b is a gl(5)+-valued one-form. When ωM,a

a = 0 we have a SL(5)-connection,

which is what we will make use of in section 3.3.
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3.2 Generalised Lie derivative and closure constraints

Similar to DFTWZW [47–49], we now define the exceptional field theory on the flattened

spaces associated with the GL(10) vielbeine EabM .4 Thus, we make use of the anholonomic

derivatives

Dab ≡ Eab = EabM∂M , (3.18)

and define the generalised Lie derivative acting on V ∈ Γ (E5) as

LΛV
a =

1

2
ΛbcDbcV

a +
1

5
V aDbcΛ

bc − V bDbcΛ
ac +

1

2
τbc,d

aΛbcV d . (3.19)

To avoid any confusion we wish to highlight that in general there is no sense in which

the a index on V a could be “flat” as this would require a vielbein in the fundamental

representation of SL(5) which is not guaranteed. Put differently, such terminology only

makes sense if the GL(5)+ structure is locally flat. In the more general case we wish to

consider, V is simply a section of the associated bundle E5.

For now we only require τbc,d
a to be constant but otherwise arbitrary, and will de-

termine it soon. The generalised Lie derivative generates a SL(5) action if τab,c
c = 0.

Otherwise, τab,c
c generates an additional R+ action. In EFT, weighted vectors play an

important role. For a vector of weight w, we thus define the generalised Lie derivative

LΛV
a =

1

2
ΛbcDbcV

a+

(
1

5
+
w

2

)
V aDbcΛ

bc−V bDbcΛ
ac+

1

2
τbc,d

aΛbcV d+wτbcΛ
bcV a. (3.20)

This mirrors the form of the genersalised Lie derivative of gauged EFTs [56].5

As in EFT, we take the parameters of generalised diffeomorphisms Λ to have weight

w = 1
5 under the generalised Lie derivative and ask for the algebra of these generalised Lie

derivatives to close, i.e.

[LΛ1 , LΛ2 ] = L[Λ1,Λ2]E
, (3.21)

where

[Λ1, Λ2]E =
1

2
(LΛ1Λ2 − LΛ2Λ1) . (3.22)

This ensures covariance of the expression (3.19). A straightforward but tedious calculation,

detailed in appendix A shows that this is achieved when we impose four types of constraints,

which we will collectively refer to as the closure constraints. First, we must identify τab,c
d

in (3.19) with the coefficients of anholonomy as follows

[Dab, Dcd] = −2τab,[c
eDd]e +

2

5
τabDcd . (3.23)

In addition, we find that τab,c
d must satisfy the linear and quadratic constraints of seven-

dimensional maximal gauged supergravities and thus we interpret τab,c
d as the background

embedding tensor, corresponding to the background vielbeine EabM . The linear constraint

4Despite this similarity our formulation is crucially different from DFTWZW because we do not use the

Maurer-Cartan forms of the background gauge group.
5While this paper was being prepared for submission, we became aware of [57] which considers defor-

mations similar to (3.20) in the context of an EFT for massive IIA theory.
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restricts τab,c
d to lie in the 15 ⊕ 40′ ⊕ 10 of SL(5) and relates it to τab. In particular, it

has to satisfy

τab,c
c = 0 , τc[a,b]

c =
6

5
τab . (3.24)

Thus, we can write

τab,c
d =

1

2
δd[aSb]c +

1

2
εabcefZ

ef,d +
2

15
δdc τab +

2

3
δd[aτb]c , (3.25)

where Z(ab),c = Z [ab,c] = 0, S[ab] = 0 and τ(ab) = 0. Note that the embedding tensor here is

related to the one in [58], τ̂ab,c
d, by

τ̂ab,c
d = τab,c

d +
1

5
δdc τab , τ̂ab,c

d =
1

2
δd[aSb]c +

1

2
εabcefZ

ef,d + δd[cτab] . (3.26)

The quadratic constraint can be written as

2τ̂ab,[c
hτ̂d]h,e

f − τ̂ab,ehτ̂cd,hf + τ̂ab,h
f τ̂cd,e

h = 0 . (3.27)

Together with the linear constraints this leads to the expressions [59]

1

4
SadZ

d(b,c) − 1

4
εadefgZ

de,bZfg,c +
1

3
τadZ

d(b,c) = −1

9
δ(b
a ε

c)defgτdeτfg ,

SadZ
bc,d +

1

6
εbcdef τefSad = − δ[b

a ε
c]defgτdeτfg ,

1

4
SadZ

bc,d +
1

3
τadZ

bc,d = −2

9
δ[b
a ε

c]defgτdeτfg .

(3.28)

Finally, we require a “section condition” for the anholonomic derivatives

D[ab ⊗Dcd] = 0 ,

D[abDcd] + 2τ[abDcd] = 0 ,
(3.29)

where the ⊗ in the first line denotes that the derivatives act on two different objects. Note

that the symmetric part of (3.23) together with the linear constraint (3.25) implies that(
Zab,c − 1

3
εabcdeτde

)
Dab = 0 . (3.30)

At this stage we would once again like to emphasise the difference to DFTWZW. There, the

background vielbein would be described by the Maurer-Cartan form of the gauge group,

which by the above constraint (3.30) can have less than 10 dimensions. Thus, if we had

wanted to use the Maurer-Cartan form here the extended manifold would have to have less

than 10 dimensions. A further discussion on this subject will appear in [60].

Finally, we can use expression (3.23) to determine the different irreps of the background

embedding tensor in terms of the vielbeine EabM . We find

τab = −1

3

(
∂MEabM +Dab lnE

)
,

Sab =
2

3
EefMDe(aEb)fM ,

Zab,c = − 1

15
εabdefEcgM

(
DfgEdeM −DdeEfgM

)
+

2

45
εabcde

(
∂MEdeM +Dde lnE

)
.

(3.31)
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Here E denotes the determinant of EabM . In order to satisfy the linear constraint, we also

have to impose that the following vanishes:

0 = εbcfghEdeM
(
DhaEfgM −DfgEhaM

)
− 1

3
εbcdef

(
Daf lnE− EghMDagEhfM + ∂MEafM − EghMDfgEhfM

)
.

(3.32)

3.2.1 Comparison to standard and gauged EFT

Let us reflect and compare the situation here to the usual formulation of exceptional field

theory. This discussion is very similar to that in DFTWZW, see [47–49], although our viel-

beine are not necessarily Maurer-Cartan forms. Our 10-manifold has a GL(5)+-structure,

which, when it is not locally flat, introduces a manifest background dependence through the

vielbeine Eab. This is captured by the coefficients of anholonomy of the derivatives (3.23),

introduces a gauging in the generalised Lie derivative (3.19) and is identified with the back-

ground embedding tensor. Closure of the algebra of generalised diffeomorphisms further

requires a “section condition” (3.29). The theory thus resembles an expansion around an

EFT background, as in the “gauged EFT” setup [56, 58].

In the gauged EFT setup, just as in gauged DFT, the embedding tensor is determined

in terms of some GL(5)+ “twist matrices”

Wab
ij = ρ−1U[a

iUb]
j , (3.33)

where |U | = 1 and ρ is a scalar density. The precise relationship is given by the generalised

Lie derivative of EFT

L0
Wab

Wcd =
1

2
τab,cd

efWef , (3.34)

L0 here has the same form as (3.20) but with τab,c
d = τab = 0, Wab has weight w = 1

5 and

τab,cd
ef = 4τab,[c

[eδ
f ]
d] +

4

5
τabδ

ef
cd . (3.35)

In terms of the irreducible representations this gives

Sab = −1

ρ
∂ijU(a

iUb)
j ,

Zab,c =
1

2ρ
εijklm

(
Ulm

ab ∂ijUk
c − Ulm[ab ∂ijUk

c]
)
,

τab = − 1

2ρ
∂ijUab

ij − 6 ρ−1 Uab
ij ∂ijρ .

(3.36)

We see that (3.23), which can be rewritten in the more suggestive form

LEabEcd =
1

2
τab,cd

efEef , (3.37)

is similar in spirit, but there the background vielbeine Eab do not have to be GL(5)+-valued,

and we use the conventional Lie derivative, not the generalised Lie derivative. Nonetheless,

in gauged EFT one also finds that the section condition can be relaxed, see for example the
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analogous discussion for gauged DFT [61–64] and also the review [65]: for closure of the

algebra one must impose the quadratic constraint on the embedding tensor, which by (3.34)

automatically satisfies the linear constraint, and the section condition (3.29), where in this

case the background vielbeine would be Wab, (3.33). However, one also imposes the section

condition between the background and fluctuations,

∂[ijW|ab|
kl∂mn] = 0 , (3.38)

when acting on any fluctuations.

Thus, the curved EFT formulation looks similar to gauged EFT when we have a locally

flat GL(5)+-structure, as in eq. (3.3). However, even in the locally flat case, there is the

difference that the embedding tensor would still be given by (3.23) rather than (3.34), and

that we do not need to impose (3.38). A straightforward calculation shows, however, that

in the locally flat case, where we can write

Eabij = ρ−1U[a
iUb]

j , (3.39)

(3.31) agrees with (3.34). Furthermore, one finds that in this case (3.38) is sufficient to

satisfy (3.30), i.e. (
Zab,c − 1

3
εabcdeτde

)
Dab = 0 , (3.40)

since this is always taken to act on fluctuations. Finally, it is easy to see that when we

impose (3.38), (3.37) and (3.34) agree. This implies that (3.38) and local flatness are

sufficient for the the vielbeine to satisfy the linear constraint, i.e. (3.32). To summarise, in

the locally flat case with (3.38) our formalism reduces to the usual EFT set-up.

In the following sections we will show that even when the GL(5)+-structure is not

locally flat and we do not impose (3.38), we can use the GL(10) vielbeine Eab to con-

struct a curved EFT formulation reminiscent of gauged EFT. However, the fact that the

“background” is described by a GL(10) object while the fluctuations are in GL(5)+ means

that the theory is not background-independent, see for example the discussion in section 5

of [66]. In contrast the usual double field theory formulation, which we wish to interpret

as the “locally flat” case, has recently been confirmed to be background-independent [66]

and it is reasonable to expect the same to be true of exceptional field theory.

Nonetheless, the formulation presented here is manifestly coordinate invariant, and

has a clear patching prescription which does not require the section condition. It can thus

describe non-geometric backgrounds [51]. The interested reader can find a review of the

patching discussion in double field theory in [40]. Finally, one may hope that it captures

other effects, such as non-Abelian T-duality [67].

3.3 GL(10) covariant derivative

Following [47], we define a spin-connection for a vector V

∇abV c = DabV
c + ωab,d

cV d , (3.41)
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such that we can rewrite the generalised Lie derivative (3.20) as

LΛV
a =

1

2
Λbc∇bcV a +

(
1

5
+
w

2

)
V a∇bcΛbc − V b∇bcΛac . (3.42)

We then find

ωab,c
d =

1

6
εabcefZ

ef,d +
1

8
δd[aSb]c −

1

9
δdc τab −

5

9
δd[aτb]c . (3.43)

Note that this is traceless

ωab,c
c = 0 , (3.44)

and that for a scalar of weight w, we have

LΛS =
1

2
ΛabDabS +

w

2
S DabΛ

ab =
1

2
Λab∇abS +

w

2
S∇abΛab , (3.45)

so that there is no ambiguity as to whether we should be using ∇ab or Dab for the weight-

term. It is easy to check that

∇abεcdefg = ωab,h
hεcdefg = 0 , (3.46)

since (ωab) is sl(5)-valued. Thus,

ωM,a
b =

1

2
EcdMωcd,ab , (3.47)

is a sl(5)-valued one-form and it induces a connection for GL(10)-diffeomorphisms, ΓMN
P ,

via the vielbein postulate

∇MEabN ≡ ∂MEabN + 2EcdMωcd,[afEb]fN + ΓMP
NEabP = 0 . (3.48)

It is easy to check that ∇M defined in (3.48) is a connection if ωab,c
d is a GL(10)-scalar.

This follows from the tensorial definitions (3.23). As discussed in subsection 3.1.3, the

connection here is a SL(5)-connection.

