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1 Introduction

Double field theory (DFT) [1-4] has grown out of a desire to better understand T-duality
by using a formalism in which it is made manifest [5-8]. It does so at the level of the target-
space action by doubling the number of coordinates and introducing the generalised Lie
derivative that generates the local symmetries of the theory. For the toroidal case the extra
coordinates can be understood from string field theory [1] as being dual to momenta and
winding modes. However, the physical fields of the theory do not depend on all coordinates.
They are subject to a constraint, known as the “section condition”, which restricts their
dependence to a maximal isotropic subspace of the coordinates [1, 5]. Using this constraint,
the action of double field theory reduces to that of type II supergravity, the generalised Lie
derivative generates diffeomorphisms and B-field gauge transformations and the resulting
formulation looks reminiscent of generalised geometry [9-11].

The generalisation of double field theory to U-dualities, known as exceptional field
theory (EFT) [12-26],' uses an “extended coordinate space” which grows quickly with the
rank of the U-duality group, Eqq). The closure of its algebra of generalised diffeomor-
phisms also requires a section condition [13, 16, 28] which in turn restricts the coordinate
dependence of physical fields. This condition has two inequivalent solutions [17, 29] and
depending on which one is used, the action reduces to that of 11-dimensional supergrav-
ity or type IIB supergravity. With the section condition, the resulting formulation now
resembles exceptional generalised geometry [28].

One of the interesting problems in the field is to determine what the geometry underly-
ing the extended space is. This is pertinent if one wants to better understand non-geometric
flux compactifications for which de Sitter no-go theorems may not apply [30-35]. For ex-
ample, one may wish to generalise the powerful results of [36, 37] to include non-geometry.

Interesting progress has been made on this front by studying the exponentiation of the
local symmetries of the theories [38-46]. One hope is that these transformations can be
used to patch the extended spaces. However, these proposals are either defined on section,
as in [42, 45, 46] or already make use of a flat structure [38-41, 44].

Here we try and understand the extended space as a manifold with reduced structure
group. We make this explicit for the case of the SL(5) EFT relevant to seven-dimensional
compactifications and show that one can define a “curved” exceptional field theory for
any 10-dimensional manifold with GL(5)*-structure,? not just for locally flat GL(5)7-
structures, as would be required for the usual EFT formulation. Our formulation resembles
that of “DFT on group manifolds” [47-49], which we will henceforth refer to as DFTwzw.
However, the crucial difference is that we do not require the vielbein to be the Maurer-
Cartan form of the gauge group described by the background. The work here also shares
many ideas with [50, 51], whilst extending them to EFT.

We will begin with a review of the essential features of SL(5) exceptional field theory in
section 2 before discussing the geometry of 10-dimensional manifolds with GL(5) *-structure
in section 3. We define the relevant GL(5) "-structure, use it to construct the generalised Lie

!See also [27] for independent but related work.
2GL(5)" =~ SL(5) x R in our notation.



derivative and show that requiring the algebra to close leads to a set of constraints, including
the section condition. We also discuss the case when the GL(5) T-structure is locally flat and
show how this case reduces to the usual EFT. In section 4 we develop the formalism in order
to describe the tensor hierarchy of the EFT, closely following [52, 53]. Finally, in section 5
we give the full action, including the “external” seven-dimensional fields, for any GL(5)"-
structure, not just locally flat ones. The resulting theory is manifestly coordinate invariant,
as well as invariant under generalised diffeomorphisms and external diffeomorphisms. We
discuss background-dependence and comment on further work in section 6.

2 A brief review of SL(5) exceptional field theory

Let us briefly review exceptional field theory, focusing on the SL(5) EFT [12, 13, 26, 29]
which, for example, can be used to describe seven-dimensional maximal gauged supergrav-
ities. The theory has 10 “extended coordinates” Y% and seven “external coordinates” z*,
with a,b=1,...,5and p=1,...,7. The bosonic degrees of freedom of the internal sector
are described by a generalised metric

My € SL(5)/SO(5) (2.1)

which can be parameterised by a four-dimensional metric and three-form corresponding
to the internal sector of 11-dimensional supergravity, or by a three-dimensional metric, a
doublet of two-forms and 3 scalars, the internal sector of IIB [29].

Just as the bosonic degrees of freedom can be unified in the generalised metric M,
its symmetries, corresponding to diffeomorphisms and p-form gauge transformations, are
combined into the generalised Lie derivative

1 1
LAV = iAbcabCV“ + gvaabCAbc — Vb9 A% (2.2)

Here the parameter of generalised diffeomorphisms, A%, has weight % under the generalised
Lie derivative, so that under a generalised Lie derivative it transforms as

2

1 1
L, A = 5Alcdacd/\gb + (5 + 10) AL g ATt — AL AT — AID,qAEE (2.3)

In order for these transformations to close into an algebra
LAy Lan] V= L a0V (2.4)
where the E-bracket is the antisymmetrisation of the generalised Lie derivative, i.e.
[A1, Aol = % (Lay A2 — La M) (2.5)
one imposes the so-called “section condition”

8[abf acd}g =0, a[abacd]f =0, (26)



when acting on any pair of fields f and g. There are two inequivalent solutions (i.e. not
related by SL(5) transformations) to the section condition [17, 29], given by

(Z) &»j:O, where i=1,...,4,

2.7
(11) O0aq =0ap =0, where «,f=4,5, A, B=1,...,3. 27)

The first, where fields only depend on the four coordinates Y% corresponds to
11-dimensional supergravity while the second, with dependence on only three coordinates
YAB | corresponds to type IIB supergravity. One way this manifests itself is that the gen-
eralised Lie derivative of the generalised metric generates exactly the diffeomorphisms and
p-form gauge transformations of the bosonic fields of 11-dimensional /IIB supergravity.

Furthermore, one can define a unique action which is invariant under generalised Lie
derivatives. Upon using the appropriate solution of the section condition this reduces to the
four-dimensional /three-dimensional internal sector of 11-dimensional /IIB supergravity [12,
29]. This can be extended by introducing fields related to the tensor hierarchy of gauged
supergravities [54, 55], so that the resulting action reduces to the bosonic part of the full
11-dimensional or IIB supergravity [17, 19, 26]. We will describe this construction in more
detail in sections 4, 5 and appendix D, albeit in our geometric formulation.

3 Structure group, generalised Lie derivative and GL(10) connection

3.1 10-manifolds with GL(5)*-structure
3.1.1 GL(5)T-structure

In this paper we define a “curved” version of the SL(5) EFT on a 10-dimensional manifold
M which admits a GL(5)"-structure. In order to do this, consider first the usual frame
bundle 7y : FioM — M whose fibre consists of all ordered bases of the tangent bundle
and can thus be identified with GL(10). We will label the bases as E,. The structure
group of M can be reduced to GL(5)" if FjoM/GL(5)" admits a global section and each
such global section defines a GL(5)t-structure on M. In other words, a GL(5)"-structure
is defined by an equivalence class of frame fields E,p,

Eop ~ By <= Eup = us‘u EL,, (3.1)

where v € GL(5)*. Here a, b =1,...,5 and the pair of indices ab is antisymmetrised, thus
denoting the 10-dimensional representation of GL(5)". In local coordinates we will write
the frame fields as

Eab = IEabj\/laM ) (32)

with M = 1,...,10 denoting “curved” 10-dimensional indices. A global section of
F1oM/GL(5)" then implies that the transition functions of the frame bundle can be chosen
to be GL(5)"-valued. For each GL(5)*-structure, we can define a principal GL(5)*-bundle
75 FsM — M, whose fibres consist of the equivalence class of frame fields defining the
GL(5)"-structure and can thus be identified with GL(5)*.



Note that the GL(5)"-structure can also be defined using an invariant tensor. The
product 10®10®10®10 of GL(10) contains a singlet in the decomposition under GL(5) ™,

corresponding to a GL(5)"-invariant tensor, Ye‘}bﬁ = gabedi

€efghi, the “Y-tensor” in the
nomenclature of [16]. However, here we will find it more useful to use the equivalence class
of frame-fields (3.1) instead of the Y-tensor when discussing the GL(5)"-structure.
Unlike in the usual EFT formulation, we do not assume that our GL(5)"-structure
is locally flat. The obstruction to local flatness of this structure introduces a manifest
background-independence into our theory. We will return to this point briefly in the dis-
cussion 6. Finally, let us emphasise that in general the representative of a GL(5) T -structure

cannot be written in the form
Ea™ —= B = E,'Ey’ (3.3)

for some E,’, where 4, j = 1,...,5. When this can be done, the GL(5)-structure is called
locally flat.

3.1.2 Fundamental vector fields

Equipped with F5M we can construct a 5-dimensional vector bundle, the associated bundle
Es5 on which GL(5)" acts in the fundamental representation. The sections of this bundle
are “fundamental vector fields” with basis E,, so that we can write

V=VE,, for VeEs. (3.4)

Because the vector bundle FE5 has structure group GL(5)%, we can define a
“5-dimensional volume-form”, 7, as a global section of A5E§; . In the E, basis we denote
this by

Nabede = ‘]E‘l/26abcdey (35)

where |E| is the determinant of Ewp™ and €,p0q0 is the alternating symbol which equals the
sign of the permutation (abcde). We will often find it useful to use the tensor density €gpede
instead of 1gpeqe itself.

3.1.3 GL(10) diffeomorphisms and Killing vectors

We know that GL(10) diffeomorphisms act on tangent vectors via the usual Lie derivative
LyVvM = uNoyvM —vNoyUM . (3.6)

How does a GL(10) diffeomorphism act on a fundamental vector? A general diffeomorphism
will not preserve the GL(5)t-structure and thus not act as an automorphism of F5. In
order to obtain an action on FEj5, we have to restrict ourselves to automorphisms of the
GL(5)*-structure, or infinitesimally to GL(5)-Killing vectors.> These satisfy

1
LyEq = §>\adeEcd ; (3.7)

3We would like to thank Daniel Waldram for helpful discussions on this point.



where A\ € gl(5)*. Thus,

E“yLyEa™ € gl(5)" . (3.8)
We can express this in terms of the projector onto the adjoint of GL(5)™, Py, as
(I~ Pog)g 25 B mLyEg™ = 0. (3.9)
The projector is explicitly given by
2 8 8
bef _ bsef b sef b sef

Finally, it is useful to write this condition on Killing vectors UM in terms of an E-compatible
connection V with GL(10) torsion Ty nT.
1
< Aoy — 1 (Padj)g‘g;g@ E B, (VUM + UPTpy™) = 0. (3.11)
This implies that a Killing vector UM must satisfy

1 1 1
0= ZVNUM + ﬂéf‘\prUP - ﬁEdgMEchvthgh

1

3.12)
1 1 (
+ ZULTLNM + 7511{[/[ULTLPP — ﬁEdgMECdNULTLPQEhCPEghQ .

