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Abstract

Starting from 6D superconformal field theories (SCFTs) realized via F-theory, we show
how reduction on a circle leads to a uniform perspective on the phase structure of the
resulting 5D theories, and their possible conformal fixed points. Using the correspondence
between F-theory reduced on a circle and M-theory on the corresponding elliptically fibered
Calabi–Yau threefold, we show that each 6D SCFT with minimal supersymmetry directly
reduces to a collection of between one and four 5D SCFTs. Additionally, we find that in
most cases, reduction of the tensor branch of a 6D SCFT yields a 5D generalization of a
quiver gauge theory. These two reductions of the theory often correspond to different phases
in the 5D theory which are in general connected by a sequence of flop transitions in the
extended Kähler cone of the Calabi–Yau threefold. We also elaborate on the structure of the
resulting conformal fixed points, and emergent flavor symmetries, as realized by M-theory
on a canonical singularity.
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1 Introduction

Developing tools to characterize interacting SCFTs in higher spacetime dimensions is one of

the challenges of contemporary theoretical physics. These systems exhibit striking departures

from the standard paradigm of lower dimensional examples. The traditional methods of

perturbation theory do not apply, and one must instead resort to stringy constructions to

even establish existence. One of the remarkable recent developments in string theory is that

not only do such theories exist, but many of their properties can be understood by using the

geometry of extra dimensions.

Celebrated examples of this type are 6D superconformal field theories (SCFTs) [1–3].

For theories with (2, 0) supersymmetry, there is an ADE classification given by Type IIB on

supersymmetric orbifolds C2/ΓADE (see also [4–6]). For theories with (1, 0) supersymmetry,

there is a related classification of the theories which can be obtained from F-theory [7–13].

Several features of these models are captured by the above string constructions, for instance

the moduli spaces of vacua are captured by deformations of the Calabi–Yau geometry, the

anomaly polynomials are encoded in the intersection theory of the F-theory base [14–16], and

the 6D omega-background partition function is captured by topological string amplitudes on

the Calabi–Yau (see e.g. [17–21]).

Compactification also yields insight into strongly coupled phases of lower-dimensional

systems. For example, in the case of the 6D theories with (2, 0) supersymmetry, the higher-

dimensional perspective provides a geometric origin for non-trivial 4D dualities [22–25].

Though there is reduced supersymmetry in the case of the 6D (1, 0) theories, there has

recently been significant progress in developing analogous results [26–38].

Our aim in this work will be to use this 6D perspective to shed light on the phase

structure of 5D field theories. For earlier work on the construction and study of such theories,

see for example, [39–43], and for more recent studies, see for example [44–51]. Stringy

constructions of such 5D fixed points include D-brane probes of singularities [52], suspended

(p, q) five-brane webs [53,54], and purely geometric realizations using M-theory on a Calabi–

Yau threefold with a canonical singularity [39,41,55,56,42,57].

One of the confusing issues in such 5D theories is the existence of rather tight constraints

on purely gauge theoretic constructions. Using only effective field theory arguments, refer-

ence [42] argued that the strong coupling limit of a 5D gauge theory can only produce a

conformal fixed point when there is a single simple gauge group factor, with a strict upper

bound on the total number of flavors (i.e., weakly coupled hypermultiplets). This comes

about because in five dimensions, supersymmetry constrains the metric on the Coulomb

branch moduli space. To reach a conformal fixed point (starting from a gauge theory), we

need to be able to reach the singular regions of moduli space, but having more than one

gauge group factor obstructs this limit.

At first sight, this result would seem to severely constrain the possible 5D SCFTs which

can arise from 6D SCFTs, because the structure of many stringy constructions appears to
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often take the form of a quiver gauge theory, i.e., a gauge theory of precisely the type ruled

out by reference [42]. The key loophole [53,44] is that by moving in the vacuum moduli space

of the 6D SCFT compactified on S1, one may reach points at which the effective 5D theory

is superconformal. While moving in the moduli space, one may reach a region in which

the inverse gauge coupling squared of the field theory is formally negative. Before reaching

such a region, the effective field theory description which had been valid in the gauge theory

region breaks down and undergoes a phase transition. While such an operation is ill-defined

in gauge theory, it has a well-known meaning in Calabi–Yau geometry: It is a flop transition!

In M-theory compactified on a Calabi–Yau threefold, flopping a curve formally means we

continue its area to a negative value. What is really happening is that we pass from one

chamber of Kähler moduli space to another and the curve being flopped is the one whose

area controls the value of the inverse gauge coupling squared. In the flopped phase we get

another Calabi–Yau geometry. In the 5D SCFT literature this is sometimes referred to as a

“UV duality,” though we shall avoid this terminology.

In this paper we study the phase structure of 5D theories which descend from compacti-

fication of a 6D SCFT or its deformations. For some preliminary analyses of these theories,

see e.g. [30,33,39]. One of the general lessons from [12] is that an appropriate partial tensor

branch of a 6D SCFT is just a generalization of a quiver gauge theory in which the link fields

are themselves strongly coupled 6D SCFTs. Geometrically, the tensor branch is obtained

by performing a partial resolution of collapsing curves in the base of the elliptic fibration.

Starting from this partial tensor branch, reduction on a circle takes us to a generalization of

a 5D quiver gauge theory. Alternatively, we can remain at the 6D fixed point and reduce on

a circle. For (1, 0) theories, we find that this always yields a 5D SCFT, or more precisely, a

collection of between one and four 5D SCFTs.

Our primary claim is that these two 5D theories are connected by a path in moduli

space which is in general realized by a sequence of flop transitions. To see this, note that

F-theory compactified on an elliptic Calabi–Yau threefold is, under reduction on a further

circle, described by M-theory on the same Calabi–Yau threefold [58–60].1 In the M-theory

description, the volume VE of the elliptic fiber is related to the radius RS1 of the circle as:

VE = 1/RS1 . (1.1)

Compactification on a circle of the 6D tensor branch theory is realized by first resolving the

base of the F-theory model, and then resolving the elliptic fiber, taking it to infinite size.

Compactification of the 6D SCFT is realized by only resolving the elliptic fiber taking it

to infinite size. From the geometric engineering perspective, the latter possibility gives rise

to a 5D SCFT because we automatically have divisors collapsed to points. However, the

geometry also indicates that the former is indeed a phase connected to the 5D SCFT. We

1In what follows we shall always assume a Kaluza-Klein reduction on the circle in which we do not
quotient by an automorphism of the Calabi–Yau threefold. We also ignore potential ambiguities associated
with the spectrum of defects (see e.g. [26]).
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Figure 1: Depiction of the phase structure for 6D theories reduced on a circle. Reducing a
(1, 0) 6D SCFT leads to a 5D SCFT, as indicated on the right. A sequence of flop transitions
in the extended Kähler cone of the Calabi–Yau threefold connects this chamber of moduli
space to the one obtained by dimensional reduction of the generalized 6D quiver. This leads
to a generalized 5D quiver, which need not possess a fixed point in this chamber of moduli
space.

give a conceptual depiction of this trajectory in Figure 1.

So, whereas compactification of the 6D SCFT generates a 5D SCFT, the generalized

quiver will not necessarily lead directly to a 5D SCFT. Rather, one must consider a motion

in the extended Kähler cone of the Calabi–Yau threefold. The existence of the F-theory

model is what guarantees that such a motion in moduli space is possible, and does indeed

lead to a non-trivial 5D fixed point.

We stress that the moduli space for M-theory on a CY three-fold used in a geometric

engineering of a 6D SCFT within F-theory is strictly larger than the moduli space of a

5D SCFT: indeed, it equals the moduli space of the 6D SCFT compactified on S1. To

obtain the moduli space of the 5D SCFT, the radius of the circle must be taken to zero

size. Correspondingly, VE must be taken to infinity. There are different inequivalent limits

in which the volume of the elliptic fiber is sent to infinity, leading to different 5D fixed

points. This is somewhat reminiscent of what happens for 6D little string theories, that

admit various inequivalent decoupling limits, leading to distinct 6D SCFTs [61].

From the perspective of M-theory compactified on a non-compact Calabi–Yau threefold,

generating a 5D SCFT simply requires that some divisors simultaneously collapse to a point

at some location in the moduli space. There can be multiple such locations, possibly located

in distinct phase regions.

Of course, the above remarks prompt the question as to what fixed point is actually

realized by compactifying a 6D SCFT on a circle. Geometrically, we characterize this singular

limit by F-theory on a base C2/ΓU(2), with ΓU(2) a discrete group of U(2). Only some discrete
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subgroups lead to a consistent base for an F-theory model, and have been classified in [7]

(see also [35]). Making such a choice, we construct a Weierstrass model:

y2 = x3 + fx+ g, (1.2)

where here, f and g are polynomials in the holomorphic coordinates of C2 which transform

equivariantly under the action by the group ΓU(2). The order of vanishing for f and g dictates

the enhancement for elliptic fibrations. This characterization provides a direct way to access

the 5D fixed point: Since we have not performed any resolutions in the base, the only thing

left for us to do is take the limit where the elliptic fiber class expands to infinite size while

remaining maximally singular.2 In this limit, we find that the 5D theory breaks up into

at most four decoupled SCFTs. In particular, the number of such constituent 5D SCFTs

is much smaller than the dimension of the tensor branch for the 6D SCFT. Some of these

constituents correspond to supersymmetric orbifold singularities of the form C3/ΓSU(3) for

ΓSU(3) a finite subgroup of SU(3). There is typically another constituent corresponding to

collapsing a collection of four-cycles to a non-orbifold singularity.