Finally, using (3.43) we obtain the explicit expression for the components of the

GL(10)-connection

ΓMN
P = EabN

(
−1

2
∂MEabP −

1

8
EbcPEcdMSad −

1

6
EcdMEbf P εacdghZgh,f −

5

9
EcdMEbcP τad

)
− 2

9
δPNEcdMτcd . (3.49)

3.3.1 Curvature, torsion and integration by parts

Let us calculate the usual GL(10) curvature and torsion of this connection. The curvature

is best calculated in terms of the spin connection ωM,a
b. It is given by

RMN,a
b = 2∂[MωN ],a

b + 2ω[M,|a
cωN ],c

b . (3.50)

One can check that this is still traceless so that (RMN )a
b = RMN,a

b is a sl(5) element.

Using the vielbeine Eab
M we see that the curvature tensor lives in the

45⊗ 24 = 5⊕ 45⊕ 45⊕ 50⊕ 70⊕ 105⊕ 280⊕ 480 . (3.51)
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To evaluate the curvature tensor it helps to note that

2∂[MωN ],a
b = ∂[ME

cd
N ]ωcd,a

b , (3.52)

and
1

4
EabME

cd
N [Dab, Dcd] = ∂[NE

ab
M ]Dab . (3.53)

But from (3.23) and (3.35) we have that

∂[ME
ab
N ] = −1

8
Ecd[ME

ef
N ]τcd,ef

ab . (3.54)

The rest is a tedious but straightforward calculation which shows that none of the irre-

ducible representations (3.51) vanish, even using the quadratic constraints. We summarise

the irreducible representations in appendix B.

The torsion of the connection is given by

TMN
P = ΓMN

P − ΓNM
P = Eab[M∂N ]EabP +

1

4
EbcPEabMEcdNSad

− 1

3
Eab[NEcdM ]Ebf P εacdghZgh,f +

4

9
δP[MEcdN ]τcd .

(3.55)

We see that for a general background, the torsion of this connection does not vanish. Let

us consider its trace

TMN
N = −2EcdMτcd + ∂M lnE +

1

2
EabM∂NEabN = −7

2
EabMτab , (3.56)

where in the final step we used the relation (3.31). This is important since it measures the

obstruction to integrating by parts: when integrating by parts we will pick up terms such as

I =

∫
d10x∇MVM , (3.57)

where VM will be a diffeomorphism-density. Thus,

I =

∫
d10x

(
∂MV

M + ΓMN
MV N − ΓNM

NV N
)

=

∫
d10x

(
∂MV

M +
7

2
EabMτabVM

)
.

(3.58)

To integrate by parts we require I to be a boundary term, which only occurs when τab = 0.

This is consistent with the fact that supergravities with a trombone gauging do not admit

an action principle. Instead they are defined only at the level of the equations of motion [68].

From the gauged supergravity perspective, this makes sense because the trombone gauges

an on-shell symmetry. Indeed, in the usual gauged EFT formulation, one also finds that

the trombone is the obstruction to integration by parts by a similar argument to that

presented here [69].

To conclude this section, let us note that there are trivial gauge parameters, with

respect to which the Lie derivative vanishes. These are given by

Λabtriv = εabcde∇cdBe , (3.59)

where Ba is any element of E∗5 of weight 2
5 . This is the generalisation of an “exact form”

as given by the generalised Cartan Calculus [52, 53] that we will discuss in the follow-

ing section.
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Module(w,λ) Representations Gauge field Field strength

A(1/5, 0) 10 Aab Fab

B(2/5, 1/2) 5 Ba Ha
C(3/5, 1/2) 5 Ca J a

D(4/5, 1) 10 Dab Kab

Table 1. Modules, gauge fields and field strengths relevant for the tensor hierarchy and their

representations under SL(5) and GL(10). w denotes their weight under generalised Lie derivatives

while λ denotes their weight under GL(10) diffeomorphisms.

4 Tensor hierarchy

In the full EFT, the fields which are “off-diagonal” between the internal extended space and

the external seven-dimensional space are described by a hierarchy of tensor fields. These

are related to the tensor hierarchy of maximal gauged SUGRA [54, 55]. Their structure can

be nicely described in terms of a certain chain complex [52, 53, 70]. In section 4.1 we first

generalise the formulation of this chain complex [53] to take into account the curvature of

the GL(5)+-structure. We then show in subsection 4.2 how this can be used to describe the

tensor hierarchy. Finally we derive the topological term of the Lagrangian in subsection 4.3.

4.1 Curved Cartan Calculus

We begin by constructing the curved version of the generalised Cartan Calculus [52, 53].

We want to introduce a nilpotent derivative so that we obtain a chain complex

A(1/5, 0)
∂̂←−− B(2/5, 1/2)

∂̂←−− C(3/5, 1/2)
∂̂←−− D(4/5, 1) , (4.1)

between the modules required for the tensor hierarchy, summarised in table 1.

In order to avoid clutter we will from here onwards drop the λ value when referring to

the modules in table 1, with the GL(10)-values always to be taken as in table 1. We will

also make use of a scalar density S(1, 1) which has weight 1 under both the generalised Lie

derivative and GL(10)-diffeomorphisms, but again we will refer to it simply as S(1). We

also define a bilinear product • between certain modules, which maps as follows.

• A(1/5) B(2/5) C(3/5) D(4/5)

A(1/5) B(2/5) C(3/5) D(4/5) S(1)

B(2/5) C(3/5) D(4/5) S(1)

C(3/5) D(4/5) S(1)

D(4/5) S(1)

Finally, we want the nilpotent derivative ∂̂ and the product • to obey the following iden-

tity [52, 53]: for all Λ ∈ A(1/5) and T ∈ B(2/5) or C(3/5),

LΛT = Λ •
(
∂̂T
)

+ ∂̂ (Λ • T ) . (4.2)
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We use the same • product as in the “flat case” [53], defined as

(A1 • A2)a =
1

4
εabcdeAbc1 Ade2 ,

(A • B)a = AabBb ,

(A • C)ab =
1

4
εabcdeAcdCe ,

A • D =
1

2
AabDab ,

(B1 • B2)ab = B2[aB|1|b] ,
B • C = BaCa ,

(4.3)

and which is defined to be symmetric when acting on different modules. However, we

modify the derivative ∂̂ to be

∂̂Bab =
1

2
εabcde∇cdBe , ∂̂Ca = ∇baCb , ∂̂Da =

1

2
εabcde∇bcDde , (4.4)

where B ∈ B(2/5), C ∈ C(3/5) and D ∈ D(4/5). Note that these definitions also map the

GL(10) weights as required, see table 1.

The derivative ∇ab is as in (3.43) and it is important to note that ∂̂ thus satisfies

integration by parts when τab = 0. Let us now check the nilpotency, starting with(
∂̂∂̂C

)ab
=

1

2
εabcde∇cd∇feCf . (4.5)

We can split this expression into terms quadratic in the embedding tensor components,

those linear in the embedding tensor components and those without. For those without

we find (
∂̂∂̂C

)ab
0

= −1

2
εabcdeDcdDefCf . (4.6)

We use the identity

2D[abDcd] = 2Da[bDcd] +
[
D[cd, D|a|b]

]
, (4.7)

and the section condition (3.29) to write this as(
∂̂∂̂C

)ab
0

= −1

4
εabcde [Def , Dcd] Cf . (4.8)

It is now easy to check using the coefficients of anholonomy (3.23), the linear con-

straint (3.25) and (3.43) that the terms linear in Sab, Z
ab,c and τab vanish. The terms

quadratic in the embedding tensor vanish by the quadratic constraint (3.27). The same

steps can be used to show that (
∂̂∂̂D

)
a

= 0 , (4.9)

thus showing that the derivative ∂̂ is nilpotent. One can also check that this nilpotent

derivative ∂̂ is covariant under generalised Lie derivatives in the sense that the following

diagram commutes:

A B C D

A B C D

L

∂̂

L

∂̂

L

∂̂

L

∂̂ ∂̂ ∂̂
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4.2 Tensor hierarchy

We now construct the tensor hierarchy [54, 55] as in EFT [17] by introducing field strengths

of the various potentials in table 1. Mutatis mutandis, the construction in this section is

formally identical to that presented in [53]. That is, the arguments and formulae in [52, 53]

hold, subject to the modification of the generalised Lie derivative (3.19) and the nilpotent

derivative (4.4). Thus, we will keep the discussion here brief and refer the interested readers

to the original construction in E6 [17] as well as [52, 53].

The fields of the tensor hierarchy are forms of the external spacetime as well as forms

of the extended space, i.e. of the chain complex (4.1). Because they can depend on both the

external spacetime and the extended space, they will transform under generalised diffeo-

morphisms, GL(10)-diffeomorphisms and external diffeomorphisms. To account for these

different symmetries, we introduce a covariant derivative for the external directions [17]

Dµ = ∂µ − LAµ . (4.10)

Its commutator defines a field strength

[Dµ, Dν ] = −LFµν , (4.11)

where

Fµν = 2∂[µAν] − [Aµ, Aν ]E . (4.12)

Here [V, W ]E = 1
2 (LVW − LWV ) is the antisymmetrisation of the generalised Lie deriva-

tive. Although (4.11) is manifestly invariant under generalised Lie derivatives, the naive

field strength Fµν as defined in (4.12) is not. The deviation from covariance is however a

term that generates a trivial generalised Lie derivative, i.e. it is of the form
(
∂̂Bµν

)ab
. This

intertwining between forms of different degrees is a defining feature of the tensor hierarchy,

which continues by defining a field strength for Bµν,a etc.

Subject to the modifications of the generalised Lie derivative and the nilpotent operator

∂̂, we can proceed with formally equivalent definitions as for the “flat” case [53]. In particu-

lar, we define the covariant field strengths (we now drop the SL(5) indices to avoid clutter)

Fµν = 2∂[µAν] − [Aµ,Aν ]E + ∂̂Bµν ,

Hµνρ = 3D[µBνρ] − 3∂[µAν • Aρ] +A[µ • [Aν ,Aρ]]E + ∂̂Cµνρ ,

Jµνρσ = 4D[µCνρσ] + 3∂̂B[µν • Bρσ] − 6F[µν • Bρσ] + 4A[µ • (Aν • ∂ρAσ])

−A[µ • (Aν • [Aρ,Aσ]]E) + ∂̂Dµνρσ .

(4.13)

From these definitions, one can see that the field strengths satisfy the Bianchi identities

3D[µFνρ] = ∂̂Hµνρ ,

4D[µHνρσ] + 3F[µν • Fρσ] = ∂̂Jµνρσ .
(4.14)

Varying the gauge potentials leads to the following variations of the field strengths

δFµν = 2D[µδAν] + ∂̂∆Bµν ,

δHµνρ = 3D[µ∆Bνρ] − 3δA[µ • Fνρ] + ∂̂∆Cµνρ ,

δJµνρσ = 4D[µ∆Cνρσ] − 4δA[µ • Hνρσ] − 6F[µν •∆Bρσ] + ∂̂∆Dµνρσ ,

(4.15)
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where we defined the “covariant” gauge field variations

∆Bµν = δBµν +A[µ • δAν] , (4.16)

∆Cµνρ = δCµνρ − 3δA[µ • Bνρ] +A[µ • (Aν • δAρ]) ,

∆Dµνρσ = δDµνρσ−4δA[µ • Cνρσ]+3B[µν • (δBρσ]+2Aρ • δAσ])+A[µ • (Aν • (Aρ • δAσ])) .

Finally, the field strengths are invariant under the gauge transformations given by

δAµ = DµΛ− ∂̂Ξµ ,

∆Bµν = Λ • Fµν + 2D[µΞν] − ∂̂Θµν ,

∆Cµνρ = Λ • Hµνρ + 3F[µν • Ξρ] + 3D[µΘνρ] − ∂̂Ωµνρ ,

∆Dµνρσ = Λ • Jµνρσ − 4H[µνρ • Ξσ] + 6F[µν •Θρσ] + 4D[µΩνρσ] .