24

We can now define the Lie derivative of fundamental vector fields with respect to Killing
vectors (3.12), in terms of the connection V, as follows

1
LyV® = UMy Ve + < (Pagj)ycf VPBea B NV A UN
(3.13)
_ %VQTMNMUN + EbCPEaCNVbTPMNUM )

Here 1
ef _ f f
(Pady)yed = g080c1 + 0l (3.14)
denotes the adjoint action on the fundamental representation of GL(5)". The coefficient
in front of P, and the torsion terms are chosen in order for (3.13) to be independent of
the choice of GL(5)"-connection.
Let us briefly expand on the connections appearing here. We require the connections

in (3.11), (3.12) and (3.13) to be compatible with E, i.e. they induce a “spin connection”
wMﬂb in order to satisfy the Vielbein principle

VuEa™ = 0nEaw™ + Tap " Ear” + 2war BN = 0. (3.15)

We have a GL(5)"-connection when

1
anabcde = aM77abcde - 577abcdeWM,ff =0. (316)
This fixes 1
Wi = §8M In |E|, (3.17)

b

so that wys .’ is a gl(5)*-valued one-form. When wy,% = 0 we have a SL(5)-connection,

which is what we will make use of in section 3.3.



3.2 Generalised Lie derivative and closure constraints

Similar to DFTwzw [47-49], we now define the exceptional field theory on the flattened
spaces associated with the GL(10) vielbeine Eq,™ .4 Thus, we make use of the anholonomic
derivatives

Doy = Egy = B0, (3.18)

and define the generalised Lie derivative acting on V € I' (Es) as
1 1 1
LAVE = 5Abcl)bc‘/a + 5VancAbc _ VbDbcAac + §Tbc,daAchd ) (319)

To avoid any confusion we wish to highlight that in general there is no sense in which
the a index on V® could be “flat” as this would require a vielbein in the fundamental
representation of SL(5) which is not guaranteed. Put differently, such terminology only
makes sense if the GL(5)" structure is locally flat. In the more general case we wish to
consider, V is simply a section of the associated bundle Es.

For now we only require 7. 4% to be constant but otherwise arbitrary, and will de-
termine it soon. The generalised Lie derivative generates a SL(5) action if 74, . = 0.
Otherwise, 74 .° generates an additional RT action. In EFT, weighted vectors play an
important role. For a vector of weight w, we thus define the generalised Lie derivative

1 1 1
LAVE = §AbCDbCV“+ <5 + ;j) VanCAbC—VbDbCA“C+§Tbc’d“AbCVd—k wrp APV (3.20)
This mirrors the form of the genersalised Lie derivative of gauged EFTs [56].°

As in EFT, we take the parameters of generalised diffeomorphisms A to have weight
w = % under the generalised Lie derivative and ask for the algebra of these generalised Lie

derivatives to close, i.e.

[£A17 £1\2] = E[ALAQ]E 5 (3.21)

where

1
[Ar, Aglp = 5 (£a,A2 = LayAa) (3.22)

This ensures covariance of the expression (3.19). A straightforward but tedious calculation,
detailed in appendix A shows that this is achieved when we impose four types of constraints,
which we will collectively refer to as the closure constraints. First, we must identify Tab’cd
in (3.19) with the coefficients of anholonomy as follows

2
[Dap, Deg) = —QTab’[CeDd]e + gTachd~ (3.23)
In addition, we find that Tab’cd must satisfy the linear and quadratic constraints of seven-
dimensional maximal gauged supergravities and thus we interpret Tab’cd as the background
embedding tensor, corresponding to the background vielbeine E,,™. The linear constraint

“Despite this similarity our formulation is crucially different from DFTwzw because we do not use the
Maurer-Cartan forms of the background gauge group.

5While this paper was being prepared for submission, we became aware of [57] which considers defor-
mations similar to (3.20) in the context of an EFT for massive ITA theory.



restricts Tab’cd to lie in the 15 & 40" & 10 of SL(5) and relates it to 74. In particular, it

has to satisfy

6
7—ab,cc =0, 7—c[a,b]c = gTab . (3.24)

Thus, we can write

1 1 2 2
Tab,cd = 55[%Sb]c + ieabcefzeﬂd + E(ngab + g

where Z(ab)c = Zlabel — Siap) = 0 and 7(4) = 0. Note that the embedding tensor here is
related to the one in [58], %ab’cd, by

0t Thle » (3.25)

1
5

The quadratic constraint can be written as

. ) 1 1
Tab,cd = 7'ab,cd + 5gTab ) 7'ab,cd = 55[051517]0 + iﬁabcefzeﬁd + 5[%7—(117] . (3'26)

. ha . ha . fa ok
27—ab,[c 7—d]h,ef — Tab,e 7—cd,hf + 7—ab,hf'rcd,e =0. (327)

Together with the linear constraints this leads to the expressions [59]

1

1 1 1
ZSadzd(b,c) _ Z 6adefgZde,beg,c + g TadZd(b’C) _ _§ 61(1b Ec)dengdeng ’

1
SaaZ0 4 2 Pl 1y, = — 6 Ml 7y, (3.28)
1 1 2
Zsad Zbc,d g Tod Zbc,d _ §

Finally, we require a “section condition” for the anholonomic derivatives

62’ ec]dengdeng .

D[ab®Dcd]:07

(3.29)
D[achd] + 27-[achd] =0,

where the ® in the first line denotes that the derivatives act on two different objects. Note
that the symmetric part of (3.23) together with the linear constraint (3.25) implies that

<Zab,c o ;6abcde7_de> Dy, =0. (33())
At this stage we would once again like to emphasise the difference to DFTvwzw. There, the
background vielbein would be described by the Maurer-Cartan form of the gauge group,
which by the above constraint (3.30) can have less than 10 dimensions. Thus, if we had
wanted to use the Maurer-Cartan form here the extended manifold would have to have less
than 10 dimensions. A further discussion on this subject will appear in [60].

Finally, we can use expression (3.23) to determine the different irreps of the background
embedding tensor in terms of the vielbeine E.,M. We find

1
Tabp =3 (OMEw™ + Dy InE)

2
Sab = gEefMDe(aEb)fM ) (3.31)

1 2
Zab,c — _BﬁabdefEch (ngEdeM o DdeEng) + 475€abcd€ (aMEdeM + Dde In E) )



Here E denotes the determinant of E® ;. In order to satisfy the linear constraint, we also
have to impose that the following vanishes:

0= Ebcfgh]EdeM (DhaEng . ng]EhaM)
(3.32)

1
— gEdeef (Daf InE — EghMDagEth + 8MEan — ]EghMngEth> .

3.2.1 Comparison to standard and gauged EFT

Let us reflect and compare the situation here to the usual formulation of exceptional field
theory. This discussion is very similar to that in DFTwzw, see [47—49], although our viel-
beine are not necessarily Maurer-Cartan forms. Our 10-manifold has a GL(5)"-structure,
which, when it is not locally flat, introduces a manifest background dependence through the
vielbeine E,,. This is captured by the coefficients of anholonomy of the derivatives (3.23),
introduces a gauging in the generalised Lie derivative (3.19) and is identified with the back-
ground embedding tensor. Closure of the algebra of generalised diffeomorphisms further
requires a “section condition” (3.29). The theory thus resembles an expansion around an
EFT background, as in the “gauged EFT” setup [56, 58].

In the gauged EFT setup, just as in gauged DFT, the embedding tensor is determined
in terms of some GL(5)" “twist matrices”

Wa = p~'UL'Uy’ (3.33)

where |U| = 1 and p is a scalar density. The precise relationship is given by the generalised
Lie derivative of EFT )
Loy Wea = ifab,cff Wy, (3.34)

L0 here has the same form as (3.20) but with Tab’cd = 74 = 0, Wy has weight w = % and

4
Tab’cdef = 47—ab,[c[656];]] + gTab(Sa]; . (335)

In terms of the irreducible representations this gives

1 o
Sab = *;aijU(aZUb)] ’
1 ..
2 = o (U™ 0,057 U™ 9,0 (3.36)

1 » B 3
Tab = = 50U — 6p YU 0ijp -
p
We see that (3.23), which can be rewritten in the more suggestive form
1 of
Ly Bea = 5 Tabed ey (3.37)
is similar in spirit, but there the background vielbeine E,; do not have to be GL(5)-valued,

and we use the conventional Lie derivative, not the generalised Lie derivative. Nonetheless,
in gauged EFT one also finds that the section condition can be relaxed, see for example the



analogous discussion for gauged DFT [61-64] and also the review [65]: for closure of the
algebra one must impose the quadratic constraint on the embedding tensor, which by (3.34)
automatically satisfies the linear constraint, and the section condition (3.29), where in this
case the background vielbeine would be Wy, (3.33). However, one also imposes the section
condition between the background and fluctuations,

8[ijI/V\ab|klamn] =0, (338)

when acting on any fluctuations.

Thus, the curved EFT formulation looks similar to gauged EFT when we have a locally
flat GL(5)"-structure, as in eq. (3.3). However, even in the locally flat case, there is the
difference that the embedding tensor would still be given by (3.23) rather than (3.34), and
that we do not need to impose (3.38). A straightforward calculation shows, however, that
in the locally flat case, where we can write

Ew? = p~'UL' Uy’ , (3.39)

(3.31) agrees with (3.34). Furthermore, one finds that in this case (3.38) is sufficient to
satisfy (3.30), i.e.