To illustrate these points, we also present a number of concrete examples. Perhaps the

simplest class of examples are those where the ΓU(2)-equivariant polynomials f and g of

equation (1.2) are generic, i.e., no tuning is performed. These were referred to as “rigid

theories” in reference [7]. For these theories, we can fully characterize the resulting 5D fixed

point just using the data of ΓU(2) itself. Further tuning leads us to additional examples of

generalized quivers, some of which admit a rather simple form in F-theory. All of these cases

lead to novel generalized quiver gauge theories in five dimensions, and the F-theory model

serves to specify a path in moduli space to a fixed point after several flops.

The rest of this paper is organized as follows. First, in section 2 we give a general review

of how to generate 5D SCFTs from compactifications of M-theory on a non-compact Calabi–

Yau threefold. After this, we turn in section 3 to a brief review of the construction of 6D

SCFTs via F-theory, emphasizing the particular role of the orbifold singularity in the base.

We next turn in section 4 to an analysis of the 5D effective theories obtained by directly

compactifying a 6D SCFT on a circle, as well as the compactification of its tensor branch

deformation. We illustrate these general points with specific examples in section 5, and

present our conclusions and some directions for future work in section 6. Additional details

on the phases of the simple rank one non-Higgsable clusters are presented in Appendix A.

As this paper neared completion, we received [62] which considers a number of the same

examples. See also [63].

2 Naively, we can think of a given singular elliptic fiber as if it corresponds to an affine ADE graph ĝ, the
latter requirement amounts to taking the VE →∞ limit sending ĝ→ g.
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2 5D SCFTs from M-theory

In preparation for our analysis of 6D theories compactified on a circle, in this section we

review the construction of 5D SCFTs via M-theory on a (non-compact) Calabi–Yau threefold

X.3 To realize an interacting fixed point we need to reach a singular limit in Calabi–Yau

moduli space, which we expect to be resolved in the physical theory by the presence of

additional massless / tensionless states. Said differently, we expect 5D SCFTs for M-theory

on any canonical singularity P ∈ Xsing with a crepant resolution (i.e., Calabi–Yau blowup)

π : X → Xsing which includes curve(s) and divisor(s) in the inverse image π−1(P ) [42].

The geometric method we present subsumes other methods such as the construction of

5D SCFTs via webs of (p, q) five-branes in type IIB string theory. Indeed, as is well-known,

each of these web diagrams also defines a toric Calabi–Yau threefold [67]. The conformal

limit in such constructions involves bringing the various filaments of the web to the same

location in the web, i.e., a singular point, and in the interacting case always involves some

compact face of the (p, q) web collapsing to zero size. In toric geometry, such faces are

interpreted as compact divisors, and the limit where the face degenerates to zero size at a

single point simply corresponds to the contraction of this divisor to a point.

Let us now turn to the construction of M-theory on a canonical singularity and explain in

more general terms why we expect to realize 5D SCFTs. To see why, recall that we measure

volumes of even-dimensional cycles by integrating powers of the Kähler form J . For example,

for a two-cycle C, the volume is:

Vol(C) =

∫
C

J. (2.1)

For an M2-brane wrapped over a two-cycle, we get a BPS particle with mass proportional

to this volume. For an M5-brane wrapped over a divisor, we get a BPS string with tension

specified by the volume of this divisor. In the limit where the volume of the divisor passes to

zero, this tension drops to zero. A priori, the region in moduli space where particles become

massless and strings become tensionless can be different [68].

Now, to generate an interacting fixed point, we require at least one non-trivial divisor to

collapse to a point in the geometry. The reason is that with just collapsing curves, we only

obtain some collection of free hypermultiplets whereas with divisors collapsing to a curve, we

get nonabelian gauge symmetry rather than an interacting fixed point. Assuming, then, that

we have at least one collapsing divisor, our task reduces to determining possible connected

configurations of curves and divisors which can all collapse simultaneously to a single point.

A necessary and sufficient condition for arranging this is to require first of all, that we

have a non-compact Calabi–Yau with a complete metric (i.e., we can decouple gravity), and

second of all, that the metric on the Kähler moduli space remains positive definite as we

pass to the putative singular point of moduli space.

3 See e.g. [64–66] for the case of a compact Calabi–Yau.
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For M-theory on a compact Calabi–Yau threefold X with h1,1 Kähler moduli, if we choose

a basis DI ∈ H1,1
cpt(X), then the Kähler form is given by

J =
h1,1∑
I=1

mIDI . (2.2)

Scaling the Kähler class does not change the M-theory moduli, so the Kähler moduli are

usually expressed as the “volume one locus” within H1,1(X), namely we use effective coor-

dinates

ϕI ≡ mI/V 1/3, I = 1, ..., h1,1 − 1 (2.3)

where V ≡ 1
3!

∫
X
J ∧ J ∧ J . In practice we can scale V to infinity and simultaneously rescale

the mI in such a way that

ϕI =

∫
CI

J, I = 1, ..., h1,1 − 1 (2.4)

remains finite and possibly non-zero. Here, CI is a the basis of dual compact 2-cycles. An

M2-brane wrapped over such a curve yields a BPS particle with mass specified by ϕI . The

bosonic superpartners of ϕ define abelian vector bosons, which we denote by AI . They are

given by integrating the three-form potential of M-theory over the same two-cycles:

AI =

∫
C

C(3). (2.5)

Similarly, one can introduce dual coordinates ϕI ≡ DIJKϕ
JϕK where DIJK is the triple

intersection number of X, that controls the size of a basis of four-cycles of X. The ϕI are

the coordinates along the Coulomb phase which control the masses of BPS particles for the

5D theory, while the ϕI are the dual coordinates, which control the tensions of the BPS

monopole strings of the 5D theory.

The moduli space of M-theory on X is given by the extended Kähler cone of X [39].

A wall for a chamber of moduli space C is defined by the condition that either (1) a curve

shrinks to a point or a divisor shrinks to (2) a curve or (3) a point. For a given chamber C,

the effective action for these abelian vector multiplets is controlled by the 5D prepotential.

Its form is given by a cubic polynomial in the Kähler moduli:

FC =
1

3!
DIJKϕ

IϕJϕK , (2.6)

where the DIJK are given by the triple intersection numbers for divisors in the Calabi–Yau

threefold:

DIJK = DI ·DJ ·DK . (2.7)
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From this, we can read off the metric on moduli space:

GIJ =
∂2FC

∂ϕI∂ϕJ
. (2.8)

Indeed, the low energy effective action contains h1,1 − 1 5D abelian vector multiplets with

couplings (see e.g. [42]):

Leff = GIJdϕ
I ∧ ∗dϕJ +GIJF

I ∧ ∗F J +
DIJK

24π2
AI ∧ F J ∧ FK + · · · (2.9)

where here, F I = dAI is the field strength for the vector boson.

Now, to reach a conformal fixed point, it is necessary for us to move to a singular region

of the geometry. So, we select some subset of the ϕI , which we denote by the restricted index

ϕi. We then hold fixed the remaining Kähler moduli so that, for example, derivatives of the

prepotential with respect to these moduli are set to zero. Gij gives the matrix of effective

gauge couplings, and with respect to this subset, we demand that the Gij is positive away

from the origin. When this condition is satisfied, we can collapse the associated four-cycles to

zero size, and we thus expect to realize a 5D SCFT. When this condition is not satisfied, we

cannot simultaneously contract the size of all of the divisors. From this perspective, the task

of determining candidate SCFTs from M-theory configurations involves analyzing all possible

choices of divisors subject to these criteria. This condition of positivity as we move to the

origin of moduli space can also be stated as a convexity condition on our prepotential [42]:

FC(λ(1)ϕ
i
(1) + λ(2)ϕ

i
(2)) ≤ FC(λ(1)ϕ

i
(1)) + FC(λ(2)ϕ

i
(2)) (2.10)

with:

λ(1) + λ(2) = 1 and 0 ≤ λ(1), λ(2) ≤ 1. (2.11)

If we cannot satisfy this criterion, then we conclude that it is not possible to reach a conformal

fixed point in a particular chamber.

In such situations, we can of course, also contemplate formally continuing some of the

parameters ϕI to negative values, i.e., we allow negative area for a given curve. Geometrically

this is described by a flop transition between two Calabi–Yau manifolds with the same Hodge

numbers. In this flopped phase, the structure of the triple intersection numbers will change,

and consequently, also the prepotential. Observe that an M2-brane wrapped on such a curve

will generate a BPS state with mass which goes from being positive to negative.4 Once we

have the new triple intersection numbers, we can again analyze whether the prepotential is

convex in the new chamber Cnew. An important feature of the new prepotential is that it

retains much of the structure of the original. To exhibit this, we view FC as a function of

4Many flop transitions can be thought of as being realized by replacing a given curve with normal bundle
either O(−1) ⊕ O(−1) or O ⊕ O(−2) with an F1 which is then shrunk down with respect to the other
ruling [69]. However, there are also flops on rational curves whose normal bundle is O(1)⊕O(−3) [70–74].
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positive values for the moduli |ϕi|. The change between the prepotential for the old and new

phase can be written in the form

Fnew −Fold =
1

3!
L3, (2.12)

where L = (
∑
mIDI) ·Cflop is a linear function vanishing on the wall between the two Kähler

cones which is positive after the flop [75,41].

An interesting open question is to provide an explicit classification of all canonical sin-

gularities which can generate 5D SCFTs. Compared with the classification strategy for 6D

SCFTs generated by F-theory [7,12], this is a far more intricate question because it involves

tracking the collapse of four-cycles in our geometry. For example, we generate canonical sin-

gualarities from the orbifolds C3/ΓSU(3) with ΓSU(3) a finite subgroup of SU(3). The resolved

geometry will typically contain multiple divisors all collapsing to zero size simultaneously.