(4.17)

4.3 Topological term

We now wish to construct the analogue of the topological term of EFT [26] which re-

duces in the locally flat case to the topological term of seven-dimensional maximal gauged

SUGRA [71]. Using the formalism described above, we construct it as a boundary term in

eight external and ten extended dimensions. The proposed term is

Stop = − 1

2
√

6

∫
d10Y d8x

(
1

4
∂̂Jµ1...µ4 • Jµ5...µ8 − 4Fµ1µ2 • (Hµ3...µ5 • Hµ6...µ8)

)
εµ1...µ8 .

(4.18)

Here we abuse notation by labelling the eight-dimensional space and the seven-dimensional

external space that is its boundary by the same indices, i.e. µ = 1, . . . , 8 above. It is easy

to check that the integrand has the appropriate weight under generalised diffeomorphisms,

GL(10)-diffeomorphisms and external diffeomorphisms. We will show that when the trom-

bone vanishes, the variation of (4.18) is a boundary term, because this is sufficient for

calculating the action. We use the fact that when τab = 0 we can integrate the nilpotent

derivative ∂̂ by parts, to obtain

δStop = − 1

2
√

6

∫
d10Y d8x

[
−8Dµ1(δA2•(Hµ3µ4µ5•Hµ6µ7µ8))+2Dµ1

(
∂̂∆Cµ2µ3µ4 • Jµ5...µ8

)
−24Dµ1 (Fµ2µ3 • (∆Bµ4µ5 • Hµ6µ7µ8))

]
εµ1...µ8 . (4.19)

As noted earlier, when the trombone is non-vanishing, there is no action principle because

we cannot integrate by parts, mirroring the behaviour in gauged SUGRA [68] and in

“gauged” EFT [69].

5 The action

We now wish to write an EFT action, with a curved GL(5)+-structure. This has a sim-

ilar form to seven-dimensional maximal gauged supergravity, with an “external” seven-

dimensional metric gµν with vielbein eµ̄µ. Under generalised diffeomorphisms, this external

vielbein transforms as a scalar of weight 1/5, i.e.

LΛe
µ̄
µ =

1

2
Λab∇abeµ̄µ +

1

10
eµ̄µ∇abΛab . (5.1)
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In addition there are 14 scalars parameterising the coset space SL(5)
SO(5) . We can write these

in terms of the generalised metric

Mab = ẼāaẼb̄bδāb̄ , (5.2)

where a transforms under SL(5) and ā transforms under SO(5). Note that the structure

group can always be reduced to its maximal compact subgroup, thus in this case from

GL(5)+ to SO(5), so that the existence of Mab does not impose further restrictions on the

10-dimensional manifold. Finally there are also the field strengths of the tensor hierarchy,

which have been described in detail in the preceding section 4.

Schematically, the action takes the form

S = SEH + SSK + SGK + Stop + Spot . (5.3)

Here, we have

• SEH is an Einstein-Hilbert-like term, involving the Dµ derivative, which is thus in-

variant under generalised diffeomorphisms,

• SSK is the kinetic term for the scalars Mab,

• SGK contains the kinetic terms for the gauge fields of the tensor hierarchy,

• Stop is the topological term, see 4.3,

• Spot is the potential term, written completely in terms of gµν and Mab.

Apart from the potential, the various terms appearing in the action (5.3) are very similar to

the usual EFT construction, see for example the original discussion in [17] and the specific

example of SL(5) in [26], and so we will keep their discussion brief. Each term is manifestly

invariant under generalised diffeomorphisms and GL(10)-diffeomorphisms, but not under

external diffeomorphisms, which act as follows

δξgµν = ξρDρgµν + Dµξ
ρgρν + Dνξ

ρgµρ ,

δξMab = ξρDρMab ,

δξAµab = ξνFνµab +MacMbdgµν∇cdξν ,
∆ξBµν,a = ξλHλµν,a ,
∆ξCµνρa = ξλJλµνρa .

(5.4)

Here ξµ(x, Y ) can depend on both the external and the extended coordinates. This is why

we use Dµ, the covariant external derivative introduced in section 4. For example Dµ acts

on gµν as

Dµgνρ = ∂µgνρ − LAµgνρ . (5.5)

The variations (5.4) are the GL(10)-covariant generalisation of [17].

We further take Eab to be independent of the external coordinates, xµ, so that

DµEabM = 0 . (5.6)
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It follows that

[Dµ,∇ab] = 0 . (5.7)

The variation of EabM also vanishes

δξEabM = 0 . (5.8)

Requiring (on-shell) invariance under the external diffeomorphisms fixes the relative

coefficients between the terms appearing in (5.3). We leave the details of the calculation

to the appendix D.

5.1 Covariant Einstein-Hilbert term

Here we follow [25] in constructing an Einstein-Hilbert term for the external metric gµν
that is invariant under generalised diffeomorphisms. The alternative is to use the vielbein

formalism [17]. We can define a Riemann tensor that is covariant under external diffeo-

morphisms, generalised diffeomorphisms and GL(10)-diffeomorphisms as in the usual way,

but everywhere replacing ∂µ → Dµ, i.e.

Rµνρσ = DρΓ
µ
νσ −DσΓµνρ + ΓµλρΓ

λ
νσ − ΓµλσΓλνρ , (5.9)

where

Γµνρ = gµσ
(
D(νgρ)σ −

1

2
Dσgνρ

)
. (5.10)

The Einstein-Hilbert term is then

SEH =

∫
d10Y d7xEe gµνRρµρν . (5.11)

For the variation under external diffeomorphisms, see appendix D, it useful to integrate all

terms involving second-order derivatives by parts to obtain — up to boundary terms —

SEH =

∫
d10Y d7xEe

[
1

2
Dµg

µνDν ln g +
1

4
gµνDµ ln gDν ln g

+
1

4
gµνDµg

ρσDνgρσ −
1

2
gµνDµg

ρσDρgνσ

]
.

(5.12)

5.2 Kinetic terms

The kinetic term for the scalar is again defined simply by replacing the usual partial

derivative with a covariant derivative ∂µ → Dµ, so that

SSK =
1

4

∫
d10Y d7xEe gµνDµMabDνMab . (5.13)

The coefficient 1
4 is required to ensure invariance under external diffeomorphisms.

For the gauge potentials we use the field strengths defined in section 4.2 but we only

introduce kinetic terms for Fµν and Hµνρ as the higher forms can be dualised to just these

two. We obtain the action

SGK = −1

8

∫
d10Y d7xEe

(
FµνabFµν,cdMacMbd +

2

3
Hµνρ,aHµνρbMab

)
, (5.14)
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where the factors −1
8 and 2

3 are required to ensure invariance under external diffeomor-

phisms. At this point we should also highlight that the equation of motion coming from

varying Cµνρ here and in the topological term (4.18) gives rise to a duality relation which

in the locally flat case reduces to the M-theory duality between three-form and six-form

and to the IIB self-duality. It takes the form

εµ4...µ7Jµ1...µ7a ∝ eHµ1µ2µ3bMab , (5.15)

and is required for the action to be invariant under external diffeomorphisms, see

appendix D.

5.3 Scalar potential

We next consider the scalar potential. This is expressed in terms of the scalar degrees of

freedom which are encapsulated in the generalised metricMab. We will calculate the scalar

potential by requiring it to be invariant under generalised diffeomorphisms as well as reduc-

ing to the right supergravity action in the locally flat case and when the section condition

is solved. This implies that the potential is made of two independently invariant parts

Spot =

∫
d10Y d7xEe

(
V1 +

1

8
MacMbd∇̃abgµν∇̃cdgµν

)
, (5.16)

where V1 depends only on M and ∇̃ is a connection under the generalised Lie deriva-

tive (3.20) and defined as

∇̃abV c = ∇abV c + Γ̃ab,d
cV d − wγabV c , (5.17)

for a vector V c of weight w. We will use a Weitzenböck-like connection

Γ̃ab,c
d = −Ẽc̄c∇abEd̄c , γab =

5

7
Dab ln e , (5.18)

and derive V1 in terms of the generalised torsion of this connection, mirroring the construc-

tion in [58, 64].6 The generalised torsion is defined as(
L∇̃Λ − LΛ

)
V a =

1

2
Tbc,d

aΛbcV d − 1

2
wTbcΛ

bcV a , (5.19)

where Tab is an irrep of the generalised torsion. Explicitly, we find

Tab,c
d = Γ̃ab,c

d − 4

5
δdc Γ̃e[a,b]

e + 2Γ̃c[a,b]
d − 2Γ̃ce,[a

eδdb] −
2

25
δdcγab −

2

5
γc[aδ

d
b] . (5.20)

From (5.19) and (5.18) one can see that the torsion is invariant under GL(10) diffeo-

morphisms and transforms as a tensor of weight −1
5 under generalised diffeomorphisms.

However, for the connection (5.18) this torsion is not SO(5) invariant. We will return to

this shortly to determine the potential uniquely. Let us first decompose Tab,c
d into its irreps

Tab,c
d =

1

2
δd[aS̃b]c +

1

2
εabcef Z̃

ef,d − 1

27

(
25 δd[aTb]c + 5 δdcTab

)
. (5.21)

6This is related to the flux formulation of DFT and EFT but is different to the construction used in [49].
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Explicitly, these are given by

S̃ab = Tc(a,b)
c = 4Γ̃c(a,b)

c ,

Z̃ab,c =
1

3!
εabdefTde,f

c =
1

2
εabdef Γ̃de,f

c − 1

2
εabcdeΓ̃[fd,e]

f ,

Tab = −5

3
Tc[a,b]

c =
6

5
γab + Γ̃e[a,b]

e ,

(5.22)

and live in the 15⊕40′⊕10, just as the embedding tensor does [71]. We can now construct

six independent generalised diffeomorphism scalar densities

A = S̃abS̃cdMacMbd , B =
(
S̃abMab

)2
,

C =MacMbdTabTcd , D =MabMcdMef Z̃
ac,eZ̃bd,f , (5.23)

E =MabMcdMef Z̃
ac,bZ̃de,f , F =MacMbd∇̃abTcd .

These terms do not individually form SO(5) scalars. However, the following combina-

tion does

V1 = − 1

16
MacMbdS̃abS̃cd +

1

32
MacMbdS̃acS̃bd −

5

12
MacMbdTabTcd

− 1

2
MabMcdMef Z̃

ac,eZ̃bd,f +
1

2
MabMcdMef Z̃

ac,bZ̃ed,f −MacMbd∇̃abTcd .
(5.24)

One can see this by explicitly rewriting this in terms of the generalised metric. The details

of this calculation can be found in appendix C. When the background trombone vanishes,

τab = 0, then we can write (5.24) up to the section condition (3.29), the quadratic and

linear constraints (3.27), (3.25) and the relationship (3.23) as follows

Spot =

∫
d10Y d7xEe

(
1

8
MacMbd∇abgµν∇cdgµν −

5

14
MacMbdDab ln eDcd ln e

− 12

7
MacDabMbdDcd ln e− 6

7
MacMbd∇abDcd ln e− 1

2
∇abMac∇cdMbd

+
1

8
MacMbd∇abMef∇cdMef +

1

2
MacMbd∇abMef∇ecMdf

−Mac∇ab∇cdMbd +MacMbd

(
− 1

2
ωae,c

eωbf,d
f − 1

2
ωae,c

fωbf,d
e

+
1

2
ωae,b

eωdf,c
f − 1

2
ωae,b

fωdf,c
e − ωae,dfωfc,be − ωae,f eωcd,bf

))
.

(5.25)

This form of the scalar potential is manifestly SO(5) invariant but no longer man-

ifestly invariant under generalised diffeomorphisms. The appearance of the connection

components ωab,c
d is similar to the structure of the scalar potential of DFTWZW [47, 48].

It would also be interesting to see this potential derived using a torsion-free connection,

for example following [17, 70, 72] for the fluctuations.
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Before moving on, let us give the action in a form where the boundary terms have

been integrated by parts (in the case when τab = 0 vanishes)

Spot =

∫
d10Y d7xEe

(
1

8
MacMbd∇abgµν∇cdgµν +

1

8
MacMbdDab ln g Dcd ln g

+
1

2
Mac∇abMbd∇cd ln g+

1

2
∇abMac∇cdMbd+

1

8
MacMbd∇abMef∇cdMef

+
1

2
MacMbd∇abMef∇ecMdf+MacMbd

(
− 1

2
ωae,c

eωbf,d
f− 1

2
ωae,c

fωbf,d
e

+
1

2
ωae,b

eωdf,c
f − 1

2
ωae,b

fωdf,c
e − ωae,dfωfc,be − ωae,f eωcd,bf

))
.