1
<Z“b’c = 36“b0d67de) Day =0, (3.40)

since this is always taken to act on fluctuations. Finally, it is easy to see that when we
impose (3.38), (3.37) and (3.34) agree. This implies that (3.38) and local flatness are
sufficient for the the vielbeine to satisfy the linear constraint, i.e. (3.32). To summarise, in
the locally flat case with (3.38) our formalism reduces to the usual EFT set-up.

In the following sections we will show that even when the GL(5)"-structure is not
locally flat and we do not impose (3.38), we can use the GL(10) vielbeine E,, to con-
struct a curved EFT formulation reminiscent of gauged EFT. However, the fact that the
“background” is described by a GL(10) object while the fluctuations are in GL(5)" means
that the theory is not background-independent, see for example the discussion in section 5
of [66]. In contrast the usual double field theory formulation, which we wish to interpret
as the “locally flat” case, has recently been confirmed to be background-independent [66]
and it is reasonable to expect the same to be true of exceptional field theory.

Nonetheless, the formulation presented here is manifestly coordinate invariant, and
has a clear patching prescription which does not require the section condition. It can thus
describe non-geometric backgrounds [51]. The interested reader can find a review of the
patching discussion in double field theory in [40]. Finally, one may hope that it captures
other effects, such as non-Abelian T-duality [67].

3.3 GL(10) covariant derivative

Following [47], we define a spin-connection for a vector V/

VarVe =DV + wapaV?, (3.41)

~10 -



such that we can rewrite the generalised Lie derivative (3.20) as

1 1
LAV = iAbcvbcva + (5 + ;") VOV AP — VOV, A% (3.42)
We then find 1 1 1 5
Wab,cd = geabcefzef’d + g(sﬁzsb]c - §6gTab - §5ﬁ17_b}c : (343)
Note that this is traceless
wab,cc = 07 (344)

and that for a scalar of weight w, we have
1 1
£r8 = SADuyS + %s DapA™ = SAV 055 + %S VA (3.45)

so that there is no ambiguity as to whether we should be using V3 or Dy, for the weight-
term. It is easy to check that

vabecdefg = wab,hhecdefg =0, (346)

since (wgp) is s[(5)-valued. Thus,

y 1

— EECd MWeda’ s (3.47)

WM,a

is a s[(5)-valued one-form and it induces a connection for GL(10)-diffeomorphisms, I y;n,
via the vielbein postulate

VuEa" = 0nEa™ + 2Eyweq (o By + TapVEBap” = 0. (3.48)

It is easy to check that V), defined in (3.48) is a connection if w2 is a GL(10)-scalar.
This follows from the tensorial definitions (3.23). As discussed in subsection 3.1.3, the
connection here is a SL(5)-connection.

Finally, using (3.43) we obtain the explicit expression for the components of the
GL(10)-connection

1 1 1 5
Tun® =E%y <23MEabP - gEbcPECdMSad - EECdMEbfPEacdthgh’f - QECdMEbcPTad>

2
2R . (3.49)

3.3.1 Curvature, torsion and integration by parts

Let us calculate the usual GL(10) curvature and torsion of this connection. The curvature
is best calculated in terms of the spin connection wMﬂb. It is given by

Runa” = 20pwny0” + 200 0w - (3.50)

One can check that this is still traceless so that (RMN)ab = RMN,ab is a s[(5) element.
Using the vielbeine E M we see that the curvature tensor lives in the

45224 =5045045d50@ 70 © 105 @ 280 ¢ 480. (3.51)
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To evaluate the curvature tensor it helps to note that

20(pwN)” = O B Nwed,a” (3.52)
and 1
ZEab ME“N [Dap, Dea) = ONE™ pyDay - (3.53)
But from (3.23) and (3.35) we have that
a 1 Ci (& a
8[ME bN} = —gE d[ME fN]Tcd,ef b. (354)

The rest is a tedious but straightforward calculation which shows that none of the irre-
ducible representations (3.51) vanish, even using the quadratic constraints. We summarise
the irreducible representations in appendix B.

The torsion of the connection is given by

1
TMNP = PMNP — FNMP = E“b[MﬁN}]EabP + ZEbcPEabMECdNSad

1

3.55)
4 (
- gEab[NECdM}Ebfpﬁacdthghyf + gdaECdN]Tcd .

We see that for a general background, the torsion of this connection does not vanish. Let
us consider its trace

1 7
TN = —2E )y 7eq + Oy InE + §E“bM8NEabN = —QEabMTaba (3.56)

where in the final step we used the relation (3.31). This is important since it measures the
obstruction to integrating by parts: when integrating by parts we will pick up terms such as

I= /dl% Vu VMY, (3.57)
where VM will be a diffeomorphism-density. Thus,

I= /dl% (O VM + Taun™ VY =Ty NVY) = /dl% <8MVM + ;EabMTabVM> :
(3.58)
To integrate by parts we require I to be a boundary term, which only occurs when 7,5, = 0.
This is consistent with the fact that supergravities with a trombone gauging do not admit
an action principle. Instead they are defined only at the level of the equations of motion [68].
From the gauged supergravity perspective, this makes sense because the trombone gauges
an on-shell symmetry. Indeed, in the usual gauged EFT formulation, one also finds that
the trombone is the obstruction to integration by parts by a similar argument to that
presented here [69].
To conclude this section, let us note that there are trivial gauge parameters, with
respect to which the Lie derivative vanishes. These are given by

A% = etedey B, (3.59)

triv

where B, is any element of EZ of weight % This is the generalisation of an “exact form”
as given by the generalised Cartan Calculus [52, 53] that we will discuss in the follow-
ing section.
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Module(w,\) | Representations | Gauge field | Field strength
A(1/5,0) 10 Aab JFab
B(2/5,1/2) 5 B, Ha
C(3/5,1/2) 5 ce J*
D(4/5,1) 10 Dap Kab

Table 1. Modules, gauge fields and field strengths relevant for the tensor hierarchy and their
representations under SL(5) and GL(10). w denotes their weight under generalised Lie derivatives
while A denotes their weight under GL(10) diffeomorphisms.

4 Tensor hierarchy

In the full EFT, the fields which are “off-diagonal” between the internal extended space and
the external seven-dimensional space are described by a hierarchy of tensor fields. These
are related to the tensor hierarchy of maximal gauged SUGRA [54, 55]. Their structure can
be nicely described in terms of a certain chain complex [52, 53, 70]. In section 4.1 we first
generalise the formulation of this chain complex [53] to take into account the curvature of
the GL(5)"-structure. We then show in subsection 4.2 how this can be used to describe the
tensor hierarchy. Finally we derive the topological term of the Lagrangian in subsection 4.3.

4.1 Curved Cartan Calculus

We begin by constructing the curved version of the generalised Cartan Calculus [52, 53].
We want to introduce a nilpotent derivative so that we obtain a chain complex

A(1/5,0) <2 B(2/5,1/2) <%= ¢(3/5,1/2) <2 D(4/5,1), (4.1)

between the modules required for the tensor hierarchy, summarised in table 1.

In order to avoid clutter we will from here onwards drop the A value when referring to
the modules in table 1, with the GL(10)-values always to be taken as in table 1. We will
also make use of a scalar density S(1,1) which has weight 1 under both the generalised Lie
derivative and GL(10)-diffeomorphisms, but again we will refer to it simply as S(1). We
also define a bilinear product e between certain modules, which maps as follows.

o | A/ B2/5) cB3/5) D@5
A(1/5) | B(2/5) C(3/5) D(4/5) S(1)
B(2/5) | C(3/5) D(4/5)  S(1)

c(3/5) | D(A/5)  S(1)

D(4/5) | S(1)

Finally, we want the nilpotent derivative d and the product e to obey the following iden-
tity [52, 53]: for all A € A(1/5) and T € B(2/5) or C(3/5),

LAT =Ae (éT) FO(NeT) . (4.2)
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We use the same e product as in the “flat case” [53], defined as
1
(Al L4 ‘A2)a = ZﬁabcdeAl{CAge s
(AeB)" = A"B,,

_} cdpe
(A.C)ab_ 4€abcde-/4 ce, (4.3)

1
AeD = iAabDab,

(B1 @ B2)yp, = BaaBjijp »
BeC=B,C",

and which is defined to be symmetric when acting on different modules. However, we
modify the derivative 0 to be

. 1 . A 1
OB = §eabcdevcd88, ICy = Vb, 0D = §e“b6devbche, (4.4)

where B € B(2/5), C € C(3/5) and D € D(4/5). Note that these definitions also map the
GL(10) weights as required, see table 1.

The derivative Vg is as in (3.43) and it is important to note that d thus satisfies
integration by parts when 7., = 0. Let us now check the nilpotency, starting with

~ A ab 1
(aac) = 3PV 4V o0 (4.5)

We can split this expression into terms quadratic in the embedding tensor components,
those linear in the embedding tensor components and those without. For those without
we find
YA 1 abcde b
(aac)o = —5 ¢ DoDsCt (4.6)
We use the identity
2D[achd] = 2Da[chd] + [D[cd7D|a\b}] ’ (47)

and the section condition (3.29) to write this as
~ A ab 1
(aac)o = — ¢ [Dey, Dea)CF (4.8)

It is now easy to check using the coefficients of anholonomy (3.23), the linear con-
straint (3.25) and (3.43) that the terms linear in Sy, Z%¢ and 7, vanish. The terms
quadratic in the embedding tensor vanish by the quadratic constraint (3.27). The same
steps can be used to show that

(éép)a ~0, (4.9)

thus showing that the derivative d is nilpotent. One can also check that this nilpotent
derivative 9 is covariant under generalised Lie derivatives in the sense that the following

diagram commutes:

2 D

NN
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4.2 Tensor hierarchy

We now construct the tensor hierarchy [54, 55] as in EFT [17] by introducing field strengths
of the various potentials in table 1. Mutatis mutandis, the construction in this section is
formally identical to that presented in [53]. That is, the arguments and formulae in [52, 53]
hold, subject to the modification of the generalised Lie derivative (3.19) and the nilpotent
derivative (4.4). Thus, we will keep the discussion here brief and refer the interested readers
to the original construction in Eg [17] as well as [52, 53].