There can also be various intermediate limits where a Kähler surface first collapses to a

curve, and then this curve futher degenerates to a point. In some cases, this degeneration

has an interpretation in terms of 5D gauge theory, though in most cases it is more “exotic”

from the perspective of effective field theory.

Our plan in the rest of this section will be to illustrate some of these considerations for a

few well known examples. We will then proceed in the following sections to a much broader

class of examples as engineered by compactifications of 6D SCFTs on a circle.

2.1 Single Divisor Theories

In this subsection we consider 5D SCFTs generated by a single collapsing divisor in a Calabi–

Yau threefold. Assuming that the normal geometry in the Calabi–Yau threefold is smooth,

we can locally characterize the geometry by the total space O(KS)→ S, with S the Kähler

surface. The triple intersection number for the divisor S can also be evaluated using inter-

section theory on the surface itself. Indeed, we have:

S ·CY S ·CY S = KS ·S KS, (2.13)

where the subscripts for ·CY and ·S indicate that the intersection takes place in the corre-

sponding Kähler manifold. A necessary condition to reach a conformal fixed point is that

the metric on the moduli space remains positive definite, so we must require:

KS ·KS > 0. (2.14)

This condition is somewhat milder than the condition that we can directly contract S to a

point. Indeed, to decouple gravity in a local M-theory model, we either require S to contract

to a point, or to a curve. In the former case, we impose the stronger condition −KS > 0,

which restricts us to the del Pezzo surfaces. A milder condition is that KS ·KS > 0. This
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is satisfied, for example, for the Hirzebruch surfaces Fn, with n ≥ 2 (which are not Fano).

Observe that condition (2.14) is not satisfied for a del Pezzo 9 (i.e., half K3) or K3 surface.

Now, in the case of the del Pezzo k surfaces dPk, i.e., P2 blown up at a 0 ≤ k ≤ 8 points,

there is a well known correspondence for k ≥ 1 to a 5D SU(2) gauge theory with k − 1

hypermultiplets. In this geometric picture, the SU(2) gauge theory is realized by noting

that each del Pezzo surface can also be viewed as a P1
fiber bundle over a P1

base, possibly with

some locations where this fibration degenerates. In the limit where the fiber P1
fiber collapses to

zero size, we get a curve of A1 singularities, realizing an SU(2) gauge theory. The locations

where the fibration degenerates lead to local enhancements in the singularity type, providing

additional matter fields [41,55]. The case k = 0 does not admit an interpretation as an SU(2)

gauge theory, but is instead known as the “E0 theory,” (or C3/Z3) as in reference [41]. In

all cases, we reach a conformal fixed point by collapsing the Kähler surface to a point. This

also leads to an enhancement in the flavor symmetry, which can be directly computed via

the geometry [41]. It is given by the exceptional group Ek, where for k < 6 we simply delete

appropriate nodes from the affine Dynkin diagram Ê8.

A more unified perspective on all of these examples comes from first starting with the

local geometry defined by a del Pezzo nine surface [60,41]. This can be viewed as P2 blown

up at nine points, and is also described by a Weierstrass model of the form:

y2 = x3 + f4x+ g6, (2.15)

namely, we have an elliptic fibration over a P1 in which the Weierstrass coefficients f4 and g6

are respectively degree four and six homogeneous polynomials. Flopping the zero section of

this model, we then blow down additional points to reach the various del Pezzo models. These

correspond in the field theory to adding mass deformations to the associated hypermultiplets.

An additional class of examples are given by the Hirzebruch surfaces Fn, which for n > 1

are not Fano, i.e., −KS is not positive. From the perspective of the M-theory construction,

we cannot construct a local metric which is complete. From a field theory point of view, this

is the statement that there is no way to fully decouple gravity. Rather, we must include some

additional degrees of freedom to complete the description. In the geometry, this requires us

to introduce some additional divisors. Assuming the existence of at least one more divisor,

we can now see why such a model could produce a 5D SCFT. First of all, we recall that

Fn can also be viewed as a P1
fiber bundle over a P1

base, in which the first Chern class of the

bundle is n. If we can take a limit in the Calabi–Yau moduli space in which the volume of

P1
base collapses to zero size, we get a weighted projective space P2

[1,1,n]. This can then collapse

to zero size. Of course, this assumes that we can collapse the P1
base to zero size, and this in

turn assumes that this curve is a subspace of another Kähler surface in the geometry. The

condition we are thus finding is that this other surface must also collapse to zero size.
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2.2 Quiver Gauge Theories

So far, we have focussed on the geometric construction of 5D SCFTs. One can also attempt

to engineer examples using methods from low energy effective field theory. Along these lines,

we can consider a 5D quiver gauge theory with simple gauge group factors G1, ..., Gl, and with

matter fields in some representation between these gauge group factors, i.e., hypermultiplets

in bifundamental representations (Ri, Rj). The construction of such models is concisely

summarized by a quiver diagram.

Geometrically, we engineer a 5D gauge theory with gauge group G by introducing a

curve of singularities. Locally, these are described by specifying a curve, and then taking a

fibration by a space C2/ΓADE with ΓADE a discrete subgroup of SU(2) [76]. This yields the

ADE groups, and the non-simply laced algebras can also be realized by allowing suitable

monodromies in the fibration [77]. In these models, the value of the gauge coupling is

controlled by the volume of the base curve. We can also engineer matter fields by introducing

local enhancements in the singularity type of the fibration [78].

Collisions between curves supporting gauge groups can also produce a strongly coupled

version of a hypermultiplet which is the 5D version of 6D conformal matter [11]. Some

canonical examples of such behavior include the reduction of 6D conformal matter on a

circle, a point we return to shortly. In five dimensions one can also contemplate more

intricate intersection patterns, leading to further generalizations for 5D conformal matter.

Using methods either from gauge theory and/or geometry, it is possible to calculate the

prepotential for these sorts of models. A perhaps surprising feature of all of these cases

is that only for a single simple gauge group factor do we have a chance of realizing a 5D

SCFT connected to every chamber of moduli space [42]. The reason for this is clear from

the structure of the prepotential F , which contains a term of the schematic form:

− 1

12
|cϕ+ ϕ′|3 , (2.16)

where ϕ is the Coulomb branch parameter(s) associated with one simple gauge group factor,

and ϕ′ are associated with other Coulomb branch parameters. Physically, the vevs of ϕ′ can

be viewed as giving masses to some of the hypermultiplets. The issue is that the contribution

from such a term violates the convexity condition of line (2.10). Indeed, in the geometry,

what is happening is that a curve C in a surface S is collapsing to zero volume before that

surface can pass to zero volume as well. To continue the contraction of the surface, it is

thus necessary to assume that we can continue the volume of C to formally negative values,

i.e., we must require the existence of a flop transition, bringing us to a different chamber of

moduli space.5

5As an example of this type, ref. [53] considers a (p, q)-fivebrane web construction of SU(2)×SU(2) gauge
theory with a hypermultiplet in the bifundamental representation. In the associated Calabi–Yau geometry,
the flopped phase corresponds to SU(3) gauge theory with two flavors in the fundamental representation.
In general, however, one should not expect the flopped phase of a gauge theory to again be a gauge theory.
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Without further input, we cannot conclude whether it is possible to reach a 5D SCFT

through a sequence of flops. What we can conclude, however, is that in the chamber of

moduli space where a quiver gauge theory description is valid, we do not expect to reach a

5D SCFT. One of our aims in this paper will be to elaborate on when we expect to achieve

a sequence of flop transitions to a chamber which supports a 5D SCFT.

In the case of 6D theories on S1 the existence of such chamber is guaranteed from the

existence of the 6D fixed point. To gain further insight into the structure of possible 5D

SCFTs, we shall use this higher-dimensional perspective. This will help us in determining

candidate 5D theories, as well as establishing the existence of flops between these models.

2.3 M-theory on an Elliptic Calabi–Yau Threefold

When approaching the construction of 5D SCFTs from a 6D origin, we must consider M-

theory on an elliptic Calabi–Yau threefold. The threefold need not be compact, but it should

contain compact elliptic curves.

Specifically, we consider a proper6 map π : X → B from a (non-compact) Calabi–Yau

threefold to a (non-compact) surface B whose general fiber is a compact elliptic curve. We

assume that there is a birational section7 of this fibration σ : B̃ → X, where B̃ → B is

an appropriate blowup. Typically, we will consider bases B which are neighborhoods of a

connected collection of compact curves, but our analysis will also hold more generally.

We are interested in the Kähler parameters of X. This is not really a well-defined

question, because when X is non-compact one can imagine different boundary conditions

for the metric. However, there are certain Kähler parameters which are visible in our setup,

and they are measured by the areas of all of the compact curves on X.

More explicitly, we consider Ch1(X), the “Chow group” of algebraic 1-cycles, i.e., Z-

linear combinations of irreducible compact curves, modulo algebraic equivalence. The equiv-

alence relation is generated by families of compact curves parameterized by a (possibly non-

compact) curve, in which singular fibers in the family are represented by the corresponding

linear combination of components weighted by multiplicity.

The vector space of possible areas of elements of the Chow group provides a description

of the space spanned by Kähler classes on X having some fixed type of boundary conditions.

We expect that for the families we study, after performing an appropriate scaling on the

base B there are complete metrics on both B and X with appropriate growth conditions at

infinity which would nail down the Kähler classes more precisely.