(5.26)

We can also rewrite this form of the scalar potential in terms of the “big generalised metric”

Mab,cd = 2Ma[cMd]b. This allows one to compare the scalar potential to that found in the

flat SL(5) EFT [26]. The result is

Spot =

∫
d10Y d7xEe

(
1

4
MAB∇Agµν∇Bgµν +

1

4
MABDA ln g DB ln g

+
1

2
∇AMAB∇B ln g+

1

12
MAB∇AMCD∇BMCD−

1

2
MAB∇AMCD∇CMBD

)
−Mab,cd

(
1

2
ωae,c

eωbf,d
f +

1

2
ωae,f

eωcd,b
f +

1

2
ωae,c

fωbf,d
e − ωae,dfωfc,be

)
. (5.27)

Here we label antisymmetric pairs of indices as A = [ab], A = 1, . . . , 10 and every contrac-

tion of these 10-d indices A,B comes with a factor of 1
2 when written in terms of the SL(5)

indices. For example, the first term would read

1

4
MAB∇Agµν∇Bgµν =

1

16
Mab,cd∇abgµν∇cdgµν . (5.28)

The details of this calculation can be found in appendix C.2.

The first two lines in (5.27) reduce immediately to the SL(5) EFT action of [26] when

the covariant derivatives are replaced by partial derivatives, while the final line represents

a non-minimal modification in the case of fluxes, just as in DFTWZW [47–49]. It is thus

easy to see that when the fluxes vanish we reproduce the usual SL(5) action [26]. When

they do not vanish but the GL(5)+-structure is locally flat, we expect to obtain the gauged

SL(5) EFT action.

6 Discussion

In this paper we have shown that it is possible to define a full SL(5) EFT, on any 10-

manifold with GL(5)+-structure. When the GL(5)+-structure is locally flat the formulation

here reduces to the usual EFT formulation. Furthermore the action given here reduces ex-

actly to the one found in the usual EFT formulation [26]. The benefit of the approach here

is that since we are patching the EFT not just with generalised diffeomorphisms, but with

ordinary GL(10)-diffeomorphisms, we can also describe non-geometric backgrounds, as first
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discussed in [51]. In the set-up presented here usual geometric backgrounds should then

be related to 10-manifolds whose structure group can be further reduced from GL(5)+

to Ggeom, its geometric subgroup. When this is not possible, the background would be

non-geometric.

One may also wonder what the physical significance of the curvature of the GL(5)+-

structure is. At this point we can only speculate that this may allow us to describe non-

Abelian T-dualities [67]. Also, as argued in [66], when the GL(5)+-structure is not locally

flat, the theory is not background dependent. This is due to the fact that fluctuations about

the background are described by elements of GL(5)+ but the background, encapsulated in

the GL(10) vielbeine EabM , is not.

This may suggest that we should limit ourselves to 10-manifolds with locally flat

GL(5)+-structure. However, as discussed in [73] for the O(D,D) case, this is a very restric-

tive requirement for the extended space. One may wonder what three- or four-dimensional

manifolds can be described as solutions of the section condition on this restricted set

of 10-manifolds.

An interesting contrast to the generalised geometry picture then emerges: as noted

in [73] while for DFT/EFT, there would be restrictions on the allowed extended manifold,

it is always possible to define a generalised geometry with flat O(D,D)- or Ed(d)-structure

on the generalised tangent bundle of any manifold. This may be reconcilable since the

local flatness restriction applies to the full doubled space not to the physical manifold

obtained after applying the section condition. Indeed, it has been observed in [66] that the

perturbations around WZW-backgrounds can be adequately described by DFT. This seems

to suggest that these manifolds admit a locally flat O(D,D) structure and so would be an

explicit example of backgrounds with interesting topology whose doubled space may admit

locally flat O(D,D)-structure. We leave these questions open for future publications.
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A Closure constraints

We begin with (3.19), where τbc,d
a is for now an unspecified constant, i.e.

LΛV
a =

1

2
ΛbcDbcV

a +
1

5
V aDbcΛ

bc − V bDbcΛ
ac +

1

2
τbc,d

aΛbcV d , (A.1)

where Λ has weight 1
5 . The algebra closes if

[LΛ1 , LΛ2 ]V a = L[Λ1,Λ2]E
V a , (A.2)

with

[Λ1, Λ2]E =
1

2
(LΛ1Λ2 − LΛ2Λ1) . (A.3)

To keep this tractable we will call

Aa = [LΛ1 , LΛ2 ]V a , Ba = L[Λ1,Λ2]E
V a , Ca = Aa −Ba . (A.4)

Each of these expressions will involve terms which are independent of τab,c
d, linear in τab,c

d

and quadratic in τab,c
d. We will denote these with the subscripts 0, 1 and 2. We find for

the τab,c
d-independent terms

Aa0 =
1

8
Λbc1 Λde2 [Dbc, Dde]V

a +
1

10
V aΛbc1 DbcDdeΛ

de
2 −

1

2
V bΛde1 DdeDbcΛ

ac
2

+
1

4
Λde1 DdeΛ

bc
2 DbcV

a − V bDbeΛ
de
1 DdcΛ

ac
2 − (1↔ 2) ,

Ba
0 =

1

4
Λde1 DdeΛ

bc
2 DbcV

a − 3

4
Λde1 D[deΛ

bc
2 Dbc]V

a − 1

5
V aΛcd1 DbcDdeΛ

be
2

+
3

4
V bΛde1 Db[cDde]Λ

ac
2 −

1

2
V bΛde1 DbcDdeΛ

ac
2 +

3

4
V bΛac1 Db[cDde]Λ

de
2

− 3

2
V bD[bcΛ

de
1 Dde]Λ

ac
2 +

1

2
V bDbeΛ

de
1 DcdΛ

ac
2 − (1↔ 2) ,

(A.5)

To simplify these expressions, note that

D[abDcd] =
1

2
Da[bDcd] −

1

2
D[cdDb]a = Da[bDcd] −

1

2

[
Da[b, Dcd]

]
. (A.6)

Hence we can write

Da[bDcd] = D[abDcd] +
1

2

[
Da[b, Dcd]

]
, D[cdD|a|b] = D[abDcd] −

1

2

[
Da[b, Dcd]

]
. (A.7)

Using these identities we find that the difference Ca is given by

Ca0 =
1

8
Λcd1 Λef2 [Dcd, Def ]V a − 1

10
V aΛde1 [Dbc, Dde] Λbc2 +

3

10
V aΛde1 D[deDbc]Λ

bc
2

− 3

8
V bΛde1 [Dde, Dbc] Λac2 −

1

4
V bΛde1 [Dbe, Dcd] Λac2 −

3

4
V bΛde1 D[bcDde]Λ

ac
2

+
1

4
V bΛac1 [Dbd, Dce] Λde2 −

1

8
V bΛac1 [Dbc, Dde] Λde2 −

3

4
V bΛac1 D[bcDde]Λ

de
2

+
3

4
Λde1 D[deΛ

bc
2 Dbc]V

a − 3

2
V bD[bcΛ

de
1 Dde]Λ

ac
2 − (1↔ 2) .

(A.8)
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Let us now turn to the terms linear in τab,c
d, given by

Aa1 =
1

4
V fΛde1 DdeΛ

bc
2 τbc,f

a − 1

2
V fΛde1 DfcΛ

bc
2 τde,b

a +
1

2
V fΛbc1 DdeΛ

ae
2 τbc,f

d − (1↔ 2) ,

Ba
1 =

1

40
τdeΛ

de
1 Λbc2 DbcV

a − 1

40
τdeΛ

bc
1 Λde2 DbcV

a +
1

8
τde,[f

[bδg]
c]Λde1 Λfg2 DbcV

a

− 1

8
τde,[f

[bδg]
c]Λfg1 Λde2 DbcV

a − 1

50
V aτdeΛ

bc
1 DbcΛ

de
2 +

1

50
V aτdeΛ

de
1 DbcΛ

bc
2

+
1

10
V aΛde1 τde,f

cDbcΛ
bf
2 −

1

10
V aΛbf1 τde,f

cDbcΛ
de
2 −

1

4
V bτde,f

cΛde1 DbcΛ
af
2

− 1

10
τdeV

bΛde1 DbcΛ
ac
2 +

1

4
V bτde,f

cΛaf1 DbcΛ
de
2 +

1

10
V bτdeΛ

ac
1 DbcΛ

de
2

+ τde,f
a

(
1

4
V bΛde1 DbcΛ

cf
2 −

1

4
V bΛcf1 DbcΛ

de
2 −

1

8
V fΛde1 DbcΛ

bc
2 +

1

8
V fΛbc1 DbcΛ

de
2

+
1

2
V fΛbe1 DbcΛ

dc
2

)
− (1↔ 2) ,

Ca1 =
1

8

(
−1

5
τdeΛ

de
1 Λbc2 +

1

5
τdeΛ

bc
1 Λde2 − τde,[f [bδg]

c]Λde1 Λfg2 + τde,[f
[bδg]

c]Λfg1 Λde2

)
DbcV

a

+
1

10
V a

(
1

5
τdeΛ

bc
1 DbcΛ

de
2 −

1

5
τdeΛ

de
1 DbcΛ

bc
2 − Λde1 τde,f

cDbcΛ
bf
2 + Λbf1 τde,f

cDbcΛ
de
2

)
+ V bΛde1

(
1

4
τde,f

cDbcΛ
af
2 +

1

2
τde,b

fDfcΛ
ac
2 +

1

10
τdeDbcΛ

ac
2

)
+ V bDbcΛ

de
2

(
−1

4
τde,f

cΛaf1 −
1

10
τdeΛ

ac
1

)
+ τde,f

a

(
1

4
V bΛde1 DbcΛ

cf
2 +

1

4
V bΛcf1 DbcΛ

de
2

+
1

8
V fΛde1 DbcΛ

bc
2 +

1

8
V fΛbc1 DbcΛ

de
2 +

1

2
V fΛbe1 DbcΛ

cd
2

)
− (1↔ 2) . (A.9)

For later on, it will be convenient to further split Ca1 = Da
1 + Ea1 + F a1 with

Da
1 = τde,f

a

(
1

4
V bΛde1 DbcΛ

cf
2 +

1

4
V bΛcf1 DbcΛ

de
2 +

1

8
V fΛde1 DbcΛ

bc
2 +

1

8
V fΛbc1 DbcΛ

de
2

+
1

2
V fΛbe1 DbcΛ

cd
2

)
− (1↔ 2)

Ea1 = V bΛde1

(
1

4
τde,f

cDbcΛ
af
2 +

1

2
τde,b

fDfcΛ
ac
2 +

1

10
τdeDbcΛ

ac
2

)
+ V bDbcΛ

de
2

(
−1

4
τde,f

cΛaf1 −
1

10
τdeΛ

ac
1

)
− (1↔ 2)

F a1 =
1

8

(
−1

5
τdeΛ

de
1 Λbc2 +

1

5
τdeΛ

bc
1 Λde2 − τde,[f [bδg]

c] + τde,[f
[bδg]

c]Λfg1 Λde2

)
DbcV

a

+
1

10
V a

(
1

5
τdeΛ

bc
1 DbcΛ

de
2 −

1

5
τdeΛ

de
1 DbcΛ

bc
2 − Λde1 τde,f

cDbcΛ
bf
2 + Λbf1 τde,f

cDbcΛ
de
2

)
− (1↔ 2) . (A.10)
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Finally, the terms quadratic in τab,c
d are given by

Aa2 =
1

8
V fΛbc1 Λde2 (τbc,g

aτde,f
g − τde,gaτbc,f g)− (1↔ 2) ,

Ba
2 =

1

8
V fΛbc1 Λde2

(
τdg,f

aτbc,e
g − τbg,f aτde,cg +

1

5
τde,f

aτbc −
1

5
τbc,f

aτde

)
−(1↔ 2) .