The fields of the tensor hierarchy are forms of the external spacetime as well as forms
of the extended space, i.e. of the chain complex (4.1). Because they can depend on both the
external spacetime and the extended space, they will transform under generalised diffeo-
morphisms, GL(10)-diffeomorphisms and external diffeomorphisms. To account for these
different symmetries, we introduce a covariant derivative for the external directions [17]

Du=0,—Laq,- (4.10)
Its commutator defines a field strength
Dy, D] =—LF,, , (4.11)
where
Fu, =20,A,) — [Au, Al - (4.12)

Here [V, W], = 2 (CyW — Ly'V) is the antisymmetrisation of the generalised Lie deriva-
tive. Although (4.11) is manifestly invariant under generalised Lie derivatives, the naive
field strength F),, as defined in (4.12) is not. The deviation from covariance is however a

term that generates a trivial generalised Lie derivative, i.e. it is of the form (éBW) ab. This
intertwining between forms of different degrees is a defining feature of the tensor hierarchy,
which continues by defining a field strength for B, , etc.

Subject to the modifications of the generalised Lie derivative and the nilpotent operator
3, we can proceed with formally equivalent definitions as for the “flat” case [53]. In particu-
lar, we define the covariant field strengths (we now drop the SL(5) indices to avoid clutter)

Fuw =203, A, — [Ay, Alp + 0By
Huvp = 30Byp) = 30,A, ¢ Ag + Apy @ [Au, Ajle + éCW/J ’
Twvpo = 4D[,Cypo) + 30B),,, @ Bpy — 6F |, @ Byy) + 4A), © (A, 0 9, A,))
— Ay, o (Ay o [Ap, Ag]E) + Do -
From these definitions, one can see that the field strengths satisfy the Bianchi identities
3D, Fop = MHyuwp »
491, Hopo) + 3F ju ® Fpo) = 0T pwpo -
Varying the gauge potentials leads to the following variations of the field strengths
0 Fuw = 2D, 0A, + 0AB,,
Hyuwp = 3D, AB, ) — 30A), @ Fp + OACup, (4.15)
8 Tuwpo = 4D AC, ) — 40.A1, @ Hypo] — 6F @ ABpy) + OADyyp0

(4.13)

(4.14)

vpo]
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where we defined the “covariant” gauge field variations
AB,y, = 0By, + Al 004, , (4.16)
ACW,, = 5C“Vp — 3(5./4[“ ° Bl,p] + A[M ° (Al, ] (5./4,)}) ,
AD,pe = 5'Dm,p0f45./4[# ° Cl,po] +3B[MV ° (5Bpa] +2A, 5Ag])+./4[“ o(A, e (A, 5./40])) .
Finally, the field strengths are invariant under the gauge transformations given by
0A, =D\ - 0Z,,
ABH’V == A L] f/'uj + 2D[/,LEV] - 3@},“/ 9
ACup = A @ Hyp + 3F 0 0 £y +3D,0,,5 — 0y
ADypo = A ® Tuwpo — 4H )y @ Eg) + 6F ), 0 O 0] + 4D, 8,01 -

(4.17)

4.3 Topological term

We now wish to construct the analogue of the topological term of EFT [26] which re-
duces in the locally flat case to the topological term of seven-dimensional maximal gauged
SUGRA [71]. Using the formalism described above, we construct it as a boundary term in
eight external and ten extended dimensions. The proposed term is

Stop = _2\1/6 /leY & <4118‘7M1---u4 ® Tuseeps — AF o ® (.o @ H%---us)) el s

(4.18)
Here we abuse notation by labelling the eight-dimensional space and the seven-dimensional
external space that is its boundary by the same indices, i.e. p =1,...,8 above. It is easy
to check that the integrand has the appropriate weight under generalised diffeomorphisms,
GL(10)-diffeomorphisms and external diffeomorphisms. We will show that when the trom-
bone vanishes, the variation of (4.18) is a boundary term, because this is sufficient for
calculating the action. We use the fact that when 7,;, = 0 we can integrate the nilpotent
derivative 9 by parts, to obtain

1 .
0Stop = _ﬁ /aled8$ |:_8©N1(5"42.(%#3#4#5.HM6N7M8))+2©M1 (aACuzmM ® jm-uus)
=249 1y (Fuops @ (ABuyys ® Hygprps)) | €715 (4.19)

As noted earlier, when the trombone is non-vanishing, there is no action principle because
we cannot integrate by parts, mirroring the behaviour in gauged SUGRA [68] and in
“gauged” EFT [69].

5 The action

We now wish to write an EFT action, with a curved GL(5)"-structure. This has a sim-
ilar form to seven-dimensional maximal gauged supergravity, with an “external” seven-
dimensional metric g,,, with vielbein e”,,. Under generalised diffeomorphisms, this external

vielbein transforms as a scalar of weight 1/5, i.e.
1

_ _ 1 -
Lpel, = §Aabvabem - EeﬂﬂvabAab. (5.1)
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In addition there are 14 scalars parameterising the coset space S(IS((?) We can write these

in terms of the generalised metric
My = B B0, (5.2)

where a transforms under SL(5) and a transforms under SO(5). Note that the structure
group can always be reduced to its maximal compact subgroup, thus in this case from
GL(5)" to SO(5), so that the existence of My, does not impose further restrictions on the
10-dimensional manifold. Finally there are also the field strengths of the tensor hierarchy,
which have been described in detail in the preceding section 4.

Schematically, the action takes the form

S = Sgn + Ssk + Sax + Stop + Spot - (5.3)
Here, we have

e Sgu is an Einstein-Hilbert-like term, involving the ©,, derivative, which is thus in-
variant under generalised diffeomorphisms,

e Sgi is the kinetic term for the scalars M,

e Sck contains the kinetic terms for the gauge fields of the tensor hierarchy,
e Siop is the topological term, see 4.3,

e Spot is the potential term, written completely in terms of g, and M.

Apart from the potential, the various terms appearing in the action (5.3) are very similar to
the usual EFT construction, see for example the original discussion in [17] and the specific
example of SL(5) in [26], and so we will keep their discussion brief. Each term is manifestly
invariant under generalised diffeomorphisms and GL(10)-diffeomorphisms, but not under
external diffeomorphisms, which act as follows

(Sgg;w = fpgpg,uy + g,uépgpu + Qué-pgup ’
5£Mab = prpMab )
0 A = € F ™ + MO Mg,V g (5.4)
AEB;U/,a = gA/HAW/,a )
Agc,wpa = é-/\j)\,uupa .
Here ¢#(x,Y) can depend on both the external and the extended coordinates. This is why
we use D, the covariant external derivative introduced in section 4. For example D, acts
on g,, as
Dugvp = Ougvp — LA, Gup - (5.5)
The variations (5.4) are the GL(10)-covariant generalisation of [17].
We further take E,; to be independent of the external coordinates, z#, so that

D,E,M =0. (5.6)
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It follows that
[©4, Vap] =0. (5.7)

The variation of E,™ also vanishes
5Eap™ = 0. (5.8)

Requiring (on-shell) invariance under the external diffeomorphisms fixes the relative
coefficients between the terms appearing in (5.3). We leave the details of the calculation
to the appendix D.

5.1 Covariant Einstein-Hilbert term

Here we follow [25] in constructing an Einstein-Hilbert term for the external metric g,
that is invariant under generalised diffeomorphisms. The alternative is to use the vielbein
formalism [17]. We can define a Riemann tensor that is covariant under external diffeo-
morphisms, generalised diffeomorphisms and GL(10)-diffeomorphisms as in the usual way,
but everywhere replacing 9, — D, i.e.

Ruupa = DpIWZ/O' - Qa]-—wup + F'u‘/\pl—V\zzo' - ]-—‘“)\O'FAVP ) (59)
where )
r,, = g"° (@(ygp)g - 25%9,,,,) . (5.10)

The Einstein-Hilbert term is then

Sen = / dYd 2 Eeg" R, . (5.11)

For the variation under external diffeomorphisms, see appendix D, it useful to integrate all
terms involving second-order derivatives by parts to obtain — up to boundary terms —

1 1
[ —— / dYd"z Ee [29#9“%” Ing + Zg’“’@# Ing®,Ing

5.12
1 Ny po 1 uv po ( )
+Zg Dug gz/gpa_ig 9,9"°Dp9v0

5.2 Kinetic terms

The kinetic term for the scalar is again defined simply by replacing the usual partial
derivative with a covariant derivative 9,, — ®, so that

1
Ssk = ; / d"Vd z Ee gD, M™D, Mgy, (5.13)

The coefficient % is required to ensure invariance under external diffeomorphisms.

For the gauge potentials we use the field strengths defined in section 4.2 but we only
introduce kinetic terms for F,, and H,,, as the higher forms can be dualised to just these
two. We obtain the action

1 2
Sak = —3 / d"Yd z Ee (]-"W“b]-"“”’CdMachd + 3HW,J,GHW%M@‘7) . (514
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where the factors —% and % are required to ensure invariance under external diffeomor-

phisms. At this point we should also highlight that the equation of motion coming from
varying C,, here and in the topological term (4.18) gives rise to a duality relation which
in the locally flat case reduces to the M-theory duality between three-form and six-form
and to the IIB self-duality. It takes the form

Ry AL RN VAT VLS (5.15)

and is required for the action to be invariant under external diffeomorphisms, see
appendix D.