The Kähler classes themselves will be elements of the dual vector space of Ch1(X), or

more precisely, of a cone within the dual vector space consisting of all classes such that the

area of any effective 1-cycle is positive. Compact divisors on X will naturally give rise to

6This means that the inverse image of any point is compact.
7For our present purposes, a birational multi-section would work equally well, at the expense of a more

complcated notation.
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elements of the dual vector space, but in general, we may need non-compact divisors as well

as compact ones in order to fully describe the cone of Kähler classes.

As in the case of compact X, the boundaries of the Kähler cone indicate places where one

or more curve classes shrink to zero area. One way this can come about is if the entire space

X shrinks to zero volume (by shrinking the fibers of an elliptic fibration or of a fibration by

surfaces with trivial canonical bundle, or by shrinking all of X to a point.) The only other

way this can come about is if a compact cycle on X shrinks to a cycle of lower dimension.

In the case of a finite collection of curves shrinking to points, it is sometimes possible

to find a “flop” which allows the Kähler moduli to be continued past the boundary. In this

case, the flopped Calabi–Yau has a Kähler cone of its own which meets the orignal cone

along a common part of the boundary. Including all such cones gives the “extended Kähler

cone” of X.

We will assume that B is either a neighborhood of a singular point, or else a neighborhood

of a contractible collection of curves. In this case, we can expect gravity to decouple after

an appropriate scaling limit.

To study possible emergent 5D SCFTs from this geometry, we wish to pass to a limit in

which the area of the elliptic curve goes to infinity. (For fibers of π which have more than one

component, at least one of those components must also go to infinite area, and more than

one may do so.) By varying the Kähler cone and/or varying the choice of which components

of fibers go to infinite area, there can be distinct limiting 5D theories, each obtained by

integrating out the very massive particles arising from an M2-brane wrapped on the elliptic

curve (or chosen components of fibers), when the area is extremely large. These distinct

limiting theories cannot be connected to each other directly in 5D without re-introducing an

elliptic fiber. We will see explicit examples of this phenomenon later in the paper.

3 F-theory on a Circle

To facilitate our understanding of 5D theories, and their possible conformal fixed points, our

aim in this section will be to turn to a higher-dimensional perspective as provided by 6D

SCFTs. The main tool at our disposal is the recent classification of 6D SCFTs via F-theory

compactification. Along these lines, we shall first present some of the salient features of these

classification results.

We generate 6D SCFTs by working with elliptically fibered Calabi–Yau threefolds over

a non-compact base B. This is specified by a Weierstrass model of the form:

y2 = x3 + fx+ g (3.1)

where f and g are sections of O(−4KB) and O(−6KB), respectively. Assuming we have such

a Calabi–Yau threefold, the condition to reach a 6D SCFT is that some subset of curves in
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the base can simultaneously contract to zero size. This requires the intersection pairing

for these curves to be a negative definite matrix. Classification of 6D SCFTs thus proceeds

in two steps. First, we seek out all possible candidate bases B which can support a 6D

SCFT, and second, we classify all possible elliptic fibrations over a given choice of base. The

conformal fixed point corresponds to the limit in which we collapse all curves to zero size.

Now, an important feature of this classification scheme is that the structure of the bases

take a quite restricted form in the limit where all curves collapse to zero size, namely, the

base is an orbifold singularity of the form C2/ΓU(2) for ΓU(2) a discrete subgroup of U(2). An

additional intriguing feature which is still only poorly understand is that only specific finite

subgroups of U(2) are actually compatible with the condition that we have an elliptically

fibered Calabi–Yau threefold.

The geometry of 6D SCFTs can thus be understood in complementary ways. On the one

hand, we can consider the resolved phase where all curves are of finite size, with volumes

tI > 0 for the different two-cycles. This is referred to as the tensor branch of the theory.

On the other hand, we can pass back to the conformal fixed point by collapsing all of these

curves to zero size, i.e., we take the limit tI → 0.

Now, our interest in this paper will be on the types of 5D theories obtained by compact-

ifying our 6D theories on a circle of radius RS1 . The 5D BPS mass of a string wrapped on

the S1 is given by RS1 × tI . Once we compactify on a circle, we reach M-theory on the same

Calabi–Yau threefold, but now the volume of the elliptic fiber is a physical parameter, and

identified with the inverse radius of the circle compactification:

VE = 1/RS1 . (3.2)

Our expression for the 5D BPS mass can then be written as tI/VE. The decoupling limit

needed to reach a 5D SCFT always requires VE →∞, but clearly this limit depends on the

behavior of these ratios. Different choices of the ratios correspond to different regions in the

extended Kähler cone of the Calabi–Yau threefold. One choice is to take all tI = 0, which we

view as the direct reduction of the 6D SCFT. Another choice corresponds to keeping some of

the ratios tI/VE finite which is the reduction of a partial tensor branch from 6D. These are

of course connected by flop transitions, but a priori, they could have very different chamber

structures, and may possess different degenerations limits which can support a 5D SCFT.

Let us consider the structure of each of these branches, as well as their dimensional

reduction on a circle. On the tensor branch of the 6D theory, we have at least as many

independent 6D tensor multiplets as simple gauge group factors. In fact, one of the lessons

from the classification results of reference [7, 9, 12] is that typically, many such extra ten-

sor multiplets should be viewed as defining a generalization of hypermultiplets known as

“conformal matter.” For example, a configuration of curves in the base intersecting as:

[E8]1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 1[E8] (3.3)

14



consists of eleven tensor multiplets, one associated with each curve. Here, the notation m,n

refers to a pair of curves of self-intersection −m and −n intersecting at one point. The

entries in square brackets at the left and right denote flavor symmetries for the 6D system.

For each such curve, there is minimal singularity type in the elliptic fibration over each curve,

as dictated by the structure of non-Higgsable clusters [7, 79].

The dimensional reduction of this system will consist of a number of 5D gauge group

factors, associated with their 6D counterparts, as well as additional U(1) gauge group factors

coming from the reduction of the 6D tensor multiplet to five dimensions. There is also rich

collection of 5D Chern-Simons terms coming from reduction of the associated 6D Green-

Schwarz terms, and one loop corrections (see e.g. [42,80]).

Instead of resolving all of the curves to finite size, we can also consider mixed branches

where only some of the curves are of finite size. This leads to the notion of a generalized

quiver gauge theory, with, for example, exceptional gauge groups and conformal matter

suspended between these gauge group factors. For example, in line (3.3) we can collapse

all eleven intermediate curves to zero size, producing E8 × E8 conformal matter. We can

also gauge these flavor symmetries, i.e., place these factors on compact curves, and continue

adding additional conformal matter factors. Such generalized quivers consist of a single linear

chain of such D- and E-type gauge group factors, with the rest interpreted as conformal

matter. The conformal matter sector can also be visualize as M5-branes probing an ADE

singularity [9, 10].

The dimensional reduction of such conformal matter sectors leads to well-known 5D

gauge theories. For example, for an M5-brane probing an ADE singularity, we obtain, at

low energies, a D4-brane probing an ADE singularity, i.e., we obtain an affine quiver gauge

theory with gauge groups given by the Dynkin indices of the gauge group factors. This system

possesses a GL ×GR flavor symmetry (see e.g. [81–83]), so we can after passing through an

appropriate flop transition to reach a 5D CFT, also view this as a type of 5D conformal

matter for the weakly gauged sector. Since 6D SCFTs have the form of generalized quivers,

we see that the reduction of the partial tensor branch leads to a similar generalization of

quiver gauge theories in 5D as well. See section 5.3.1 for further discussion.

Finally, we come to the last possibility where we do not resolve any of the curves in the

base of the fibration, and compactify the 6D SCFT directly on a circle. In this case, we

always expect to generate a 5D SCFT, since we have divisors already collapsed to zero size.8

4 6D SCFTs on a Circle

In this section we study in detail the region of moduli space which in most cases leads to a

5D fixed point, i.e., the dimensional reduction of a (1, 0) 6D SCFT on a circle. In this case,

8The caveat to this statement, is of course, the 6D (2, 0) theories because in this case the geometry is of
the form C2/ΓSU(2) × T 2, so there are no collapsing divisors in the non-compact Calabi–Yau threefold.
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we always aim to decompactify the elliptic fiber first, leaving all other curves collapsed at

zero size. In addition to curves on the base, this would include all but one component of

any (singular) elliptic fiber. Since the base of our F-theory SCFT is already described by a

collection of contractible curves in the base, the presence of a collapsing P1 (as one of the

components corresponding to a singular elliptic fiber) automatically generates a collapsing

divisor and thus a 5D fixed point in the associated M-theory compactification.9

To characterize these 5D fixed points, it will prove convenient to adopt a somewhat dif-

ferent perspective on the structure of our 6D SCFTs. Rather than working with a quiver

description corresponding to a base in which we have resolved all curves to finite size, we

can instead treat the base B as an orbifold C2/ΓU(2), and with the coordinates x, y, f and

g of the Weierstrass model treated as appropriate ΓU(2)-equivariant sections of bundles on

this orbifold [11, 84, 35]. We specify the group action by the defining two-dimensional rep-

resentation on the holomorphic coordinates s and t of the covering space C2. (We consider

only group actions on C2 in which the only fixed point for any non-identify element of the

group is the origin.) To specify a Weierstrass model over this base, we choose to work in a

twisted10 P2 with homogeneous coordinates [x, y, z] so that we have the presentation:

y2z = x3 + f(s, t)xz2 + g(s, t)z3, (4.1)

where f(s, t) and g(s, t) are polynomials in the holomorphic coordinates s and t of the

covering space C2. It is a twisted P2 in the sense that [x, y, z] transform non-trivially under

the group action, and f and g transforming as sections of O(4KB) and O(6KB). For γ ∈
ΓU(2), the transformation rules are:

[x, y, z] 7→ [det(γ)2x, det(γ)3y, z] (4.2)

f(s, t) 7→ det(γ)4f(s, t) (4.3)

g(s, t) 7→ det(γ)6f(s, t). (4.4)

We wish to emphasize that it is necessary to take the orbifold of the twisted P2 (and the

Weierstrass hypersurface within it) by the finite group ΓU(2).