(A.11)

Let us begin with the quadratic terms. Their difference is given by

Ca2 =
1

8
V fΛbc1 Λde2

(
τbc,g

aτde,f
g − τde,gaτbc,f g − τdg,f aτbc,eg + τbg,f

aτde,c
g

− 1

5
τde,f

aτbc +
1

5
τbc,f

aτde

)
− (1↔ 2)

=
1

8
V fΛbc1 Λde2

(
τ̂bc,g

aτ̂de,f
g − τ̂de,gaτ̂bc,f g − τ̂dg,f aτ̂bc,eg + τ̂bg,f

aτ̂de,c
g

+
1

5
δaf τ̂bc,e

gτdg −
1

5
δaf τ̂de,c

gτbg

)
− (1↔ 2) ,

(A.12)

where τ̂ab,c
d = τab,c

d + 1
5δ
d
c τab. The first line is proportional to the quadratic constraint of

gauged supergravities and thus vanishes if we impose that quadratic constraint (3.27)

2τ̂ab,[c
hτ̂d]h,e

f − τ̂ab,ehτ̂cd,hf + τ̂ab,h
f τ̂cd,e

h = 0 . (A.13)

The second line can also be shown to vanish using the quadratic constraint, if we also

impose the linear constraint (3.28). To see this, note that the second line can be written as

∆ =
1

40
V aΛbc1 Λde2 (τ̂bc,e

gτdg − τ̂de,cgτbg)− (1↔ 2)

=
1

40
V aΛbc1 Λde2 ∆bc,de ,

(A.14)

with ∆ab,cd ∈ 45. Thus we can also write it as

∆a
bc =

1

3!
εbcdef∆ad,ef ,

= εbcdef
(

1

3
τeg τ̂ad,f

g − 1

6
τag τ̂ef,d

g +
1

6
τdg τ̂ef,a

g

)
= 0 ,

(A.15)

which vanishes by the quadratic constraint (A.13). Thus we have Ca2 = 0.

Let us now look at the DbcV
a terms in Ca0 and Ca1 . For these to vanish we find

0 = Λbc1 Λde2

(
[Dbc, Dde]V

a −
(
τbc,[d

[fδe]
g] + τde,[b

[fδc]
g] +

1

5
τbcδ

fg
de −

1

5
τdeδ

fg
bc

)
DfgV

a

)
.

(A.16)

Thus we are lead to impose

[Dbc, Dde] =

(
τbc,[d

[fδe]
g] − τde,[b[fδc]g] +

1

5
τbcδ

fg
de −

1

5
τdeδ

fg
bc

)
Dfg , (A.17)
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This also ensures that the terms involving V a without derivatives cancel up to the term

3

10
V aΛde1 D[deDbc]Λ

bc
2 , (A.18)

of Ca0 , which will have to be cancelled by the remaining terms. The remaining cancellations

are ensured by the linear constraint, which implies that only the 15, 40′ and 10 ⊂ 10⊗24

are non-zero. Thus, we can write

τab,c
d =

1

2
δd[aSb]c +

1

2
εabcefZ

ef,d +
2

15
δdc τab +

2

3
δd[aτb]c (A.19)

Let us now show that with these representations Ca vanishes, up to the constraint (3.30)

and the section condition (3.29). We will do so by considering the individual representations

in turn. Let us begin with the 15, so that we will for now set

τab,c
d|15 =

1

2
δd[aSb]c . (A.20)

Then we find for Ca1

Ca1 |15 = W b

(
1

8
Λef1 ScfDbeV

ac − 1

4
Λef1 SbfScfDceΛ

ac
2 −

1

8
Λac1 ScfDbeΛ

ef
2

)
+W bΛef1

(
1

8
ScfDbeΛ

ac
2 +

1

16
ScbDefΛac2 −

1

8
SbfDecΛ

ac
2

)
+W bΛac1

(
1

8
ScfDbeΛ

ef
2 +

1

16
SbcDefΛef2 +

1

8
SbfDceΛ

ef
2

)
− (1↔ 2)

= W bΛef1

(
1

4
ScfDbeΛ

ac
2 +

1

16
SbcDefΛac2 −

1

8
SbfDceΛ

ac
2

)
+W bΛac1

(
1

16
SbcDefΛef2 +

1

8
SbfDceΛ

ef
2

)
− (1↔ 2) .

(A.21)

In the first equality, the first line comes from the terms of Ca1 where the free index a is

on Λ1DΛac2 and Λac1 DΛ2, while the second and third line come from Da
1 |15. The totally

antisymmetric terms such as D[ab ⊗ Dcd] cannot contribute to the 15 so we only need to

consider the commutator terms of Ca0 . They are given by

Ca0 |15

= V bΛef1

(
− 3

16
DbeΛ

ac
2 +

3

16
SbdDceΛ

ac
2 −

1

16
SefDbeΛ

ac
2 −

1

16
SbcDefΛac2 −

1

16
SbfDceΛ

ac
1

)
+ V bΛac1

(
1

8
ScfDbeΛ

ef
2 −

1

16
SbfDceΛ

ef
2 +

1

16
ScfDbeΛ

ef
2 −

1

16
SbcDefΛef2 −

1

16
SbfDceΛ

ef
2

)
− (1↔ 2)

= V bΛef1

(
−1

4
ScfDbeΛ

ac
2 +

1

8
SbfDceΛ

ac
2 −

1

16
SbcDefΛac2

)
V bΛac1

(
− 1

16
SbcDefΛef2 −

1

8
SbfDbeΛ

ef
2

)
− (1↔ 2) . (A.22)
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We see that Ca|15 = 0 as required.

Let us now turn to the 40′. For that write

τab,c
d|40′ =

1

2
εabcefZ

ef,d . (A.23)

We start with Da
1 |40′ . Note that

5!AdefV
[bΛde1 DbcΛ

cf ]
2 = 12Adef

(
2V bΛde1 DbcΛ

cf
2 + 2V bΛcf1 DbcΛ

de
2

+4V fΛbe1 DbcΛ
cd
2 + V fΛde1 DbcΛ

bc
2 + V fΛbc1 DbcΛ

de
2

)
= Adef ε

bdecf εghijkV
gΛhi1 DbcΛ

jk
2 .

(A.24)

where Adef is totally antisymmetric in its indices. This is exactly the form of the terms in

D1
a|40′ so we see that

Da
1 |40′ = τde,f

a|40′

(
1

4
V bΛde1 DbcΛ

cf
2 +

1

4
V bΛcf1 DbcΛ

de
2 +

1

8
V fΛde1 DbcΛ

bc
2

+
1

8
V fΛbc1 DbcΛ

de
2 +

1

2
V fΛbe1 DbcΛ

cd
2

)
− (1↔ 2)

=
1

2

1

96
εdefghZ

gh,aεbdecf εijklmV
iΛjk1 DbcΛ

lm
2 − (1↔ 2)

=
1

16
Zbc,aεdefghV

dΛef1 DbcΛ
gh
2 − (1↔ 2) ,

(A.25)

The remaining terms of Ca1 |40′ are in Ea1 |40′ and are given by

Ea1 |40′ = V bΛde1

(
1

4
τde,c

f |40′DbfΛac2 +
1

2
τde,b

f |40′DfcΛ
ac
2

)
− 1

4
V bΛac1 τde,c

f |40′DbfΛde2

− (1↔ 2)

= V bΛde1 Z
gh,f

(
1

8
εdecghDbfΛac2 +

1

4
εdebghDfcΛ

ac
2

)
− 1

8
V bΛac1 Z

gh,f εdecghDbfΛde2

− (1↔ 2) . (A.26)

On the other hand, the commutator terms in Ca0 |40′ give

Ca0 |40′ = V bΛde1 Z
gh,f

(
3

16
εdegh[bDc]fΛac2 −

3

16
εbcgh[dDe]fΛac2 −

1

16
εbdghcDefΛac2

− 1

16
εbeghdDcfΛac2 −

1

16
εcdghbDefΛac2 +

1

16
εcdgheDbfΛac2

)
− (1↔ 2)

+ V aΛac1 Z
gh,f

(
−1

8
εbdgh[cDe]fΛde2 +

1

8
εcegh[bDd]fΛde2 +

1

16
εbcgh[dDe]fΛde2

− 1

16
εdegh[bDc]fΛde2

)
− (1↔ 2) .

(A.27)

Once again, we cannot have a contribution from the totally antisymmetric terms D[ab⊗Dcd]

so that (A.25), (A.26) and (A.27) must cancel amongst themselves. To see how this works,

first observe that

εdegh[bZ
gh,fDc]f = −εbcgh[dZ

gh,fDe]f +
1

2
εbcdegZ

hf,gDhf , (A.28)
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where we use, amongst other things, that Z [ab,c] = 0. Thus, we find

Ca|40′ = V bΛde1 Z
gh,f

(
1

4
εbdeghDcfΛac2 −

1

8
εcdeghDbfΛac2 −

3

32
εbcdefDghΛac2

)
+ V bΛac1 Z

gh,f

(
−1

8
εdegh[bDc]fΛde2 −

1

8
εbdgh[cDe]fΛde2 +

1

8
εcegh[bDd]fΛde2

+
1

32
εbcdefDghΛde2

)
− (1↔ 2)

= V bΛde1 Z
gh,f

(
1

4
εbdeghDcfΛac2 −

1

8
εcdeghDbfΛac2

)
+

1

8
V bΛac1 Z

gh,f εdecghDbfΛde2

− 3

32
V bΛde1 Z

gh,f εbcdefDghΛac2 +
1

32
V bΛac1 Z

gh,f εbcdefDghΛde2 −(1↔ 2) . (A.29)

Putting all this together we are left with

Ca|40′ =
1

16
Zbc,aεdefghV

dΛef1 DbcΛ
gh
2 −

3

32
V bΛde1 Z

gh,f εbcdefDghΛac2

+
1

32
V bΛac1 Z

gh,f εbcdefDghΛde2 − (1↔ 2) .

(A.30)

For this to vanish we require

Zgh,aDgh + fa(10) = 0 , (A.31)

where fa(10) denotes a function of the 10-dimensional representation, which is valued in

the 5 irrep.

We will now show that when this takes the form (3.30) Ca vanishes by studying the 10.

First note that the totally antisymmetric terms D[abDcd] can now contribute. Let us take

D[abDcd] = α τ[abDcd] , D[ab ⊗Dcd] = 0 , (A.32)

and determine α.

Let us, however, begin again with Da
1 |10. Also, we will again make use of

τbc,d
a = τ̂bc,d

a − 1

5
δac τab , τ̂bc,d

a = δa[dτbc] . (A.33)

Then, we find

Da
1 |10 =

1

96
εabcefτef εghijkV

gΛhi1 DbcΛ
jk
2 + τde

(
1

20
V bΛde1 DbcΛ

ac
2 +

1

20
V bΛac1 DbcΛ

de
2

− 1

40
V aΛde1 DbcΛ

bc
2 −

1

40
V aΛbc1 DbcΛ

de
2 −

1

10
V aΛbe1 DbcΛ

cd
2

)
− (1↔ 2)

=
1

96
εabcefτef εghijkV

gΛhi1 DbcΛ
jk
2 +τde

(
1

20
V bΛde1 DbcΛ

ac
2 +

1

20
V bΛac1 DbcΛ

de
2

)
− 3

20
V aΛbc1 τ[deDbc]Λ

bc
2 − (1↔ 2) .

(A.34)
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For Ea1 |10 we find

Ea1 |10 = V bΛde1

(
1

6
τefDbdΛ

af
2 +

1

3
τbeDcdΛ

ac
2 +

1

5
τdeDbcΛ

ac
2

)
+ V b

(
− 2

15
Λac1 τdeDbcΛ

de
2 +

1

6
Λad1 τdeDbcΛ

ce
2

)
− (1↔ 2) .