5.3 Scalar potential

We next consider the scalar potential. This is expressed in terms of the scalar degrees of
freedom which are encapsulated in the generalised metric M,;. We will calculate the scalar
potential by requiring it to be invariant under generalised diffeomorphisms as well as reduc-
ing to the right supergravity action in the locally flat case and when the section condition
is solved. This implies that the potential is made of two independently invariant parts

1 ~ ~
Spot = / d"Yd s Ee (v1 + 8Mac./\/lbdvabg'uyvcd9uu> , (5.16)

where V7 depends only on M and V is a connection under the generalised Lie deriva-
tive (3.20) and defined as
VarVe = VsV + Lap Ve — wyapV°, (5.17)

for a vector V¢ of weight w. We will use a Weitzenbock-like connection

5
=Dglne, (5.18)

i%(113,061 = _EacvabEJCa Yab = 7

and derive V] in terms of the generalised torsion of this connection, mirroring the construc-
tion in [58, 64].° The generalised torsion is defined as

= 1 1
(ﬁX - LA) Ve = ST AV = STy A Ve, (5.19)
where T, is an irrep of the generalised torsion. Explicitly, we find
d a d 4 dT e a d a esd 2 d 2 d
Tab,c = I‘ab,c - 550 Fe[a,b} + 2Fc[a,b] - 2Fce,[a 61;] - %5c7ab - gr}/c[a(sb] : (5'20)

From (5.19) and (5.18) one can see that the torsion is invariant under GL(10) diffeo-
morphisms and transforms as a tensor of weigh —% under generalised diffeomorphisms.
However, for the connection (5.18) this torsion is not SO(5) invariant. We will return to
this shortly to determine the potential uniquely. Let us first decompose T, ab,cd into its irreps

1., 1 . 1
Tun" = 30Sue + Seaoes 20 = o (25 5 The + 55§Tab) . (5.21)

la

This is related to the flux formulation of DFT and EFT but is different to the construction used in [49].
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Explicitly, these are given by

Sab - Tc(a,b)C - 4fc(a,b)ca

. 1 1 - 1 =
b bd bd bed
Z/99¢ = gea ede&fc = §€a 6frde,fc - 56“ © er[fd,e]f7 (522)
) 6 ~
Tw = —ch[a,b}c = g'}’ab + Fe[a,b]e )

and live in the 15®40'®10, just as the embedding tensor does [71]. We can now construct
six independent generalised diffeomorphism scalar densities

& & bd = ) 2
A = S ScgM MY B = (SuM™)",
C = MM"TyT.q, D = MayMogMey Z0¢ Z001 (5.23)
E = MachdMefZac’bZdaf ) F= Machd@achd .

These terms do not individually form SO(5) scalars. However, the following combina-
tion does

1 e .. 5
‘/1 = _EMachdSabScd + ﬁMachdSachd - EMachdTachd ( )
5.24
1 ~ ~ 1 ~ ~ ~
o 5./\/lab./\/lCd_/\/lefZac,eZbd,f + 5MachdMefZac’bZ6d’f o Machdvachd )

One can see this by explicitly rewriting this in terms of the generalised metric. The details
of this calculation can be found in appendix C. When the background trombone vanishes,
Tap = 0, then we can write (5.24) up to the section condition (3.29), the quadratic and
linear constraints (3.27), (3.25) and the relationship (3.23) as follows

1 5
Spot = / dOvd z Ee <8M“CMbdvabvicdi - ﬁM“CMbdDab IneDyglne

12 6 1
- 7M“DabMbf’lpwl Ine — §M“0Mbdvachd Ine — §vab/\/lacvcd/vt”d
1 1
+ g/\A“/\anb/\/lef VeaMes + §M“0MbdvabM6fvechf (5.25)

1 1
- Manabvchbd + Machd< - §Wae,cewa,df - §Wae,cfwa,de

1 1
+ iwae,bewdf,cf - iwae,bfwdf,ce - wae,dfwfc,be - Wae,fewcd,bf>> .

This form of the scalar potential is manifestly SO(5) invariant but no longer man-
ifestly invariant under generalised diffeomorphisms. The appearance of the connection
components wab’cd is similar to the structure of the scalar potential of DFTwyzw [47, 48].
It would also be interesting to see this potential derived using a torsion-free connection,
for example following [17, 70, 72] for the fluctuations.
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Before moving on, let us give the action in a form where the boundary terms have
been integrated by parts (in the case when 7,, = 0 vanishes)

1 1
Spot = / d¥Yd"x Ee (SMaCM"dvabvicdi + éM“CMbdDab IngDelng

1 1 1
+ G MOV M Vg In g4+ S Vap MOV g MY+ e MO MOV 0y MV caM e

2

1 ac \ 4bd ef ac A bd 1 e f 1 f e (526)
+ QM M vab-/\/l Vec-j\/lalf + MM - iwae,c Whf,d _iwae,c Whf,d

1 e f 1 f e f e e f
+ iwae,b Wdf,.c® — §Wae,b Wdf,c — Wae,d” Wfch — Wae,f Wed,b .

We can also rewrite this form of the scalar potential in terms of the “big generalised metric”
Mabed — 2 Aqale Aqdlb. This allows one to compare the scalar potential to that found in the
flat SL(5) EFT [26]. The result is

1 1
Spot = /leYd7:c Ee (4MABvAviBgW + EMABDA IngDglng

1 1 1
+ §VAMABVB Ing+ EMABVAMCDVBMCD - QMABVAMCDVCMBD>

1 1 1
— ppebed <2wae,cewa,df + Wae,f Wedb! + 5Wae.! Wor.d® — Waed’ wfc,be> - (5.27)

Here we label antisymmetric pairs of indices as A = [ab], A =1,...,10 and every contrac-
tion of these 10-d indices A, B comes with a factor of % when written in terms of the SL(5)
indices. For example, the first term would read

1

1
4MABVAQ#VVB!]MV = 7Mab76dvabg'uyvcdgm/ . (5'28)

16

The details of this calculation can be found in appendix C.2.

The first two lines in (5.27) reduce immediately to the SL(5) EFT action of [26] when
the covariant derivatives are replaced by partial derivatives, while the final line represents
a non-minimal modification in the case of fluxes, just as in DFTwzw [47-49]. It is thus
easy to see that when the fluxes vanish we reproduce the usual SL(5) action [26]. When
they do not vanish but the GL(5)"-structure is locally flat, we expect to obtain the gauged
SL(5) EFT action.

6 Discussion

In this paper we have shown that it is possible to define a full SL(5) EFT, on any 10-
manifold with GL(5)"-structure. When the GL(5)t-structure is locally flat the formulation
here reduces to the usual EFT formulation. Furthermore the action given here reduces ex-
actly to the one found in the usual EFT formulation [26]. The benefit of the approach here
is that since we are patching the EFT not just with generalised diffeomorphisms, but with
ordinary GL(10)-diffeomorphisms, we can also describe non-geometric backgrounds, as first
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discussed in [51]. In the set-up presented here usual geometric backgrounds should then
be related to 10-manifolds whose structure group can be further reduced from GL(5)*
to Ggeom, its geometric subgroup. When this is not possible, the background would be
non-geometric.

One may also wonder what the physical significance of the curvature of the GL(5)™-
structure is. At this point we can only speculate that this may allow us to describe non-
Abelian T-dualities [67]. Also, as argued in [66], when the GL(5)"-structure is not locally
flat, the theory is not background dependent. This is due to the fact that fluctuations about
the background are described by elements of GL(5)" but the background, encapsulated in
the GL(10) vielbeine E,,M, is not.

This may suggest that we should limit ourselves to 10-manifolds with locally flat
GL(5)"-structure. However, as discussed in [73] for the O(D, D) case, this is a very restric-
tive requirement for the extended space. One may wonder what three- or four-dimensional
manifolds can be described as solutions of the section condition on this restricted set
of 10-manifolds.

An interesting contrast to the generalised geometry picture then emerges: as noted
in [73] while for DFT/EFT, there would be restrictions on the allowed extended manifold,
it is always possible to define a generalised geometry with flat O(D, D)- or Eg(q)-structure
on the generalised tangent bundle of any manifold. This may be reconcilable since the
local flatness restriction applies to the full doubled space not to the physical manifold
obtained after applying the section condition. Indeed, it has been observed in [66] that the
perturbations around WZW-backgrounds can be adequately described by DFT. This seems
to suggest that these manifolds admit a locally flat O(D, D) structure and so would be an
explicit example of backgrounds with interesting topology whose doubled space may admit
locally flat O(D, D)-structure. We leave these questions open for future publications.
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A Closure constraints

We begin with (3.19), where 7, 4* is for now an unspecified constant, i.e.

1 1 1
LAV = iAbCDcha + 5VancAbc — VP Dy A + §Tbc,daAbCVda (A1)

where A has weight % The algebra closes if
[‘Cl\l’ £A2] Ve = *C[A1,A2]Eva ) (AQ)

with 1
A1, Aol = B (Lo, A2 — L, M) . (A.3)

To keep this tractable we will call
A = [Lp,, Lp,) VY, B = Liay, a0, V" C*= A" - B“. (A.4)

Each of these expressions will involve terms which are independent of Tab7cd, linear in Tab,cd
and quadratic in Tab’cd. We will denote these with the subscripts 0, 1 and 2. We find for
the Tab’cd—independent terms

1 1 1
Al = 5 AYALe Dy, Dy V + 1T)vaAI;CDI,CDdeAg@ — §VbA‘feDd€DbcAgc
1
+ ZA‘1161)0,61\3019601/a — VP Dy A Dy A% — (1 5 2),
1 3 1
Bf = AT Daely DoV — S A Dyge A3 Dy V* = SV AT Dye De Ay (A-5)
3 1 3
+ ZVbAllieDb[che}Agc - §VbAC1leDbcheAgc + ZVbAiwDb[che]Age
3 1
- §VbD[bcAC1leDde}Agc + §VbDbeAC1leDchgc —(1+2),

To simplify these expressions, note that

1 1 1
D[achd] = §Da[chd} - §D[cdDb]a = Da[chd] - 5 [Da[baDcd]] : (AG)
Hence we can write
1 1
Da[chd] = D[achd] + 9 [Da[ba Dcd]] ) D[cdD\a|b] = D[achd] 9 [Da[ba Dcd]] : (A7)

Using these identities we find that the difference C* is given by
1 1 3
co = gA‘fdAgf [Dea, Deg] V= 25V [Doe D] A + 15 VA Dige Do A

3 1 3
— gvbAile [Dge, Dye] A% — vaAffe [Dpe, Dog] NS — 1Vbzvfez)[bcpde]Agc
3
4
VPDp A DAY — (1 4 2) .