In order to study this orbifold, we should consider the three standard coordinate charts

of the twisted P2. One of these is the “standard” one for analysis of the Weierstrass model,

i.e., z = 1, and the others are at x = 1 and at y = 1:

y2 = x3 + f(s, t)x+ g(s, t) z = 1 patch (4.5)

y2z = 1 + f(s, t)z2 + g(s, t)z3 x = 1 patch. (4.6)

z = x3 + f(s, t)xz2 + g(s, t)z3 y = 1 patch. (4.7)

9Here we do not consider possible twists along the circle by the automorphisms of the Calabi-Yau.
10Similar considerations would also apply if we had instead presented the Weierstrass model in a weighted

projective space.
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The first remark is that in the x = 1 patch, it is not possible for z to vanish at any point on

the hypersurface. Thus, all the points on the hypersurface in the x = 1 patch also lie in the

z = 1 patch and we need not consider the x = 1 patch any further.

Consider next the y = 1 patch. Here, we see that the hypersurface is smooth near z = 0,

due to the linear term in z on the lefthand side of the defining hypersurface equation. On

this chart, the group action on the affine coordinates is:

(s, t, x, z) 7→ (γ11s+ γ12t, γ21s+ γ22t, det(γ)−1x, det(γ)−3z), (4.8)

where in the first two entries, we have indicated the entries of the group element γ in the

defining representation. Since we are solving for z in line (4.7), the action on z is the same

as that on the equation, and the geometry is locally characterized (near z = 0) as having

a quotient singularity of the form C3
s,t,x/ΓSU(3) where the explicit group action decomposes

into a block structure of the form:

γSU(3) =

[
γU(2)

det(γU(2))
−1

]
, (4.9)

in the obvious notation. This gives a 5D SCFT when ΓU(2) is non-trivial.

From this, we already see an interesting prediction from the geometry: when the deter-

minant map

det : ΓU(2) → U(1), (4.10)

has a non-trivial kernel, the singularity is not isolated, and we also expect a non-trivial flavor

symmetry. The flavor symmetry is the algebra of type A, D, or E corresponding to the kernel

of det, which is a subgroup of SU(2). In principle, of course, this may only be a subalgebra

of the full flavor symmetry of the 5D theory.

Turning now to the z = 1 patch, we need to analyze fixed points of the orbifold action.

In this patch, the action on affine coordinates is

(s, t, x, y) 7→ (γ11s+ γ12t, γ21s+ γ22t, det(γ)2x, det(γ)3y), (4.11)

where again in the first two entries, we have indicated the entries of the group element γ

in the defining representation. The origin is a codimension four fixed point for the group

action on the affine coordinates, so if the origin lies on the hypersurface it provides one of

the singular points.

The codimension three locus s = t = y = 0 is fixed by the kernel of det2, the codimension

three locus s = t = x = 0 is fixed by the kernel of det3, and the codimension two locus s =

t = 0 is fixed by the kernel of det. To determine which of these loci intersect the hypersurface

away from the origin, we examine the Weierstrass equation. We have already discussed this

in the case of the kernel of det, which leads to a fixed curve within the hypersurface and a

flavor symmetry whose type is determined by the subgroup ker(det) ⊂ SU(2).

17



In order for s = t = x = 0 to intersect the hypersurface away from the origin, we must

have g(0, 0) 6= 0. In order for s = t = y = 0 to intersect the hypersurface away from the

origin, we must have either f(0, 0) 6= 0 or g(0, 0) 6= 0. And finally, in order for s = t = 0

to intersect the hypersurface away from the origin, we must have either f(0, 0) 6= 0 or

g(0, 0) 6= 0. Thus, whenever there is a fixed point away from the origin we may assume that

det4 = 1 or det6 = 1. Let us consider the possibilities one at a time.

First, if det = 1 then the only singularity away from the origin is the non-isolated one.

Next, if det2 = 1 and the polynomials are generic, then f(0, 0) 6= 0 and g(0, 0) 6= 0. The

action of ΓU(2) on the elliptic curve is multiplication by −1, with three fixed points at the

zeros of x3 + f(0, 0)x+ g(0, 0) (with y = 0) and a fourth at infinity.

If det3 = 1 and the polynomials are generic, then g(0, 0) 6= 0 but f(0, 0) = 0. The action

of ΓU(2) on the elliptic curve is by an automorphism of order three, which has two fixed

points at (x, y) = (0,±
√
g(0, 0)) and a third at infinity.

If det4 = 1 and the polynomials are generic, then f(0, 0) 6= 0 but g(0, 0) = 0. The

action of ΓU(2) on the elliptic curve is by an automorphism of order four; on the quotient, we

have the fixed point (x, y) = (0, 0) with stabilizer ΓU(2) and one fixed point with stabilizer

ker(det2) (coming from the two points (x, y) = (±
√
−f(0, 0) which are exchanged by the

action), as well as the point at infinity.

Finally, if det6 = 1 and the polynomials are generic, then g(0, 0) 6= 0 but f(0, 0) = 0. The

action of ΓU(2) on the elliptic curve is by an automorphism of order six. On the quotient, the

origin is a fixed point with stabilizer ΓU(2); there is one fixed point with stabilizer ker(det3)

(coming from the two points (x, y) = (0,±
√
g(0, 0)) which are exchanged by the action),

and one with stabilizer ker(det2) (coming from the three points (x, y) = (e2πik/3 3
√
−g(0, 0), 0)

which are cyclically permuted by the action), as well as the point at infinity.

Thus, each of the cases above has three or four singular points – all of them orbifold

points – which give decoupled SCFTs when the curve connecting them goes to infinite area.

In all other cases, the singular points are limited to the origin and the point at infinity, so

there are at most two, again giving decoupled SCFTs in the infinite area limit. Assuming

that ΓU(2) is non-trivial, the singularity at infinity is an orbifold, but the singularity at the

origin need not be.

In all of these cases, the polynomials f and g takes a restricted form which must be

compatible with the overall group action. Moreover, we will see that this typically requires

a singular elliptic fibration since f and g must necessarily vanish at the location of the fixed

point.

Let us illustrate this point for cyclic subgroups of U(2). These are dictated by two

relatively prime positive integers p and q with generator ω = exp(2πi/p):

γ : (s, t) 7→ (ωs, ωqt). (4.12)
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The minimal resolution of the orbifold singularity is described by a collection of curves of

self-intersection −n1, ...,−nk, where the sequence also indicates which curves intersect. The

values p and q are dictated by the continued fraction:

p

q
= n1 −

1

n2 − ... 1
nk

. (4.13)

The specific fractions p/q which can appear in F-theory constructions have been cata-

logued in [7, 35]. Expanding f and g as polynomials in the variables s and t,

f =
∑
i,j

fijs
itj (4.14)

g =
∑
i,j

gijs
itj, (4.15)

the group action by γ is:

f 7→
∑
i,j

ωi+qjfijs
itj = ω4+4q

∑
i,j

fijs
itj (4.16)

g 7→
∑
i,j

ωi+qjgijs
itj = ω6+6q

∑
i,j

gijs
itj, (4.17)

where in the second equality of each line, we have used the conditions of lines (4.3) and (4.4).

This restricts the available non-zero coefficients:

fij 6= 0 only for i+ qj ≡ 4 + 4q mod p (4.18)

gij 6= 0 only for i+ qj ≡ 6 + 6q mod p. (4.19)

In most cases, this requires both f and g to vanish to some prescribed order, and we present

examples of this type in section 5. Let us note that to extract the theory on the tensor

branch, we will of course need to perform further blowups in the base, which will in turn

lead to higher order vanishing for f and g. The minimal order of vanishing is generic, but

we can also entertain higher order vanishing for f and g. In such cases, we must perform a

resolution of the Calabi–Yau threefold

To illustrate the above, consider the case of an F-theory base given by a single curve of

self-intersection −3. In the limit where this curve collapses to zero size, we have an orbifold

singularity C2/Z3, and the polynomials f and g satisfy:

fij 6= 0 only for i+ j + 1 ≡ 0 mod 3 (4.20)

gij 6= 0 only for i+ j ≡ 0 mod 3, (4.21)
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so to leading order, we have:

f = f2,0s
2 + f1,1st+ f0,2t

2 + ... and g = g0,0 + ... (4.22)

Following a similar set of steps, we can analyze each case of an orbifold group action ΓU(2) ⊂
U(2) which appears in the classification results of [7].

5 Illustrative Examples

In the previous section we presented a general algorithm for constructing a large class of 5D

fixed points. This procedure consists of writing down the Weierstrass model over a singular

base, with the Weierstrass model coefficients f and g given by suitable ΓU(2) equivariant

polynomials. Due to the way we have constructed the model as a canonical singularity, we

are guaranteed to generate at least one 5D fixed point of some sort. It is natural to ask,

however, whether we can extract additional details on this theory, for example, the structure

of the 5D effective field theory on the Coulomb branch. Rather than embark on a systematic

classification of all such possibilities, we will mainly focus on some illustrative examples.