(A.35)

On the other hand from Ca0 |10 we obtain

Ca0 |10 = V bΛac1

(
1

12
τbdDceΛ

de
2 −

1

12
τceDbdΛ

de
2 −

1

24
τbcDdeΛ

de
2 +

1

24
τdeDbcΛ

de
2

)
+ V bΛde1

(
+

1

8
τbcDdeΛ

ac
2 −

1

8
τdeDbcΛ

ac
2 +

1

12
τbdDceΛ

ac
2 +

1

12
τcdDbeΛ

ac
2

)
− 3

4
αV bΛde1 τ[bcDde]Λ

ac
2 −

3

4
αV bΛac1 τ[bcDde]Λ

de
2 +

3

10
αV aΛde1 τ[deDbc]Λ

bc
2

− (1↔ 2)

= V bΛac1

(
−1

4
τ[bcDde]Λ

de
2 −

1

6
τceDbdΛ

de
2 +

1

12
τdeDbcΛ

de
2

)
V bΛde2

(
3

4
τ[deDbc]Λ

ac
2 −

1

4
τdeDbcΛ

ac
2 −

1

6
τcdDbeΛ

ac
2 +

1

3
τbdDceΛ

ac
2

)
− 3

4
αV bΛde1 τ[bcDde]Λ

ac
2 −

3

4
αV bΛac1 τ[bcDde]Λ

de
2 +

3

10
αV aΛde1 τ[deDbc]Λ

bc
2

− (1↔ 2) .

(A.36)

Putting all this together we find

Ca|10 =
1

96
εabcijτijεdefghV

dΛef1 DbcΛ
gh
2 −

1

4
V bΛac1 τ[bcDde]Λ

de
2 +

3

4
V bΛde1 τ[bcDde]Λ

ac
2

− 3

20
V aΛbc1 τ[deDbc]Λ

bc
2 +

3

10
αV aΛde1 τ[deDbc]Λ

bc
2 −

3

4
αV bΛde1 τ[bcDde]Λ

ac
2

− 3

4
αV bΛac1 τ[bcDde]Λ

de
2 − (1↔ 2)

=
1

96
εabcijτijεdefghV

dΛef1 DbcΛ
gh
2 +

5

4
V bΛac1 τ[deDbc]Λ

de
2 +

9

4
V bΛde1 τ[bcDde]Λ

ac
2

− 3

4
V aΛbc1 τ[deDbc]Λ

bc
2 − (α+ 2)

(
3

4
V bΛde1 τ[bcDde]Λ

ac
2 +

3

4
V bΛac1 τ[bcDde]Λ

de
2

− 3

10
V aΛde1 τ[deDbc]Λ

bc
2

)
− (1↔ 2)

=
1

96
εabcijτijεdefghV

dΛef1 DbcΛ
gh
2 −

5!

32
τdeV

[aΛbc1 DbcΛ
de]
2 +

4!

32
V bΛde1 τ[deDbc]Λ

ac
2

− 4!

96
V bΛac1 τ[deDbc]Λ

de
2 − (α+ 2)

(
3

4
V bΛde1 τ[bcDde]Λ

ac
2 +

3

4
V bΛac1 τ[bcDde]Λ

de
2

− 3

10
V aΛde1 τ[deDbc]Λ

bc
2

)
− (1↔ 2) . (A.37)
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We want to combine these different terms into expressions involving contractions of two

εabcde symbols, to make contact with (A.30). We find

Ca|10 =
1

96
εabcijτijεdefghV

dΛef1 DbcΛ
gh
2 −

1

32
εabcijτijεdefghV

dΛef1 DbcΛ
gh
2

+
1

32
εfghijεbcdefV

bΛde1 τijDghΛac2 −
1

96
εfghijεbcdefV

bΛac1 τijDghΛde2

− (α+ 2)

(
3

4
V bΛde1 τ[bcDde]Λ

ac
2 +

3

4
V bΛac1 τ[bcDde]Λ

de
2

− 3

10
V aΛde1 τ[deDbc]Λ

bc
2

)
− (1↔ 2)

= − 1

48
εabcijτijεdefghV

dΛef1 DbcΛ
gh
2 +

1

32
εfghijεbcdefV

bΛde1 τijDghΛac2

− 1

96
εfghijεbcdefV

bΛac1 τijDghΛde2 − (α+ 2)

(
3

4
V bΛde1 τ[bcDde]Λ

ac
2

+
3

4
V bΛac1 τ[bcDde]Λ

de
2 −

3

10
V aΛde1 τ[deDbc]Λ

bc
2

)
− (1↔ 2)

(A.38)

Thus, we have in total

Ca0 + Ca1 =
1

16

(
Zbc,a − 1

3
εabcijτij

)
εdefghV

dΛef1 DbcΛ
gh
2

− 3

32
V bΛde1

(
Zgh,f − 1

3
εfghijτij

)
εbcdefDghΛac2

+
1

32
V bΛac1

(
Zgh,f − 1

3
εfghijτij

)
εbcdefDghΛde2

− (α+ 2)

(
3

4
V bΛde1 τ[bcDde]Λ

ac
2 +

3

4
V bΛac1 τ[bcDde]Λ

de
2

− 3

10
V aΛde1 τ[deDbc]Λ

bc
2

)
− (1↔ 2) ,

(A.39)

which vanishes if we impose α = −2 as in (3.29) and the constraint (3.30)(
Zab,c − 1

3
εabcdeτde

)
Dab = 0 . (A.40)

Note that this is equivalent to the symmetric part of the hatted embedding tensor τ̂ab,c
d in

the 10-representation vanishing:

τ̂ab,cd
ef + τ̂cd,ab

ef = 0 , (A.41)

and hence we can also rewrite the commutator condition (A.17) as

[Dbc, Dde] = 2τbc,[d
[fδe]

g] +
2

5
τbcδ

fg
de . (A.42)
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B Curvature

The curvature,

RMN,a
b =

1

4
EcdME

ef
NRcd,ef,a

b , (B.1)

is traceless and thus lives in the irreducible representations

45⊗ 24 = 5⊕ 45⊕ 45⊕ 50⊕ 70⊕ 105⊕ 280⊕ 480 . (B.2)

Note first of all that the 45 can be described by the antisymmetric product of 10’s or

equivalently as the traceless product of 5⊗ 10. Let us therefore define(
Ra

bc
)d

e =
1

3!
εbcfghRaf,gh,e

d . (B.3)

This can be inverted as follows

Rab,cd,e
f =

3

2
εcdkl[bAa]

kl . (B.4)

Let us now give the different irreducible components of the curvature:

5

(Rb
ac)bc =

7

8

(
1

4
SbcZ

ab,c − 19

27
τbcZ

bc,a − 40

567
εabcdeτbcτde

)
. (B.5)

Using the quadratic constraints (3.28) we can write this as

(Rb
ac)bc =

221

1296
εabcdeτbcτde . (B.6)

The remaining irreducible representations are, up to the quadratic constraint, as follows.

The 70 and the two 45’s are given by

70

(Ra
d(b)c)d+

1

6
δ(c
a (Re

b)f )ef = − 35

864
SadZ

d(b,c)− 35

2592
δ(b
a ε

c)defgτdeτfg+
85

1296
εadefgZ

de,bZfg,c .

(B.7)

451

(Ra
d[b)c]d)−

1

4
δ[b
a (Rd

c]e)de = − 7

384
εbcdefSadτef . (B.8)

452

(Rd
bc)d]

a +
1

2
δ[b
a (Rd

c]e)de =
67

1728
εbcdefSadτef . (B.9)

For the 50 consider

R̂ab,cd = Ra[c,de],b
e (B.10)

and

R̃ab,cd = R̂ab,cd − R̂ba,cd + R̂cd,ab − R̂dc,ab , (B.11)
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Then it is given by

R̃ab,cd−R̃a[b,cd] =
3

16
Sa[cSd]b−

220

81
τa[cτd]b−

4

27
εabefgεcdhijZ

ef,hZij,g+
220

81
τa[bτcd] . (B.12)

The 105 gives rise to(
P105R̂

)
ab,cd

= P105

(
− 1

24
Sabτcd −

1

192
Se(bεa)cdfgZ

fg,e − 23

216
τe(bεa)cdfgZ

fg,e

)
= − 1

24
Sabτcd −

1

192
Se(bεa)cdfgZ

fg,e − 23

216
τe(bεa)cdfgZ

fg,e + . . . ,

(B.13)

where P105 denotes the projector onto this representation and the . . . refer to contractions

and (anti-)symmetrisations. For the 280 we obtain

(P280R)ab
cd,e = P280

(
− 1

81
τabZ

cd,e − 19

216
εabfghZ

cd,fZgh,e +
1

36
εabfghZ

gh,[cZd]f,e

)
= − 1

81
τabZ

cd,e − 19

216
εabfghZ

cd,fZgh,e +
1

36
εabfghZ

gh,[cZd]f,e + . . . ,

(B.14)

where P280 denotes the projector onto the 280 and the . . . refer to contractions and

(anti-)symmetrisations. Finally, there is the 480

(P480R)ab
cd,e = P480

(
− 5

288
SabZ

cd,e

)
= − 5

288
SabZ

cd,e + . . . , (B.15)

where P480 denotes the projector onto the 480 and the . . . refer to contractions.

C Scalar potential

C.1 Lorentz-invariance vs diffeomorphism invariance

Here we will show the details that allow one to rewrite the action (5.24) in terms of the

generalised metric as in (5.25).

Let us first of all rewrite the terms in (5.24) in terms of the fluctuation connection Γ̃.

A = 8MacMbd
(

Γ̃ea,b
eΓ̃fc,d

f + Γ̃ea,b
eΓ̃fd,cf

)
,

B = 16MacMbdΓ̃ea,c
eΓ̃fb,d

f ,

C =MacMbd

(
36

25
γabγcd +

24

5
γabΓ̃ec,d

e + 2Γ̃ea,b
eΓ̃fc,d

f − Γ̃ea,b
eΓ̃fd,c

f

)
,

D =MacMbd

(
2Γ̃ae,b

f Γ̃cf,d
e − 2

3
Γ̃ae,b

eΓ̃cf,d
f +

2

3
Γ̃ae,b

eΓ̃df,c
f +MefMghΓ̃ab,e

gΓ̃cd,f
h

)
,

E =MacMbd

(
−1

2
Γ̃ab,e

f Γ̃cd,f
e + 2Γ̃ab,e

f Γ̃cf,d
e + Γ̃ae,b

f Γ̃df,c
e +

1

2
MefMghΓ̃ab,e

gΓ̃cd,f
h

)
,

F =MacMbd

(
2∇abΓ̃ec,de +

6

5
∇abγcd +

6

25
γabγcd +

2

5
γabΓ̃ec,d

e − 12

5
Γ̃ab,c

eγed

−2Γ̃ab,c
eΓ̃fe,d

f − Γ̃ab,c
eΓ̃df,e

e
)
. (C.1)
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Let us compare this to the possible terms of the action which involve two derivatives

of the generalised metric. These are given in terms of the fluctuation connections as

MacMbd∇abMef∇cdMef = −2MacMbdΓ̃ab,f
eΓ̃cd,e

f − 2MacMbdMefMghΓ̃ab,e
gΓ̃cd,f

h ,

MacMbd∇abMef∇ecMdf = 2MacMbdΓ̃ab,e
f Γ̃cf,d

e ,

∇abMac∇cdMbd =MacMbd
(

Γ̃ef,c
eΓ̃ab,d

f + Γ̃ae,c
f Γ̃fb,d

e

+ Γ̃eb,a
eΓ̃cf,d

f + Γ̃ab,c
eΓ̃ef,d

f
)
,

Mac∇ab∇cdMbd =MacMbd
(
−2∇abΓ̃ce,de + 2Γ̃ab,d

eΓ̃cf,e
f + Γ̃ae,b

eΓ̃cf,d
f

+Γ̃ae,b
f Γ̃cf,d

e − Ẽēe [∇ae, ∇cd] Ẽbē
)
. (C.2)

Let us explain how the last equation comes about in more detail. We use the fact that

Mac∇ab∇cdMbd =Mac∇ab
(

Γ̃cd,e
bMed + Γ̃cd,e

dMbe
)

=MacMbd
(
∇aeΓ̃cd,be +∇cdΓ̃ce,be

)
+ . . . ,

(C.3)

where the . . . denote Γ̃2 terms. We also have

∇̃abΓ̃cd,f e − ∇̃cdΓ̃ab,f e = Γ̃ab,f
gΓ̃cd,g

e − Γ̃ab,g
eΓ̃cd,f

g + Ẽēe
[
∇̃ab, ∇̃cd

]
Ẽf ē , (C.4)

which is analogous to the statement that the usual Weitzenböck connection is flat. Us-

ing (C.4) we can write (C.3) as in (C.2).