1 ac e ]' ac €
+ZVbA1 [Dyd, Dee] AS —gvf’A1 [Dye, Dge] A%® —
3
2

VbACle[bche] Age

3\ de c a
+ ZACII D[deAg Dbc}v -
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Let us now turn to the terms linear in Tab’cd, given by

1 1 1
A = JVINE DaeA5 T = SVIAT D o5 Taep* + 5VIAT Daeh§ e 17 — (14 2)

Bl = MDY — ki NEAE DLV Ly A D
- %Tde,[ 100 A IAG Dy — %vardeA’iCDbcAge + %V“TdeA‘feDbcAé’c
+ %VaAilere,chbcAgf B TloV“Al{dee,chbcAge - ivdee,ch%eDbcAgf
_ %TdevbA‘feDbcAgc + ivbm@, AL DyAS + %OVdeeA(lchbCAge

1 1 1 1
+ Tde.s” <4VbA§1€DbCA;f - vaAif DycAge — gvf A% Dy NS+ gVf AY Dy Ade
1
+2val;eDbcAgC> —(1+2),

1 1 1
Cil = g <_5TdeAil€Agc + gTdeAIiCAge = Tde,|f [b(;g} C} AileAgg + 7-de,[f[b(sg} C} A{gAge> Dy V*

1 1 1

ST (5TdeAlchbcA§le — 5 ae A Doy — A 7ae s Diey” + A Tde,fCDbcAge>
b p de 1 cp Aaf 1 fp,. Aac i D, A€

+ VPAY 1 Tdet Doy + 5 Tdep” Dyel + 1o e Dbe\2

1 1 1 1
+ VP Dy NS (—4% s - mfdeA?) + Tae, s <4vbAf6DbcAgf + VA DA

1 1 1
+§VfA‘f€DbCA’§C + giAI{CDbCAge + 2VfA‘{eDbcA§d> —(1+2). (A.9)
For later on, it will be convenient to further split C{ = D{ + Ef + F{* with

1 1 1 1
DY = 7401 <4VbAfeDbcAgf + vaAif DA% + évf A% Dy Ay + gvf A8 Dy Ade
1
+2VfA’{eDbCA§d) —(1+2)
a brde L c af 1 f ac 1 ac
El =V Al ZTde’f DbcAQ + dee’b chAQ + TOTdeDbcAQ
1 1
+ VbDbCAge (—4Tde’ch(ff — deeA(1w> — (1 <~ 2)

1/ 1 1
P =2 <_5TdeA‘feA30 t £ Tae MG — e, (109 + Tae [b(Sg]C]A{gAge) D

1 1 1
357 <5TdeA§cDbcAge — ra MDA — ATy DAY + A?’”TdequDbcA@

—(12). (A.10)
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Finally, the terms quadratic in Tab,cd are given by

1
A3 = giAlfCAge (Toe,g"Tde, £ — Tde,g“Toe,f7) — (1 ¢+ 2) ,

1 b 1 1 (A.11)
Bg = SVIATAY (ng,f“nc,eg = Tog.f Tde” £ Tde,f T — ¢ bc,faTde> —(12).
Let us begin with the quadratic terms. Their difference is given by
a 1 f Abc pde a g a g a g a g
Cy = SVIATAY | Theig " Tdes” — Tdewg" Toes” = Tdg,s " The,e” + Tog,f " Tde.c
1 a 1 a
= Tde, “Toe + £ The,f Tae | = (1 422)

(A.12)

1
bepade [ ~ a~ ~ a~ A a~ ~ a -~
= gi ATAS Toe,g" Tde, £ — Tde,g“ Toe, 7 — Tdg,f *Toce” + Tog, " Tde,c”

1

*5

. 1 ..
5%Tbc,eg7—dg - 55?Tde,cg7—bg> - (1 A 2) s
where %ab’cd = Tab,cd + %5‘617'@. The first line is proportional to the quadratic constraint of
gauged supergravities and thus vanishes if we impose that quadratic constraint (3.27)

f f

. ha . ha . fa h
27—ab,[c 7—d}h,ef — Tabe Tedh” T Tabh® Tede = 0. (A13)

The second line can also be shown to vanish using the quadratic constraint, if we also

impose the linear constraint (3.28). To see this, note that the second line can be written as
1 aprbcpde (~ g A g

A= ZOV AT°AS (Tbc,e Tdg — Tde,c Tbg) —(1+2)

_1
40

(A.14)
VaAl{CAgeAbc,de y

with Agpcq € 45. Thus we can also write it as

1
b bed,
aczgecef ad.ef s

1 ) 1 R 1 N
_ 6bcd(if <37_eg7—ad,fg _ aTagTefadg + 6Td97-6f7ag>

(A.15)

which vanishes by the quadratic constraint (A.13). Thus we have C§ = 0.
Let us now look at the Dy .V* terms in Cff and C{. For these to vanish we find

1 1
0= AI{CAge <[Db07 Dy |V — (Tbcv[d[ffse]g] + Td&[b[f(;c]g} + 57'56553 — 5Tde5({é]> ngV“> .
(A.16)
Thus we are lead to impose

1 1
[Dbe, Dae] = <Tbc,[d[f56}g] — Taep 849 + gTbc5§f - 5Tde5gf) Dy, (A.17)
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This also ensures that the terms involving V¢ without derivatives cancel up to the term
3 a A de be
1oV A Dpae Do Az° (A.18)

of C, which will have to be cancelled by the remaining terms. The remaining cancellations
are ensured by the linear constraint, which implies that only the 15, 40’ and 10 C 10 ® 24
are non-zero. Thus, we can write

1 1 2 2
7—ab7cd = iéﬁlsb}c + QeabcefZef’d + EégTab + géﬁ;Tb]C (Alg)

Let us now show that with these representations C'* vanishes, up to the constraint (3.30)
and the section condition (3.29). We will do so by considering the individual representations
in turn. Let us begin with the 15, so that we will for now set

1
Tabe’l15 = 55[6251)]0. (A.20)

Then we find for CY
a b 1 ef ac 1 ef ac 1 ac ef
Cilis = W2 [ AT SerDoeV = J Ay SppSepDeel3® — SATSer Doeldy
baef 1 ac 1 ac 1 ac
+ W Al gSchbeAQ + TGSCbDefAQ — ngfDecAQ
1 e 1 e 1 e
+ WPA <850beeA2f + 173SbcpefAQf + gLs*beceAQf > —(1+2) (A21)
baef 1 ac 1 ac 1 ac
=W Al 7SchbeA2 + 7SbcDefA2 - *SbeceAz
4 16 8
1 e 1 e

In the first equality, the first line comes from the terms of C{ where the free index a is
on A1 DAY and A§°DA,, while the second and third line come from D¢|;5. The totally
antisymmetric terms such as Dy, ® D) cannot contribute to the 15 so we only need to
consider the commutator terms of C§. They are given by

15

3 3 1 1 1
= VbA(if <— EDbeA%C‘F EdeDceA%c — ESebeeAgc — TGSbCDefA%C — msbeceAiw>

1 1 1 1 1
bpac ef ef ef ef ef
Al =5, DypeAs! ——=SprDee A —SerDpeAs) ——Spe Dot Ay ——Spr Do A
+ V°AS <SSCf bel\y 16Sbf cel\y +16SCf be g 1651)0 ef g 16Sbf cel\y >
~(162)

1 1 1
= VbA(if (—4SchbeA(2m + ngcheAgc — meCDengc>

1 or 1 .
VbAge (-msbcpefAQf - gsl,beeAZf > —(1+2). (A.22)
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We see that C%|15 = 0 as required.
Let us now turn to the 40’. For that write

Tabe a0 = %éabcefzef’d. (A.23)
We start with D¢ |4. Note that
51 Age; VA% Dy AT = 1244 (2VbACfeDbcA§f +2VPAY Dy Ade
AV A DS+ VI DAY + VINED AT ) (A24)
= Agese? ™7 egpiin VINY Dy ADF

where Ages is totally antisymmetric in its indices. This is exactly the form of the terms in
D} 0 so we see that

1 1 1
D$ayr = Tae,r a0 <4VbA‘f€DbCA§f T vaAif Dy A% + évf A% Dy b

1 1
+§VfAI{CDbCA§6 + 2VfA‘{6DbCA§d> —(1+2)

(A.25)
= é%edefghZgh’aebdecfeijklmViA{kacAlQm —(1+2)
- %Zbcﬁaedefghvdzxif Dy — (145 2)
The remaining terms of C{|4o are in E{|4 and are given by
B0 = VOASe <le7'de,cf‘40’DbfAL2w + ;Tde,bf|4O’chA(2w> - iVbAclede,cf’le’Dbnge
— (14 2)

1 1 1
= VoAfezoM! <86decgthfA%C + 7 Cdebgn D ch§C> - ngA?CZgh’fEdecgthnge

—(12). (A.26)

On the other hand, the commutator terms in C§|4y give

3 3 1
Cilao = VOATeZ9M/ <16€degh[ch]fA§C = 1gCbegnlaDe fAY° — JpebdgheDes A

1 1 1
_7€beghdl)cngC - 7fcdghbDefAc2w + 7€cdgheDbfAL2w - (1 A 2)
16 16 16
(A.27)
+ VaAacZgh,f _1 D Ade 1 D Ade i D Ade
1 g Cbdghleel 1142 + g Ceeghlbd 122 + 16 Cbeghla el A2

1 e
_Eedegh[ch]ng > —(1+2).

Once again, we cannot have a contribution from the totally antisymmetric terms Diq,® D q]
so that (A.25), (A.26) and (A.27) must cancel amongst themselves. To see how this works,
first observe that

1
edegh[nghnyC]f - _6bcgh[ngh7fDe}f + §€bcdegzhf’gth 5 (A28)
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where we use, amongst other things, that Z l[ab.cl — (. Thus, we find

1 1 3
C%4y = VPAJeZ9mT (4€bdegthngc - éecdegthngc - 326bcdenghA5w>

+ VPAgez9m <_51;€degh[ch]nge - éebdgh[cDe}nge + é€cegh[de}nge
+312ebcdefpghAge> —(1+2)
= VbAfez9m] (Lllebdegthngc - éecdegthngc> + éVbA'fCZgh’f €decgh D A

- S%VbAfezghzf €bedef Dgn A5+ %VbAgczghvf €bede Dgn NS — (1 5 2) . (A.29)

Putting all this together we are left with

1 3
Cla = 752" CaegonV "ML Doc§" = S VINFZM ooty Dy A5* (A.30)
1 .
+ ﬁVbA?CZgh’febcdenghAge —-1e2).
For this to vanish we require
Zgh,aDgh + f%(10) =0, (A.31)

where f%(10) denotes a function of the 10-dimensional representation, which is valued in
the 5 irrep.