Most of the important elements of this analysis can already be seen for the case of ΓU(2) a

cyclic group, so we confine our attention to this case. This already covers all of the non-

Higgsable cluster theories, as well as the “A-type rigid theories” of [7], namely those without

any complex structure deformations.

5.1 Non-Higgsable Clusters

Let us begin by cataloguing the phase structure of the non-Higgsable cluster theories. Recall

that these are given in F-theory by specific collections of up to three curves, in which the

minimal elliptic fibration is always singular. The collection of curves of self-intersection −n
and corresponding 6D gauge algebra are:

Curves 3 4 5 6 7 8 12 3, 2 3, 2, 2 2, 3, 2

g su(3) so(8) f4 e6 e7 e7 e8 g2 × su(2) g2 × sp(1) su(2)× so(7)× su(2)

(5.1)

In the case of the −7 curve theory and multiple curve non-Higgsable clusters, there are also

half-hypermultiplet matter fields.

Dimensional reduction on the tensor branch yields a few interesting features. First of all,

for all of the single curve theories, we have just a single simple gauge group factor, and the

number of matter fields is either zero or a single half hypermultiplet in the fundamental (for

the −7 curve theory), so we expect to realize a 5D conformal fixed point on this branch. The

resulting configuration of divisors are, for the simply laced gauge algebras, just a higher-

dimensional analogue of Dynkin diagrams in which the diagram indicates the intersection of
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Figure 2: Geometry of the −3 theory. upper left: Reduction of the tensor branch over S1;
upper center: flop phase transition; upper right: reduction of the 6D SCFT over S1;
lower left: gauge symmetry enhanced to SU(3); lower right: strong coupling limit of
SU(3) theory. In the 5D limit, C ′ and P2 decompactify.

Hirzebruch surfaces. See Appendix A for details.

Let us discuss the physics of this reduction in more detail for one example, the case of

the −3 curve. The resulting geometry is depicted in Figure 2. By reducing on the circle the

tensor branch of this theory, we obtain a collection of F1 Hirzebruch surfaces which intersect

giving rise to a Kodaira type IV fiber. In Figure 2 we have indicated the curve which we

can flop by C. It is a rational curve with an O(−1)⊕O(−1) normal bundle. Flopping it we

obtain a curve C ′ with three P2 surfaces intersecting it at a point. Shrinking these surfaces

down to zero size we obtain three 5D SCFTs corresponding to C3/Z3 orbifold points. The

remaining curve has the same area as the nearby elliptic curves, so in the limit RS1 → 0, the

curve C ′ grows to infinite size and the three C3/Z3 theories decouple.

In this case, the S1 reduction of the 6D tensor branch also flows to a fixed point, cor-

responding to the pure SU(3) gauge group without matter (the U(1) vector multiplet cor-

responding to the dimensional reduction of the 6D tensor multiplet decouples). This is
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illustrated in the lower portion of Figure 2. One first shrinks two of the F1 surfaces to the

common curve of intersection, where they form a curve of A2 singularities. To take that

gauge theory to strong coupling, we shrink the area of the curve of singularities, leaving a

single P2 containing a single conformal point (the strongly coupled SU(3) theory).

This example is interesting because it illustrates how, even in a simple situation, non-

trivial 5D fixed points can occur in different chambers of the extended Kähler cone. The fact

that we obtain a 5D SCFT from the phase corresponding to the S1 reduction of the tensor

branch has to be regarded as a coincidence, though. The actual reduction of the 6D SCFT

on S1 is given by the three C3/Z3 theories.

As a second example we consider the case of the −4 curve. The resulting geometry is

depicted in Figure 3. By reducing on the circle the tensor branch of this theory, we obtain an

F0 Hirzebruch surface meeting four F2 Hirzebruch surfaces along fibers of one of the rulings

of F0. The intersection pattern gives rise to a Kodaira type I∗0 fiber. This time, instead of

flopping a curve we contract a divisor to a curve, in one of two different ways. If we contract

the F0 along the ruling which includes the intersection curves with the F2 surfaces, we obtain

a curve of SU(2) singularities with four P2
[1,1,2] surfaces intersecting it at a point. Shrinking

these surfaces down to zero size we obtain four 5D SCFTs corresponding to C3/Z4 orbifold

points with group action specified by (1
4
, 1

4
, 1

2
). The corresponding curve of A1 singularities

gives an SU(2) gauge group with gauge coupling g2
SU(2) ∼ 1/vol(C) which is also proportional

to RS1 . In the limit RS1 → 0, the curve C grows to infinite size and the four C3/Z4 theories

decouple. These models have an SU(2) flavor symmetry.

In this case, the S1 reduction of the 6D tensor branch also flows to a fixed point, corre-

sponding to the pure SO(8) gauge group without matter. That is illustrated in the lower

portion of Figure 3. One first shrinks the F0 along its other ruling together with three of

the F2 surfaces to a curve of D4 singularities. To take that gauge theory to strong coupling,

we shrink the area of the curve of singularities, leaving a single P2
[1,1,2] containing a single

conformal point (the strongly coupled SO(8) theory).

For the multiple curve theories, however, we do not expect to realize a conformal fixed

point in the chamber corresponding to the S1 reduction of the moduli space. This again

follows from the criterion put forward in [42], because we always have a product gauge group

with bifundamental matter. To reach a conformal fixed point for these geometries, we must

perform a flop transition to another chamber of moduli space, namely that described by the

orbifold procedure outlined above.

We can carry out the analysis of section 4 for each of these examples quite explicitly.

In Table 1, for each p/q corresponding to a non-Higgsable cluster, we describe the finite

group action on the variables s, t, x, y and functions f , g which appear in the corresponding

Weierstrass equation, and we also give the lowest order terms in f and g. This data then

determines the 5D fixed points after S1 reduction.

In order to see the geometry of the fixed points, we need to determine the fixed point
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Figure 3: Geometry of the −4 theory. upper left: Reduction of the tensor branch over
S1; upper center: flop phase transition; upper right: reduction of the 6D SCFT over
S1lower left: gauge symmetry enhanced to SO(8); lower right: strong coupling limit
of SO(8) theory. In the 5D limit, the A1 locus and P2

[1,1,2] decompactify.
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p/q (s, t, x, y; f, g) f g

2 (1
2
, 1

2
, 0, 0; 0, 0) f0 g0

3 (1
3
, 1

3
, 1

3
, 0; 2

3
, 0) f0s

2 + f1st+ f2t
2 g0

4 (1
4
, 1

4
, 0, 1

2
; 0, 0) f0 g0

5 (1
5
, 1

5
, 4

5
, 1

5
; 3

5
, 2

5
) f0s

3 + f1s
2t+ f2st

2 + f3t
3 g0s

2 + g1st+ g2t
2

6 (1
6
, 1

6
, 2

3
, 0; 1

3
, 0) f0s

2 + f1st+ f2s
2 g0

7 (1
7
, 1

7
, 4

7
, 6

7
; 1

7
, 5

7
) f0s+ f1t

∑5
j=0 gjs

5−jtj

8 (1
8
, 1

8
, 1

2
, 3

4
; 0, 1

2
) f0

∑4
j=0 gjs

4−jtj

12 ( 1
12
, 1

12
, 1

3
, 1

2
; 2

3
, 0) f0 =

∑8
j=0 fjs

8−jtj g0

5/2 (1
5
, 2

5
, 1

5
, 4

5
; 2

5
, 3

5
) f0s

2 + f1t g0s
3 + g1st+ g2t

4

7/3 (1
7
, 3

7
, 1

7
, 5

7
; 2

7
, 3

7
) f0s

2 + f2t
3 g0s

3 + g1t

8/5 (1
8
, 5

8
, 1

2
, 1

4
; 0, 1

2
) f0 g0s

4 + g1s
2t2 + g2t

4

Table 1: Weierstrass coefficients. All fj and gj are ΓU(2)-invariant functions.

set of the group action, and what subgroup stabilizes each fixed point. This information is

tabulated in Table 2. The origin is always fixed by the entire group, but if g0 is constant,

the hypersurface does not pass through the origin; in that case, we have written “no” in the

non-orbifold column. The orbifold points are specified by their group actions.

5.2 Rigid A-type Theories

Consider next the Rigid A-type theories of reference [7]. These are defined by considering a

base B with collapsing curves intersecting as:

n1, ..., nk. (5.2)

We then perform the minimal resolutions necessary to place all elliptic fibers in Kodaira-

Tate form. We denote the Hirzebruch-Jung continued fraction by p/q. These theories have

no continuous flavor symmetries in six dimensions. Consequently, any flavor symmetries

obtained upon reduction to five dimensions should be viewed as emergent in the infrared.

There are at least two disconnected components to the 5D SCFT, and there may be three

or four. To determine which case occurs, we follow the analysis in section 4 and see that it

is determined by the knowledge of which power of the determinant vanishes.