One can now check that it is possible to write the potential (5.24) in terms of (C.2) as

follows:

Spot =

∫
d10Y d7xEe

(
1

8
MacMbd∇abgµν∇cdgµν −

5

14
MacMbdDab ln eDcd ln e

− 12

7
MacDabMbdDcd ln e− 6

7
MacMbd∇abDcd ln e

− 1

2
∇abMac∇cdMbd +

1

8
MacMbd∇abMef∇cdMef

+
1

2
MacMbd∇abMef∇ecMdf −Mac∇ab∇cdMbd + ∆V

)
.

(C.5)

We write the anomalous terms as ∆V = ∆ + δ with the individual pieces given by

∆ =
1

2
MacMbd

(
−Γ̃ae,b

eΓ̃df,c
f−2Γ̃ab,c

eΓ̃ef,d
f+Γ̃ae,c

eΓ̃bf,d
f+Γ̃af,b

eΓ̃de,c
f−Γ̃af,c

eΓ̃be,d
f
)
,

δ =MacMbdẼēe
[
∇̃ab, ∇̃cd

]
Ẽēf

=MacẼb̄b
(

2τae,[b
fDc]f Ẽb̄

e− 4

5
τaeDbcẼb̄

e−2ωae,[b
f∇c]f Ẽb̄e+2ωbc,[a

f∇e]f Ẽb̄e
)
. (C.6)

To analyse these two terms further, let us split

Γ̃ab,c
d = Γ̊ab,c

d − ωab,ec Ec̄cEd̄e , (C.7)
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where

Γ̊ab,c
d = −Ec̄cDabEd̄

c . (C.8)

Let us now expand ∆ in terms of pieces independent of ω, labelled ∆0, those linear in ω,

labelled ∆1, and those quadratic in ω, labelled ∆2. Similarly, δ has terms linear in τ and

ω, labelled δ1, and terms quadratic in ω, labelled δ2. We find that ∆0 is given by

∆0 =
1

2
MacMbd

(
−Γ̊ae,b

eΓ̊df,c
f−2Γ̊ab,c

eΓ̊ef,d
f+Γ̊ae,c

eΓ̊bf,d
f+Γ̊af,b

eΓ̊de,c
f−Γ̊af,c

eΓ̊be,d
f
)
,

(C.9)

and vanishes by the section condition. This is exactly the piece which is required in the

gauged EFT set-up to rewrite the action as a function of the embedding tensor in terms of

the generalised metric [58].

The terms in ∆1 and δ1 are not SO(5)-invariant and thus they need to cancel. Using

the linear constraint we find indeed that for vanishing background trombone τab = 0 their

contributions cancel, specifically

∆1 = −δ1 =MacẼbb̄
(

1

8
S̃abDceẼb̄

e − 1

8
S̃ceDabẼb̄

e − 1

8
S̃acDbeẼb̄

e +
1

6
εabeghZ̃

gh,fDcf Ẽb̄
e

)
.

(C.10)

We are left with the terms quadratic in ω given by

∆2 + δ2 =MacMbd

(
− 1

2
ωae,c

eωbf,d
f − 1

2
ωae,c

fωbf,d
e +

1

2
ωae,b

eωdf,c
f

− 1

2
ωae,b

fωdf,c
e − ωae,dfωfc,be − ωae,f eωcd,bf

)
.

(C.11)

C.2 Rewriting using “big” generalised metric

Let us first fix our notation. We label antisymmetric pairs of indices as A = [ab], A =

1, . . . , 10. To avoid double counting every contraction of these 10-d indices A,B comes

with a factor of 1
2 when written in terms of the fundamental SL(5) indices. For example,

we would write

V AWA =
1

2
V abWab . (C.12)

Now consider the possible terms which involve two derivatives of the generalised metric.

For simplicity, we will work with the first order action so there are no total derivative

terms. Then we can have the following terms:

MAB∇AMCD∇BMCD =
1

16
Mab,cd∇abM ef,gh∇cdMef,gh

=
3

2
MacMbd∇abMef∇cdMef ,

MAB∇AMCD∇CMBD =
1

16
Mab,cd∇abM ef,gh∇efMcd,gh

= −MacMbd∇abMef∇ecMdf −∇abMac∇cdMbd ,

∇AMAB∇B ln g =
1

4
∇abMab,cd∇cd ln g

=Mac∇abMbd∇cd ln g .

(C.13)
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These allow us to rewrite the terms which do not contain ω2 explicitly as

Spot =

∫
d10Y d7xEe

(
1

4
MAB∇Agµν∇Bgµν +

1

4
MABDA ln g DB ln g+

1

2
∇AMAB∇B ln g

+
1

12
MAB∇AMCD∇BMCD −

1

2
MAB∇AMCD∇CMBD

)
+ . . . . (C.14)

Finally, let us look at the terms involving ω2. To this end we consider

Mab,cdωae,c
fωbf,d

e =MacMbd
(
ωae,c

fωbf,d
e − ωae,dfωbf,ce

)
,

Mab,cdωae,c
eωbf,d

f =MacMbd
(
ωae,c

eωbf,d
f − ωae,beωdf,cf

)
,

Mab,cdωae,d
fωfc,b

e =MacMbd
(
ωae,d

fωfc,b
e − ωae,cfωfd,be

)
,

Mab,cdωae,f
eωcd,b

f = 2MacMbdωae,f
eωcd,b

f ,

(C.15)

and find that we can write the ω2 terms as

Spot =

∫
d10Y d7xEeMab,cd

(
−1

2
ωae,c

eωbf,d
f− 1

2
ωae,f

eωcd,b
f− 1

2
ωae,c

fωbf,d
e+ωae,d

fωfc,b
e

)
+ . . . . (C.16)

D External diffeomorphisms

D.1 Topological term and gauge kinetic terms

To begin let us split the variation of the gauge field δξAµ into δ0
ξAµ, which does not depend

on Mab, and δ1
ξAµ, which does. Thus, the relation

δξAµab = δ0
ξAµab + δ1

ξAµab , (D.1)

with

δ0
ξAµab = ξνFνµab , δ1

ξAµab =MacMbdgµν∇cdξν , (D.2)

holds. Now the δ0
ξ variation of the field strengths is given by

δ0
ξFµνab = LξFµνab +

1

2
εabcdeHµνρ,c∇deξρ ,

δ0
ξHµνρ,a = LξHµνρ a + Jσµνρb∇baξσ ,

(D.3)

where Lξ is exterior Lie derivative which is the usual 7-dimensional Lie derivative but with

the covariant derivative Dµ. We will also need

δ1
ξHµνρ,a = −3

4
εabcdeMbfMcg∇fgξσgσ[µFνρ]

de . (D.4)

Using these results, we find the anomalous variation of the topological term to take a simple

form. Here we express it as a variation of the 7-dimensional Lagrangian,

∆ξLtop = − 1√
6

(
2MacMbd∇cdξνgµ1νJµ2µ3µ4,cJµ5µ6µ6,d +∇ab (ξνJνµ1...µ3a)Jµ4...µ7b

)
.

(D.5)
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Let us now turn to the gauge-kinetic term SGK. It is easy to see that the δ0 variation

of the F2 term cancels the δ1 variation of the H2 term when the relative coefficients are

exactly 2
3 . The δ1 variation of F2 will be used to cancel against the variation of the other

terms and we will return to this later. For now, let us consider the δ0 variation of H2. It

is given by

δ0
ξLGK = −1

6
eMabHµνρa∇cbξσJσµνρc . (D.6)

This turns out to cancel the variation of the topological term (D.5), up to a self-duality

equation that comes from the equations of motion. Consider the variation of ∆Cµνρ. The

associated equations of motion are

∇ca
(

1

2
√

6
εµ1...µ7Jµ4...µ7a −

1

12
eHµ1µ2µ3bMab

)
= 0 . (D.7)

As usual [17], we take this projected duality equation to hold outside the derivative too,

so that
1

2
√

6
εµ1...µ7Jµ4...µ7a =

1

12
eHµ1µ2µ3bMab . (D.8)

It is now easy to see that the variations (D.6) and (D.5) cancel.

D.2 Scalar potential, Einstein-Hilbert and scalar kinetic terms

Since this calculation is similar to that for the usual EFTs, see for example the original

discussion [17], we will keep this section brief and mainly state results. However, we wish

to emphasise again that because we will require integration by parts, the invariance under

external diffeomorphisms only holds when the background trombone vanishes, i.e. τab = 0.

For the scalar potential, we calculate the anomalous variation under external diffeo-

morphisms of the first-order potential, (5.26). Its anomalous variation is given by

∆V = ∇cdξµ
[
∇abMacDµMbd +

1

4
MacMbd∇abMefDµMef −MacMbe∇abMdfDµMef

+
1

2
Mac∇abMbdDµ ln g +

1

2
Mac∇ab ln gDµMbd +

1

4
MacMbd∇abgνρDµgνρ

−1

4
MacMbd∇ab ln gDµ ln g

]
+ Dµ∇cdξµ

(
Mac∇abMbd − 1

2
MacMbd∇ab ln g

)
+ Dµ∇cdξρ

(
1

2
MacMbdgρν∇abgµν

)
. (D.9)

Let integrate this result by parts so that we only have ∇cdξµ terms. We find

∆V = ∇cdξµ
[

1

4
MacMbd∇abMefDµMef −MacDµ∇abMbd −MacMbe∇abMdfDµMef

−1

2
Mac∇ab ln gDµMbd +

1

4
MacMbd∇abgνρDµgνρ −

1

2
MacMbdDµ∇ab ln g

]
+∇cdξρ

[
−1

4
MacMbdgρν∇abgµνDµ ln g −MacgρνDµMbd∇abgµν

+
1

2
MacMbdDµg

µν∇abgρν +
1

2
MacMbd∇abgρνDµg

µν

]
. (D.10)
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We also need the variation of the Einstein-Hilbert term (5.12). It is given by

∆ξR =
1

2
MacMbd∇abξλ

[
∇cdDλ ln g − gµν∇cdDνgµλ −

1

2
∇cdgνρDλg

νρ

−1

2
gµνDν ln g∇cdgµλ −∇cdgµλDνg

µν

]
− 1

2
gµνgρσDµgσλFρνab∇abξλ

− 1

2
gµνFρµab∇abDνξ

ρ .

(D.11)

Finally, we will need the variation of the scalar kinetic term. We integrate it by parts

so that

δξLSK = gµνDµMabMacFνρcd∇bdξρ +∇cdξµ
[
−1

4
DµMab∇efMabMceMdf

+
1

2
DµMacMbd∇ab ln g + DµMab∇bfMaeMceMdf +∇abDµMacMbd

]
+∇cdξρDµMacMbdgνρ∇abgµν .

(D.12)

It is now a simple calculation to check that the anomalous variations of the different

terms cancel.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664]

[INSPIRE].

[2] C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets,

JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

[3] O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory,

JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

[4] O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory,

JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

[5] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826

[hep-th/9305073] [INSPIRE].

[6] W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47

(1993) 5453 [hep-th/9302036] [INSPIRE].

[7] A.A. Tseytlin, Duality Symmetric Formulation of String World Sheet Dynamics, Phys. Lett.

B 242 (1990) 163 [INSPIRE].

[8] M.J. Duff, Duality Rotations in String Theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].

[9] M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].

[10] N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281

[math/0209099] [INSPIRE].