We will now show that when this takes the form (3.30) C® vanishes by studying the 10.
First note that the totally antisymmetric terms Djq, D) can now contribute. Let us take

D[achd] = T[achd] ) D[ab ® Dcd] =0, (A32)

and determine o.

Let us, however, begin again with D{|;o. Also, we will again make use of
a al a 1 a al a a
The,d” = Toe,d” — 55CTab, Thed” = O0[qThe] - (A.33)
Then, we find

1 A . 1 1
Diho = gee ! eegnijh VAL DoeAY’ + 7ae (mvbAilEDbcA%C + 55V AT DreA?

1 1 1
—ZOV“A‘#DbcAgC - ZOV“AZ{CDbCAge — mV“AfbecAgd> -~ (12

1 1 1 (A.34)
abce i ik e ac ac e
= 56¢ beel 1, regnije VIAY DypeAd +Tde<20vbAgl DycAS +%VbA1 Dy Ad >
3 a A be c
— 270‘/ Ali T[deDbc}Ag — (1 < 2) .
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For E{|io we find

1 1 1
Ef|10 = VPAfe <6TebedA§f + 37 beDea\5C + 5TdeDbCA§c>
(A.35)
2 1
+ vt <—15A§CTdeDbcAge + 6A‘fdrdeDbCA§6> —(1+2).

On the other hand from C§|1p we obtain

1

1
Y Tbc-DdeAge + TdeDbcAge>

1 1
C|1o = VPAS® <deDceA§le — ETceDbdAge 51

12
VbAde 1 D Aac_l D A& i D. A% i D, A&
+ 1 +—=TpeDgelly TdeDpeNg + TodD ey + Tedbello
8 8 12 12
4
— (14 2)

€ ac 3 ac € 3 a € C
VOA T Dy A3 — ZavbA1 TieDae ASS + 1—004V AfeT140 Dy AS

(A.36)

1 1 1
= VbA(fC <—47—[bche]Ag€ — cheDbdAge =+ deeDbCAge>

3 1 1 1
VbAge <4T[deDbc]AgC - ZTdeDbcAgc - chdDbeAgc + 3deDceA£2w)

3 3 3
= SOV AT TR Dag A5 — S aVPAT T D AS* + 150V AT 70 Dy Ay
—(1+2).

Putting all this together we find

1 g 1 3
C%wo = %eabc” TijedefgnV AT Dy A" — ZVbA‘fCT[bche] A5+ ZVbAiieT[bche]ASC
3 3 3
- %VGAQCT 1de DoAY + TOOZVG’AileT ide DoAY — ZaVbAiieT beDae)A5°

3
— ZaVbA‘fCT[bCDde}Age — (]_ < 2)

1 g 5 9
= %Gabm] TijedefonV NS Dy A" + ZVbAimT e Dy AF° + ZVbAiieT beDae) A

3 a A be c 3 € gac 3 e ©
-V Abrige Dpg AY — (o + 2) <4Vb/\61l TbeDae) A5 + ZVbAl TioeDa A3

3 a € C
T A{*T10e Dy A > —(1+2)

1 g 5! 4!
= %eabm] Tij€de fgthA'ff DbCAgh - @TdeV[QAI{CDbCAge] + @VbAtlieT[deDbc] A5°©

4! ac € 3 € ac 3 ac €
_ %VbAl Tiae Dy ASE — (a +2) <4VbAil TbeDae) AS” + ZVbAl Tioe Dae) A3

3 a € C
~15V ALeT14e Dy AS > —(1+2). (A.37)
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We want to combine these different terms into expressions involving contractions of two
€abede Symbols, to make contact with (A.30). We find

Cho = %EMMJT ij€defonV AT DAY — ﬁeabcuﬂ'j €defon VAT Dychg”
1 g 1 i
- ﬁefgh” pcdes VNI Tij DgnAS° — %Jghw €rcdes VAT Tij Dgn AS®
3 3
—(a+2) <4VbA‘feT[bche] A5+ JVIAT Tpe Do A*
_3 VeAder. D, A ) — (12
€ C ’
10 1 Tide b N2 (1 2) (A.38)
1 g 1 i
= — 5" riscaesgnV N DuehS + o5 P e (VONL T D AGS
1, 3
o %efghz] EbcderbAtlmTinghAge — (a + 2) <4VbAileT[bCDde] Agc

3 ac e 3 a A de c
+ZVbA1 T[bche]Ag — TOV A(li T[deDbc]Ag > — (1 — 2)

Thus, we have in total

1 1 e
Cg + Cil _ E (Zbc,a _ 3€ab62]7_ij) edefgthAibecAgh
3 1 ..
- 3—2V”A§le <Zgh’f — 36f9h”nj) €bede f Dgn A3°
1 1 .
+ 372VbAcltc (Zgh,f _ 35fgh”7_ij> GbcdenghAge (A?)g)
3 b nde ac | Sisbrac de
— (a + 2) EV Al T[bche]AQ + Ev Al T[bche}AZ
3

— mVaAileT[deDbc}Agc> — (1 < 2) R

which vanishes if we impose o = —2 as in (3.29) and the constraint (3.30)

1
<Zab,c — 3e“bcderde) Dy =0. (A.40)

Note that this is equivalent to the symmetric part of the hatted embedding tensor %ab’cd in
the 10-representation vanishing:

7A—ab,cdef + 7A_cd,abef =0, (A41)

and hence we can also rewrite the commutator condition (A.17) as

2
[Dbe, Dae) = 27pe 1l 5549 + 5Tbc5§g . (A.42)
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B Curvature

The curvature,

1
RMN,ab = ZECdMEefNRcd,ef,aba (B'l)

is traceless and thus lives in the irreducible representations
4524 =530450459 508 70 H 105 ¢ 280 ¢ 480. (B.2)

Note first of all that the 45 can be described by the antisymmetric product of 10’s or
equivalently as the traceless product of 5 ® 10. Let us therefore define

a1
(Ra) e = ST Rag e (B.3)

This can be inverted as follows

3
Rapeae! = ifcdkl[bAa] i (B.4)

Let us now give the different irreducible components of the curvature:

5

7

1 40
(Rbac)bc =3 <4Schab’c -

1
9 Zbc,a _ 6abcdeTbche) . (B5)

8 o7 Tbe 567

Using the quadratic constraints (3.28) we can write this as

(Rbac)bc_ 221 abcde

= 1996 ToeTde - (B.6)

The remaining irreducible representations are, up to the quadratic constraint, as follows.
The 70 and the two 45’s are given by

70
1 35 35 85
d(byc) 75(0 b)fye _ 0 Zd(b,c)_ié(b c)defg oY Zde,beg,c )
(Ba™)%a+ 00" (R )s = —ggq Sad o502% ¢ TAeTIoF T5gqCadefs -
45,
1 7
dlbye] \ 75[b dexd _ ' bedef B
(Ra ) d) 4 a(Rd ) e 3846 SadTef' ( 8)
459
1 67
Rbc d] 75bRc]ed _ bcdefSa ey B.9
( d )a+2 a( d )e 17286 de ( )
For the 50 consider
Rab,cd = Ra[c,de],be (B]-O)
and
Rab,cd = Rab,cd - Rba,cd + Rcd,ab - Rdc,ab ) (Bll)
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Then it is given by

- ~ 3 220 4

y 220
Rab,cd_Ra[b,cd} = E‘Sa[csd]b_STTa[ch]b_Eeabefgecdhijzeﬁhzw’g"i'STTa[chd] . (B12)

The 105 gives rise to

. 1 1 23
(P105R> wbed Pros <_245ab7'cd - @5e(b€a)cdfngg’e ~ 516 e(b€a)cdfgZ fg’€>

= *ﬂsalﬂ—cd - @Se(bea)cdfngg’ ﬁTe(bea)cdfg

(B.13)
zloe 4 |

where Pjg5 denotes the projector onto this representation and the ... refer to contractions
and (anti-)symmetrisations. For the 280 we obtain

1 19 1
(PQSOR)ade’e — P280 <_ S Tachd,e _ 2166abfthCd7fZgh7e + 36 €abfthgh7[CZd]f7€>
(B.14)

1 19 1
= —— 72 — = z°ebS zahe 4 — z9Mlezdlfe
8lTab 2165abfgh + 36 €abfgh + )

where Pygy denotes the projector onto the 280 and the ... refer to contractions and
(anti-)symmetrisations. Finally, there is the 480

) 5
(PysoR) "¢ = Pyso (-2888@122’3‘1’6) = —@Sabzc‘i’e +..., (B.15)

where Pygp denotes the projector onto the 480 and the ... refer to contractions.

C Scalar potential

C.1 Lorentz-invariance vs diffeomorphism invariance

Here we will show the details that allow one to rewrite the action (5.24) in terms of the
generalised metric as in (5.25).
Let us first of all rewrite the terms in (5.24) in terms of the fluctuation connection T.