In Appendix A of [35], the rigid theories are listed and their determinants are computed.
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p/q (stxy; fg) codim 2 orbifold points non-orbifold point

2 (1
2
, 1

2
, 0, 0; 0, 0) A1 none no

3 (1
3
, 1

3
, 1

3
, 0; 2

3
, 0) none 3× (1

3
, 1

3
, 1

3
) no

4 (1
4
, 1

4
, 0, 1

2
; 0, 0) A1 4× (1

4
, 1

4
, 1

2
) no

5 (1
5
, 1

5
, 4

5
, 1

5
; 3

5
, 2

5
) none (1

5
, 1

5
, 3

5
) yes

6 (1
6
, 1

6
, 2

3
, 0; 1

3
, 0) A1 3× (1

6
, 1

6
, 2

3
) no

7 (1
7
, 1

7
, 4

7
, 6

7
; 1

7
, 5

7
) none (1

7
, 1

7
, 5

7
) yes

8 (1
8
, 1

8
, 1

2
, 3

4
; 0, 1

2
) A1 (1

4
, 1

4
, 1

2
); 2× (1

8
, 1

8
, 3

4
) no

12 ( 1
12
, 1

12
, 1

3
, 1

2
; 2

3
, 0) A1 (1

4
, 1

4
, 1

2
); (1

6
, 1

6
, 2

3
); ( 1

12
, 1

12
, 5

6
) no

5/2 (1
5
, 2

5
, 1

5
, 4

5
; 2

5
, 3

5
) none (1

5
, 2

5
, 2

5
) yes

7/3 (1
7
, 3

7
, 1

7
, 5

7
; 2

7
, 3

7
) none (1

7
, 3

7
, 3

7
) yes

8/5 (1
8
, 5

8
, 1

2
, 1

4
; 0, 1

2
) A1 2× (1

4
, 1

4
, 1

2
); (1

8
, 5

8
, 1

4
) no

Table 2: Singularity loci.

The cases of interest here appear in block diagonals of the tables in that paper, and in

particular, the analysis there shows that there are infinite families of examples for each of

the cases analyzed in section 4. That is, there are infinite families of examples with four

orbifold points, or with three orbifold points of the same type, and so on. What changes

is the codimension 2 singular locus, which can give a (flavor) symmetry of arbitrarily large

rank.

For example, p/q = 4N/(2N − 1) corresponds to the data

(s, t, x, y; f, g) =

(
1

4N
,
2N − 1

4N
, 0,

1

2
; 0, 0

)
(5.3)

and there are four orbifold points of type ( 1
4N
, 2N−1

4N
, 1

2
) with a codimension two locus sup-

porting an A2N−1 singularity. When the base is fully resolved, it corresponds to 4141 · · · 14.

5.3 M5-Brane Probe Theories

It is also of interest to consider 6D SCFTs with a non-trivial Higgs branch. A canonical class

of examples are provided by M5-branes probing an ADE singularity, and M5-branes probing

a Hořava-Witten E8 wall, or combinations thereof.
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5.3.1 Probes of an ADE Singularity

Consider first the case of M5-branes probing an ADE singularity. The F-theory realization of

these 6D SCFTs is straightforward to realize in terms of a pair of colliding singularities, each

associated with an algebra of type gADE which intersect at the singular point of the geometry

C2/Zk. Minimal resolution of the orbifold in the base yields a chain of −2 curves, and the

presence of the colliding singularities gives an additional enhancement in the singularity type

over each −2 curve. The partial tensor branch is then given by:

[g]
g

2, ...,
g

2[g]. (5.4)

In the M5-brane picture, this corresponds to seperating the branes along the R⊥ factor

of R⊥ × C2/ΓADE. Further blowups between each such collision are required to place all

elliptic fibers in Kodaira-Tate form. Returning to the partial tensor branch of line (5.4),

we can read off the reduction to five dimensions. It is given by a generalized 5D quiver,

with gauge algebras gADE, and 5D conformal matter. This 5D conformal matter is the CFT

associated with compactification of 6D conformal matter and as such, the analysis of section

4 guarantees that we will indeed reach a fixed point. On the Coulomb branch, this system

is, after taking an appropriate flop transition described by the affine quiver gauge theory

obtained from D4-branes probing an ADE singularity. Indeed, we note that when we have

more than one gauge group factor, the argument of [42] applies, and we do not expect a

5D fixed point in the chamber of moduli space where the quiver gauge theory description is

valid. If we go to the full 6D tensor branch and then reduce, we encounter a similar issue.

To reach a 5D fixed point, we would need to perform a sequence of flop transitions,

and one region of moduli space where we are guaranteed to find such a fixed point is in

circle reduction of the 6D fixed point. Indeed, the F-theory model for this case is also

straightforward to engineer. To see why, consider first the model for a single component of

the discriminant locus of type gADE. We can parameterize this in terms of the local equation:

y2 = x3 + f(s)x+ g(s), (5.5)

for a single holomorphic coordinate s of C. In all but the In fiber case, the leading order

behavior of this singularity takes the form:

y2 = x3 + sax+ sb, (5.6)

for some suitable choice of a and b. To realize a collision in C2, we then have (see e.g. [9,10]):

y2 = x3 + (st)ax+ (st)b. (5.7)

Importantly, we note that the further quotient by (s, t) → (ωs, ω−1t) imposes no addi-

tional restrictions on the form of line (5.7), so we conclude that a and b (as dictated by the
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choice of gauge algebra) remain the same for this model.

Note also that in this case, the “patch at infinity” with y = 1 does not actually contribute

a 5D SCFT. The reason is that the orbifold locus is locally given by C × C2/ΓADE, and so

there are no collapsing divisors in this region of the geometry. Instead, all of the collapsing

divisors are concentrated in the patch described by line (5.7).

As a concrete example, we see that the form of colliding E8 singularities, namely a

collision of two type II∗ fibers, is:

y2 = x3 + (st)4x+ (st)5. (5.8)

We produce a 5D generalized quiver with E8 gauge group factors and (E8, E8) conformal

matter by performing a Zk quotient on the base. Though it would be interesting to perform

a similar analysis of the fully resolved geometry (akin to what we did for the non-Higgsable

cluster theories) and to then collapse divisors to reach a canonical singularity, this will of

course be much more involved due to the large number of additional compact cycles in this

case. We leave this interesting issue for future work.

5.3.2 Probes of an E8 Wall

Consider next the case of M5-branes next to an E8 nine-brane. The F-theory model has a

base:

[E8]1, 2, ..., 2︸ ︷︷ ︸
k

, (5.9)

where the E8 flavor symmetry is only manifest in the limit where all curves collapse to zero

size. The associated Weierstrass model is:

y2 = x3 + gk(s)t
5, (5.10)

where gk(s) is a degree k polynomial in s.

The dimensional reduction of this model to five dimensions has already been determined

in the literature. It is given by an Sp(k) gauge theory with N = 7 hypermultiplets in the

fundamental representation. In the limit where the gauge theory passes to strong coupling,

the flavor symmetry enhances from SO(14) to E8.

The geometry of the k = 1 case is already quite interesting. The local geometry for this

case is a del Pezzo nine surface. Flopping the zero section, we reach the standard description

in terms of a local dP8 which can contract to zero size. In the case of k > 1, this flop also

converts the local surface associated with the −2 curve to another dP9. One can see this

since the blowdown of the −1 curve converts the leftmost −2 curve to a −1 curve. This in

turn means we get another local dP9 geometry. Continuing in this fashion, we obtain a chain

of intersecting dP8 surfaces, all of which are collapsing to zero size.
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We can also consider a non-trivial fiber enhancement over the curves of line (5.9). This

is interpreted as small instantons probing an ADE singularity [85, 9, 12]. In this case, the

partial tensor branch is not expected to realize a 5D SCFT upon circle reduction. We can,

however, again take a flopped phase of the geometry, i.e., keep all curves of the base at small

size when we pass to five dimensions. In this case, we again expect to realize a 5D SCFT.

6 Conclusions

The classification of 6D SCFTs via F-theory provides a starting point for the construction

and study of lower-dimensional SCFTs. In this paper we have applied these general consid-

erations in the study of 5D SCFTs. Starting from 6D SCFTs realized via F-theory on an

elliptically fibered Calabi–Yau threefold, we have shown how further reduction on a circle

leads to a rich phase structure for 5D theories, as realized by M-theory compactified on the

same Calabi–Yau. In particular, we have seen that the reduction of a 6D N = (1, 0) SCFT

to five dimensions yields a 5D SCFT, and moreover, the reduction of the tensor branch de-

formation of a 6D SCFT typically does not yield a 5D SCFT. In the Calabi–Yau geometry,

the two phases are connected by a sequence of flop transitions, namely a trajectory in the

extended Kähler cone. The existence of these two phases provides a concrete way to pass

from one phase to the other, namely, by a flow through moduli space. By elucidating the

structure of the 5D conformal fixed points, we have shown in particular how 5D quiver gauge

theories can be connected to a class of geometrically realized fixed points. In the remainder

of this section we discuss some avenues of future investigation.

One of the important uses of a 5D gauge theory analysis is the potential to explicitly

compute the structure of an associated supersymmetric index. Now, even though we have

argued that one must flop to another chamber of moduli space to actually realize the fixed

point, the sense in which this object transforms under flops should be well controlled. In this

sense, gauge theory methods for calculating such quantities should have an interpretation

in terms of a superconformal index. This is indeed the philosophy adopted in much of the

literature on 5D SCFTs (see e.g. [45,86,87]), though with the explicit geometry now in hand,

one can in principle check these claims by direct calculation of topological string amplitudes

on the Calabi–Yau in the conformal chamber, perhaps along the lines of [17].

Now that we have constructed a broad class of new 5D SCFTs, it is natural to ask

whether some of these also yield holographic duals, perhaps along the lines of [46,88,50,51].

Circle reduction of AdS7 vacua does not yield AdS6 vacua, which is in accord with the phase

structure observed in this work. We have also seen, however, that flop transitions often yield

a 5D fixed point. It would be interesting to understand this holographically.

Perhaps more ambitiously, one might hope to also classify all interacting 5D SCFTs.