– 37 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1088/1126-6708/2009/09/099
https://arxiv.org/abs/0904.4664
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4664
http://dx.doi.org/10.1088/1126-6708/2009/09/090
https://arxiv.org/abs/0908.1792
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.1792
http://dx.doi.org/10.1007/JHEP07(2010)016
https://arxiv.org/abs/1003.5027
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.5027
http://dx.doi.org/10.1007/JHEP08(2010)008
https://arxiv.org/abs/1006.4823
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4823
http://dx.doi.org/10.1103/PhysRevD.48.2826
https://arxiv.org/abs/hep-th/9305073
http://inspirehep.net/search?p=find+EPRINT+hep-th/9305073
http://dx.doi.org/10.1103/PhysRevD.47.5453
http://dx.doi.org/10.1103/PhysRevD.47.5453
https://arxiv.org/abs/hep-th/9302036
http://inspirehep.net/search?p=find+EPRINT+hep-th/9302036
http://dx.doi.org/10.1016/0370-2693(90)91454-J
http://dx.doi.org/10.1016/0370-2693(90)91454-J
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B242,163%22
http://dx.doi.org/10.1016/0550-3213(90)90520-N
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B335,610%22
https://arxiv.org/abs/math/0401221
http://inspirehep.net/search?p=find+EPRINT+math/0401221
http://dx.doi.org/10.1093/qjmath/54.3.281
https://arxiv.org/abs/math/0209099
http://inspirehep.net/search?p=find+EPRINT+math/0209099


J
H
E
P
0
3
(
2
0
1
7
)
0
0
4

[11] A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised

Geometry I: Type II Theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].

[12] D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP 06 (2011) 074

[arXiv:1008.1763] [INSPIRE].

[13] D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The Local symmetries of M-theory

and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930]

[INSPIRE].

[14] D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized

geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].

[15] D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and

Generalised Geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].

[16] D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of

generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].

[17] O. Hohm and H. Samtleben, Exceptional Field Theory I: E6(6) covariant Form of M-theory

and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].

[18] D.S. Berman and D.C. Thompson, Duality Symmetric String and M-theory, Phys. Rept. 566

(2014) 1 [arXiv:1306.2643] [INSPIRE].

[19] O. Hohm and H. Samtleben, Exceptional field theory. II. E7(7), Phys. Rev. D 89 (2014)

066017 [arXiv:1312.4542] [INSPIRE].

[20] O. Hohm and H. Samtleben, Exceptional field theory. III. E8(8), Phys. Rev. D 90 (2014)

066002 [arXiv:1406.3348] [INSPIRE].

[21] H. Godazgar, M. Godazgar and H. Nicolai, Einstein-Cartan Calculus for Exceptional

Geometry, JHEP 06 (2014) 021 [arXiv:1401.5984] [INSPIRE].

[22] H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai and H. Samtleben, Supersymmetric E7(7)

Exceptional Field Theory, JHEP 09 (2014) 044 [arXiv:1406.3235] [INSPIRE].

[23] E. Musaev and H. Samtleben, Fermions and supersymmetry in E6(6) exceptional field theory,

JHEP 03 (2015) 027 [arXiv:1412.7286] [INSPIRE].

[24] M. Cederwall and J.A. Rosabal, E8 geometry, JHEP 07 (2015) 007 [arXiv:1504.04843]

[INSPIRE].

[25] D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2)R+

exceptional field theory, Class. Quant. Grav. 33 (2016) 195009 [arXiv:1512.06115]

[INSPIRE].

[26] E.T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012 [arXiv:1512.02163]

[INSPIRE].

[27] C. Hillmann, Generalized E7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009)

135 [arXiv:0901.1581] [INSPIRE].

[28] A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised

Geometry II: Ed(d) × R+ and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].

[29] C.D.A. Blair, E. Malek and J.-H. Park, M-theory and Type IIB from a Duality Manifest

Action, JHEP 01 (2014) 172 [arXiv:1311.5109] [INSPIRE].

– 38 –

http://dx.doi.org/10.1007/JHEP11(2011)091
https://arxiv.org/abs/1107.1733
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1733
http://dx.doi.org/10.1007/JHEP06(2011)074
https://arxiv.org/abs/1008.1763
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1763
http://dx.doi.org/10.1007/JHEP01(2012)012
https://arxiv.org/abs/1110.3930
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.3930
http://dx.doi.org/10.1016/j.physletb.2011.04.046
https://arxiv.org/abs/1103.5733
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5733
http://dx.doi.org/10.1007/JHEP02(2012)108
https://arxiv.org/abs/1111.0459
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.0459
http://dx.doi.org/10.1007/JHEP01(2013)064
https://arxiv.org/abs/1208.5884
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.5884
http://dx.doi.org/10.1103/PhysRevD.89.066016
https://arxiv.org/abs/1312.0614
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.0614
http://dx.doi.org/10.1016/j.physrep.2014.11.007
http://dx.doi.org/10.1016/j.physrep.2014.11.007
https://arxiv.org/abs/1306.2643
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2643
http://dx.doi.org/10.1103/PhysRevD.89.066017
http://dx.doi.org/10.1103/PhysRevD.89.066017
https://arxiv.org/abs/1312.4542
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.4542
http://dx.doi.org/10.1103/PhysRevD.90.066002
http://dx.doi.org/10.1103/PhysRevD.90.066002
https://arxiv.org/abs/1406.3348
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3348
http://dx.doi.org/10.1007/JHEP06(2014)021
https://arxiv.org/abs/1401.5984
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5984
http://dx.doi.org/10.1007/JHEP09(2014)044
https://arxiv.org/abs/1406.3235
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3235
http://dx.doi.org/10.1007/JHEP03(2015)027
https://arxiv.org/abs/1412.7286
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7286
http://dx.doi.org/10.1007/JHEP07(2015)007
https://arxiv.org/abs/1504.04843
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.04843
http://dx.doi.org/10.1088/0264-9381/33/19/195009
https://arxiv.org/abs/1512.06115
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06115
http://dx.doi.org/10.1007/JHEP02(2016)012
https://arxiv.org/abs/1512.02163
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.02163
http://dx.doi.org/10.1088/1126-6708/2009/03/135
http://dx.doi.org/10.1088/1126-6708/2009/03/135
https://arxiv.org/abs/0901.1581
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1581
http://dx.doi.org/10.1007/JHEP03(2014)019
https://arxiv.org/abs/1212.1586
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1586
http://dx.doi.org/10.1007/JHEP01(2014)172
https://arxiv.org/abs/1311.5109
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.5109


J
H
E
P
0
3
(
2
0
1
7
)
0
0
4

[30] B. de Carlos, A. Guarino and J.M. Moreno, Complete classification of Minkowski vacua in

generalised flux models, JHEP 02 (2010) 076 [arXiv:0911.2876] [INSPIRE].

[31] B. de Carlos, A. Guarino and J.M. Moreno, Flux moduli stabilisation, Supergravity algebras

and no-go theorems, JHEP 01 (2010) 012 [arXiv:0907.5580] [INSPIRE].
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[65] G. Aldazabal, D. Marques and C. Núñez, Double Field Theory: A Pedagogical Review, Class.

Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].

[66] O. Hohm and D. Marques, Perturbative Double Field Theory on General Backgrounds, Phys.

Rev. D 93 (2016) 025032 [arXiv:1512.02658] [INSPIRE].

[67] X.C. de la Ossa and F. Quevedo, Duality symmetries from nonAbelian isometries in string

theory, Nucl. Phys. B 403 (1993) 377 [hep-th/9210021] [INSPIRE].

– 40 –

http://dx.doi.org/10.1007/JHEP02(2016)039
https://arxiv.org/abs/1509.04176
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.04176
http://dx.doi.org/10.1007/JHEP09(2014)070
https://arxiv.org/abs/1402.2513
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.2513
http://dx.doi.org/10.1002/prop.201400069
http://dx.doi.org/10.1002/prop.201400069
https://arxiv.org/abs/1409.4463
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.4463
http://dx.doi.org/10.1007/JHEP04(2015)050
https://arxiv.org/abs/1501.01600
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.01600
http://dx.doi.org/10.1007/JHEP07(2015)114
https://arxiv.org/abs/1504.04780
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.04780
http://dx.doi.org/10.1002/prop.200510202
https://arxiv.org/abs/hep-th/0501243
http://inspirehep.net/search?p=find+EPRINT+hep-th/0501243
http://dx.doi.org/10.1088/1126-6708/2008/02/044
https://arxiv.org/abs/0801.1294
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1294
http://dx.doi.org/10.1007/JHEP10(2012)174
https://arxiv.org/abs/1208.0020
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0020
http://dx.doi.org/10.1007/JHEP08(2016)154
https://arxiv.org/abs/1604.08602
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.08602
http://dx.doi.org/10.1007/JHEP03(2015)144
http://dx.doi.org/10.1007/JHEP03(2015)144
https://arxiv.org/abs/1412.0635
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.0635
http://dx.doi.org/10.1007/JHEP12(2015)029
https://arxiv.org/abs/1510.03433
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.03433
http://dx.doi.org/10.1007/JHEP11(2011)052
https://arxiv.org/abs/1109.0290
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0290
http://dx.doi.org/10.1007/JHEP04(2012)020
https://arxiv.org/abs/1201.2924
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.2924
http://dx.doi.org/10.1007/JHEP06(2013)101
http://dx.doi.org/10.1007/JHEP06(2013)101
https://arxiv.org/abs/1304.1472
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1472
http://dx.doi.org/10.1142/S0217751X14500808
https://arxiv.org/abs/1303.6727
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6727
http://dx.doi.org/10.1088/0264-9381/30/16/163001
http://dx.doi.org/10.1088/0264-9381/30/16/163001
https://arxiv.org/abs/1305.1907
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1907
http://dx.doi.org/10.1103/PhysRevD.93.025032
http://dx.doi.org/10.1103/PhysRevD.93.025032
https://arxiv.org/abs/1512.02658
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.02658
http://dx.doi.org/10.1016/0550-3213(93)90041-M
https://arxiv.org/abs/hep-th/9210021
http://inspirehep.net/search?p=find+EPRINT+hep-th/9210021


J
H
E
P
0
3
(
2
0
1
7
)
0
0
4

[68] A. Le Diffon and H. Samtleben, Supergravities without an Action: Gauging the Trombone,

Nucl. Phys. B 811 (2009) 1 [arXiv:0809.5180] [INSPIRE].

[69] O. Hohm and H. Samtleben, Consistent Kaluza-Klein Truncations via Exceptional Field

Theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].

[70] M. Cederwall, J. Edlund and A. Karlsson, Exceptional geometry and tensor fields, JHEP 07

(2013) 028 [arXiv:1302.6736] [INSPIRE].

[71] H. Samtleben and M. Weidner, The maximal D = 7 supergravities, Nucl. Phys. B 725 (2005)

383 [hep-th/0506237] [INSPIRE].

[72] J.-H. Park and Y. Suh, U-geometry: SL(5), JHEP 04 (2013) 147 [Erratum ibid. 11 (2013)

210] [arXiv:1302.1652] [INSPIRE].

[73] K. Lee, C. Strickland-Constable and D. Waldram, New gaugings and non-geometry,

arXiv:1506.03457 [INSPIRE].

– 41 –

http://dx.doi.org/10.1016/j.nuclphysb.2008.11.010
https://arxiv.org/abs/0809.5180
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.5180
http://dx.doi.org/10.1007/JHEP01(2015)131
https://arxiv.org/abs/1410.8145
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8145
http://dx.doi.org/10.1007/JHEP07(2013)028
http://dx.doi.org/10.1007/JHEP07(2013)028
https://arxiv.org/abs/1302.6736
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6736
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.028
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.028
https://arxiv.org/abs/hep-th/0506237
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506237
http://dx.doi.org/10.1007/JHEP04(2013)147
https://arxiv.org/abs/1302.1652
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.1652
https://arxiv.org/abs/1506.03457
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03457

	Introduction
	A brief review of SL(5) exceptional field theory
	Structure group, generalised Lie derivative and GL(10) connection
	10-manifolds with G(5)+-structure
	G(5)+-structure
	Fundamental vector fields
	GL(10) diffeomorphisms and Killing vectors

	Generalised Lie derivative and closure constraints
	Comparison to standard and gauged EFT

	GL(10) covariant derivative
	Curvature, torsion and integration by parts


	Tensor hierarchy
	Curved Cartan Calculus
	Tensor hierarchy
	Topological term

	The action
	Covariant Einstein-Hilbert term
	Kinetic terms
	Scalar potential

	Discussion
	Closure constraints
	Curvature
	Scalar potential
	Lorentz-invariance vs diffeomorphism invariance
	Rewriting using ``big'' generalised metric

	External diffeomorphisms
	Topological term and gauge kinetic terms
	Scalar potential, Einstein-Hilbert and scalar kinetic terms