A= 8MaCMbd (f‘ea,bef‘fc,df + f‘ea,bef‘fd,c.]l) >
B =16M“M"T, Tpa
36

24 - - ~ - -
C= Machd <257ab’70d + E’Yabrec,de + 2Fea,berfc,df - I‘eoz,berfd,cf> 5

~ ~ 2 . ~ 2. ~ ~ ~
D = Machd <2Fae,bfrcf,de - grae,bercf,df + grae,berdf,cf + MefMghFab,echd,fh) y

1= ~ ~ ~ ~ ~ 1 ~ ~
E= Machd (_QFab,echd,fe + QFab,echf,de + I‘ae,bedf,ce + 2M€fMghPab,echd,fh> )

- 6 6 2 - 1
F = Machd <2vabrec,de + gvab'}/cd + 275'7111770(1 + g’}/abr‘ec,de - Erab,ce’}/ed

_2fab7ceffe,df - I:‘ab,cef‘df,ee) . (Cl)
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Let us compare this to the possible terms of the action which involve two derivatives
of the generalised metric. These are given in terms of the fluctuation connections as

MMV MV gMeg = =2M MY T gy, 1T e’ — 2M* MM Mg Tap o Tea "
MMy MV e My = 2MOMYT 4, I T 1 4
VMV gMb? = M* M (fef,cefab,df + Cae e T ppa®
+ TepoTepal + fab,cefef,df> ,
MOV 3,V egMP = M* M (_2vabfce,de + 200 dCepe! + TaepTepa’
A0 Tefa® — B [Vae, Ved Ebé> . (C.2)
Let us explain how the last equation comes about in more detail. We use the fact that

Macvabvchbd = Macvab (fcd,ebMGd + I~‘cal,ed~/\/lb€>

~ ~ (C.3)
= Machd <vaercd,be + vchce,be) +...,
where the ... denote I'2 terms. We also have
@abf‘cd,fe - @cdfab,fe = f‘ab,fgf‘cd,ge - f‘ab,gef‘cd,fg + Eée [@ab @cd:| INEféa (04)

which is analogous to the statement that the usual Weitzenbock connection is flat. Us-
ing (C.4) we can write (C.3) as in (C.2).

One can now check that it is possible to write the potential (5.24) in terms of (C.2) as
follows:

1 5
Spot = / APy d"z e <8M“5Mbdvabg“”vcdgw, - ﬁ/\4‘10/\/1"dDab IneDeglne

12 6
— 7M“CDabM”chd Ine — ?M“CMdeachd Ine

1 1
- §vabM“vchbd + gM“CMdeQbMerCdMEf

(C.5)

1
+ iMachdVQbMefvechf o Manabvchbd + AV) )
We write the anomalous terms as AV = A + § with the individual pieces given by
1 - - - - . . - - - .
A= §Machd (7Fae,beFdf,cf72Fab,ceref,df+Fae,cerbf,dfJrFaf,beFde,cf7Faf,cerbe,df) ;
6 = MO MYEe |Vap, Vea B
actbb f e 4 e f e f e
= M*E 27—(1@,[1) Dc}fEB _57—aeDbc]EB —2wae,[b vc]fEB —|—2wbcy[a Ve]fEE . (CG)

To analyse these two terms further, let us split

fab,cd = 101ab,cd - wab,ec EECEJQ ) (07)
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where

f‘ab,cd = _EECDabEd_C- (CS)

Let us now expand A in terms of pieces independent of w, labelled Ag, those linear in w,
labelled A1, and those quadratic in w, labelled As. Similarly, § has terms linear in 7 and
w, labelled §1, and terms quadratic in w, labelled d5. We find that A is given by

A0 = %MGCMbd (_f‘ae,bef‘df,cf _2fab,cefef,df+fae,cefbf,df+faf,befde,cf _faf,cefbe7df) 3
(C.9)
and vanishes by the section condition. This is exactly the piece which is required in the
gauged EFT set-up to rewrite the action as a function of the embedding tensor in terms of
the generalised metric [58].
The terms in A; and 0; are not SO(5)-invariant and thus they need to cancel. Using
the linear constraint we find indeed that for vanishing background trombone 7., = 0 their
contributions cancel, specifically

(1 - - 1~ - 1~ - 1 5 3
Ay = —6; = MOCEY (SSacheEl—f - gSceDabEl;e - gSacDbeIEl—,e + geabeghzghff DcfEEe) .

(C.10)
We are left with the terms quadratic in w given by
1 1 1
Ao+ 0y = MdCMbd( - §Wae,cewa,df - iwae,cfwa,de + iwae,bewdf,cf
1 (C.11)
- iwae,bfwdf,ce - Wae,dfwfc,be - wae,fewcd,bf> .
C.2 Rewriting using “big” generalised metric
Let us first fix our notation. We label antisymmetric pairs of indices as A = [ab], A =
1,...,10. To avoid double counting every contraction of these 10-d indices A, B comes

with a factor of 3 when written in terms of the fundamental SL(5) indices. For example,
we would write

1
VAW, = 5Va"Wab. (C.12)

Now consider the possible terms which involve two derivatives of the generalised metric.
For simplicity, we will work with the first order action so there are no total derivative
terms. Then we can have the following terms:

1
MABY yMYPY s Mep = 175Mab’CdVabMef’gthdMef,gh

3
= 5M“CMbdvabM6f VeaMes

1
MABVAMEPN eMpp = M N oy MY o f Mg g1

= —~ MM MYV (Mg — Vg MOV g MO

(C.13)

1
VAMABV g Ing = ZvabMab’Cdvcd Ing
= Macvabedvcd Ing.
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These allow us to rewrite the terms which do not contain w? explicitly as
Sm“:/ﬁmeer(?w“ﬁquvay+1AWWDAngBmg+;vAMABvBmg
+féMABVAMCDVBAQ@;MABVAMCDVCAQHO%”.. (C.14)
Finally, let us look at the terms involving w?. To this end we consider
My, Twypa® = MCMP? <wae Fwppd® — Waea’ Wbﬁce) ,

(C.15)

b,cd _ bd

M>e wae,cewa,df = M*“M <wae c wad - wae,bewdf,cf> )
ab,cd e __ ac bd

M Wae,dfwfc,b = MM (

Wae,d chb — Wae cfwfdb > s
Mab70dwae,fewcd,bf = 2Mach Wae, f wcd,bf )
and find that we can write the w? terms as
1 1 1
Spot = / Ay d"x EeM > <_2Wae,cewa,df - §Wae,fewcd,bf - 2wae,cfwa,de"‘Wae,dfwfc,be)

+.... (C.16)

D External diffeomorphisms

D.1 Topological term and gauge kinetic terms

To begin let us split the variation of the gauge field §¢.4,, into (5214“, which does not depend
on M, and (%AM, which does. Thus, the relation

e A = 0QA + 6F AL, (D.1)

with
5gA“ab — é—l/;ypflb) 5%“4#(16 — MachdiVcdéy , (D2)

holds. Now the 52 variation of the field strengths is given by
1
(52]:/Wab — Lg./—‘:u,,ab + §€ab6deHuup,cvde§p ’
52H;wp,a = Lf,H,uzzpa + jopl/pbvba£0 )

where L¢ is exterior Lie derivative which is the usual 7-dimensional Lie derivative but with

(D.3)

the covariant derivative ©,. We will also need

3 c o e
_ZﬁabcdebeM gigi ga[,u,fup]d : (D4)

Using these results, we find the anomalous variation of the topological term to take a simple

1
O Hywp,a

form. Here we express it as a variation of the 7-dimensional Lagrangian,

AgLiop = — <2Machdvcd§VgM1Vjuz#sm,cjusueuﬁ,d + Vb (éijulnﬂsa) \7#4~..#7b> ’

(D.5)

S
V6
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Let us now turn to the gauge-kinetic term Sgk. It is easy to see that the 6° variation
of the F? term cancels the 6! variation of the H? term when the relative coefficients are
exactly % The ' variation of F? will be used to cancel against the variation of the other
terms and we will return to this later. For now, let us consider the §° variation of H2. It
is given by

1
0¢Lck = _geM“bHWf’avcbgaijC. (D.6)
This turns out to cancel the variation of the topological term (D.5), up to a self-duality

equation that comes from the equations of motion. Consider the variation of AC,,,. The
associated equations of motion are

1 1
Vca <2\/6€u1'“u7\7u4,..u7a - 1267‘[#1#2#317/\/1(1!)) =0. (D?)

As usual [17], we take this projected duality equation to hold outside the derivative too,
so that

1
55 Tt = MM (D.8)

It is now easy to see that the variations (D.6) and (D.5) cancel.
D.2 Scalar potential, Einstein-Hilbert and scalar kinetic terms

Since this calculation is similar to that for the usual EFTs, see for example the original
discussion [17], we will keep this section brief and mainly state results. However, we wish
to emphasise again that because we will require integration by parts, the invariance under
external diffeomorphisms only holds when the background trombone vanishes, i.e. 75, = 0.
For the scalar potential, we calculate the anomalous variation under external diffeo-
morphisms of the first-order potential, (5.26). Its anomalous variation is given by

1
AV =V 4" [vabM“@HMbd + ZM“CMdeQbMefBJ#Me F = MMV MY D M.

1 1 1
+7Ma6vabed©'u hlg + iMacvab In g@uMbd + ZMachdvabgypgugl/p

2
1 1
—ZM“CMl’dVGb Ing®, In g] + D,V eat (Macvab/\/lbd — 5/\/W‘f/vtbdvab In g)

1
0,5t (L) oo
Let integrate this result by parts so that we only have V 4&* terms. We find
1
AV =V g&" [4M“0MbdvabM€f©uMe ;=MD VM — MMV MY D M,
1 ac bd 1 ac A 4bd vp 1 ac A 4bd
—5/\/1 Vap In g0, M + ZM MV 97D 1G0p — 5/\/1 MDD,V Ing
1 ac 17 ac 12
+ Veat” [—4M MG,V apg" Dyl g — Mg, D, MV g

1 1
+§M“Mbd©ungabgpy + §Ma6Mbdvabng®M9W . (D.10)
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We also need the variation of the Einstein-Hilbert term (5.12). It is given by

1 1
A¢R = 5/\/tacj\/l"dvabé Vea®aIng = ¢""VeaDygur = 5VeagpDr9"

1 1% 174 1 vV

_igu Dy lngvcdgu)\ - vcdgu/\gugu :| - 59” gpag,uga)\}—puabvabEA (D'll)
1

- iglw]:puabvabgugp'

Finally, we will need the variation of the scalar kinetic term. We integrate it by parts
so that

1
e Lsk = 9" Dy M Moo Fopy Vpa€P + Vel [—gmabvewabwwdf

1
+§®MM“CMbdvab g+ DMV MaeMEMY 4 V0 M| (D-12)

+ vcdépguMQCMbdgupvabgﬂy .

It is now a simple calculation to check that the anomalous variations of the different

terms cancel.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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