From a geometric standpoint, this would require understanding all local Calabi–Yau models

with divisors which can simultaneously contract to a point. In particular, it would be
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interesting to determine whether some generalization of the numerical invariants used in the

classification of 6D SCFTs can be obtained for this class of geometries as well. Let us note

that from a physical perspective, one might be tempted to conjecture that all 5D SCFTs are

obtained from some deformation of a 6D SCFT on a circle. This looks difficult to arrange

in all cases, since, for example, supersymmetric orbifolds of the form C3/ΓSU(3) for ΓSU(3) a

finite subgroup of SU(3) do not have a clear embedding in an elliptically fibered Calabi–Yau

threefold of the sort used to engineer 6D SCFTs via F-theory. Either establishing a firm

counterexample, or developing a clear method of embedding 5D SCFTs in 6D theories would

be most instructive.
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A Rank One NHCs on a Circle

In this Appendix we provide additional details on the resolution of the rank one non-

Higgsable cluster theories. Recall that for these theories, both the 6D tensor branch and

conformal fixed point yield 5D SCFTs, which are, as usual, connected by a flop transition.

For the other non-Higgsable cluster theories, we have at least two gauge group factors, so the

argument of [42] already tells us that we will not be able to reach a 5D SCFT by reducing the

tensor branch. Rather, we must perform a flop transition to reach a 5D SCFT. We proceed

by analyzing the single −n curve theories, splitting up our analysis into the cases of a simply

laced Lie algebra with no matter, and then all other cases.

A.1 n = 3, 4, 6, 8, 12 Theories

Consider, then, a single −n curve theory, and assume that the minimal fiber type leads to

a simply laced Lie algebra with no enhancements over the base curve. The local Calabi–

Yau geometry is described by a curve of ADE-type singularities, and the resolution of these

singularities is well-known: Including the elliptic fiber class, we get a collection of −2 curves

which intersect according to the affine extension of the Dynkin diagram. Roughly speaking,

we need to understand how these −2 curves fiber over the base −n curve to produce a

collection of compact divisors in our non-compact Calabi–Yau threefold.

Our main claim is that the collection of compact divisors are Hirzebruch surfaces which

intersect according to the affine Dynkin diagram. Recall that for a Hirzebruch surface of

degree k, we have a P1 fibered over a base P1, and the degree of this fibration is k. Introducing

a base class b and fiber class f , we have the intersection numbers:

b · b = −k, b · f = 1, f · f = 0. (A.1)

There are actually two zero sections. One is given by b, and the other is given by b + kf .

Note that this class has self-intersection:

(b+ kf) · (b+ kf) = −k + 2k = k. (A.2)

Let us now establish that we indeed have a configuration of intersecting Hirzebruch

surfaces. To understand this, consider the−n curve of the base. Since we can fully resolve the

singular fiber, the local geometry for this curve is given by the total spaceO(−n)+O(n−2)→
P1. What this means is that the affine node of the Dynkin diagram fibers over this curve

as a bundle of degree n − 2. This is simply the geometry of a Hirzebruch surface of degree

n − 2, which we denote by Fn−2. Going to the other zero section of this divisor, the local

geometry is now given by O(−(n− 2)) +O((n− 2)− 2)→ P1. Indeed, the neighboring node

of the Dynkin diagram also defines a P1, and it fibers over a P1 as well. Said differently,

we see that the neighboring node defines a degree n − 4 Hirzebruch surface. The surfaces

30



4

-4
2 -2

0

4

-4
2 -2

4

-4 2 -2 0

0

B

-6

C

4

-4 2

4

-4
2

4

-4
2

A1

1
1

1
1

1
1

shrink

*

*

*
A 1

4

-4

E6

enhance E 6

shrink

contract

4

1

1

*

2

2

C'
C'

Figure 4: Geometry of the −6 theory. The base of the elliptic fibration is the noncompact
surface B. For each P1 with a non-trivial self-intersection number inside a given surface, the
latter is indicated within the corresponding surface. In the 5D limit, the A1 locus and P2

[1,1,4]

decompactify.

intersect along a P1 which we denote by Cn−2,n−4:

Fn−2 ·CY Fn−4 = Cn−2,n−4. (A.3)

The self-intersection of this curve in each of the Hirzebruch surfaces is:

Cn−2,n−4 ·Fn−2 Cn−2,n−4 = n− 2 and Cn−2,n−4 ·Fn−4 Cn−2,n−4 = −(n− 4). (A.4)

Continuing in this fashion, we see that we build up a collection of Hirzebruch surfaces,

all intersecting according to the affine Dynkin diagram. In the upper left corner of Figure 4

we depict the n = 6 example.11 We list all these configurations explicitly in Figure 5

We remark that in all but the n = 3 case, there is a “middle” F0 surface which intersects

11The remainder of the Figure illustrates how to obtain two different 5D SCFTs from this starting point.
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n = 3 :

F1

F1 F1

n = 4 :

F2

F2 F0 F2

F2

n = 6 :

F4

F2

F4 F2 F0 F2 F4

n = 8 :

F2

F6 F4 F2 F0 F2 F4 F6

n = 12 :

F2

F10 F8 F6 F4 F2 F0 F2 F4

Figure 5: Schematic structure of the geometries of certain NHCs as Dynkin graphs: the
nodes correspond to surfaces while the links correspond to intersections.
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three or more additional surfaces. Each of these intersections defines a curve in the F0 which

are homologous, and do not intersect.

Reaching a conformal fixed point now proceeds by first decompactifying the elliptic curve

class, i.e., by decompactifying the Hirzebruch surface associated with the affine node of

the Dynkin diagram. The transition to the conformal fixed point now proceeds in stages:

Collapsing the F0 or F1 causes the neighboring surfaces to become weighted projective spaces,

which can then collapse to zero size. The collapse of these surfaces causes their neighbors to

contract to weighted projective spaces as well. This process continues until all surfaces have

collapsed to zero size.

A.2 n = 5 Theory

Let us now turn to the −5 curve theory. Here, the Weierstrass model is (see e.g. [77]):

y2 = x3 + f3(s)t3x+ g2(s)t4, (A.5)

where s is a local coordinate on the base P1 and t is a coordinate in the normal directions.

The polynomials f3(s) and g2(s) have respective degrees three and two in the variable s. The

operating assumption is that g2(s) is generic in the sense that its two roots are at distinct

points. This model realizes a non-split IV ∗ fiber, namely one in which some of the two-cycles

of the fiber are identified as we undergo monodromy in the s-plane. Indeed, this monodromy

leads to an outer automorphism of the e6 algebra to an f4 algebra in the 6D theory.

Now, from the analysis of reference [79], we know that this model has no localized matter.

This in turn means that each P1 of the degenerate elliptic fiber will fiber over the base,

producing a collection of Hirzebruch surfaces.12 Our task therefore reduces to determining

how these surfaces intersect one another.

The key difference from the cases with a simply laced algebra is the presence of mon-

odromy. So, starting from the affine Dynkin diagram for e6, we see that we now have only

five surfaces, which intersect as:

n = 5 :

Fa5

Fa4
KS

Fa1 Fa2 Fa3

(A.6)

12Owing to monodromy in the elliptic fiber, some of the surfaces are actually a double cover of a P1 bundle
over a P1. Note, however, that this double cover is also a Hirzebruch surface.
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Figure 6: Geometry of the −5 theory. In blue we have drawn the E6 fiber over the generic
point of the ruling, the F6 surface however meets the F1 corresponding to the center of
the affine E6 Dynkin diagram along a double section, which gives rise to the monodromy
corresponding to the Z2 outer automorphism projecting E6 to F4. In the 5D limit, the curve
C ′ decompactifies. As it is similar to other examples already presented, we have omitted the
other 5D SCFT limit described by pure F4 gauge theory.
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where here, we assume that the Z2 outer automorphism acts as a reflection along the vertical

axis of the affine e6 Dynkin diagram, yielding the affine f4 Dynkin diagram as shown above.

Following the same reasoning used previously, we therefore conclude that a1 = 3, a2 = 1 and

a3 = 1. The intersection of these surfaces follows the same pattern outlined in the simply

laced case. Now, to determine the degree of the Hirzberuch surface Fa4 , we observe that the

surface Fa3 = F1 which it intersects can also be viewed as a P2 blown up at one point. Owing

to the monodromy in the fiber, we see that this intersection locus must be a P1, and must

also provide a double cover of the hyperplane class H of this P2, and must also not intersect

the exceptional divisor coming from the blowup. This uniquely fixes the divisor class C

inside the P2 to be 2H, i.e., the vanishing locus of a homogeneous degree two polynomial.

The self-intersection of C in the P2 is:

C ·P2 C = 4, (A.7)

so the local geometry in the Calabi–Yau is O(4)+O(−6)→ P1. From this, we conclude that

a4 = 6. Proceeding up in the vertical directions of line (A.6), there are no further effects

from monodromy, and we find a5 = 8. Summarizing, then, the configuration of Hirzebruch

surfaces is:

n = 5 :

F8

F6
KS

F3 F1 F1

(A.8)

Note that the double arrow in the Dynkin diagram indicates that F1 and F6 meet along a

bisection of the ruling on F1.

In Figure 6 we illustrate how a flop is needed to proceed to the canonical 5D fixed point.

A.3 n = 7 Theory

Finally, consider the case of the −7 curve theory. This case is different from the previous

ones because it contains matter fields in the 6D theory. We realize an e7 gauge theory with a

half hypermultiplet in the 56, i.e., the fundamental representation. The Weierstrass model

for this geometry is (see e.g. [77]):

y2 = x3 + st3x+ t5. (A.9)

To determine the configuration of surfaces in the resolved geometry, consider again the case

of the −8 curve theory. In both this and the −7 curve theory, the fiber at a generic point of
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the base P 1 is a II∗ fiber. The collection of surfaces in the −8 curve case is:

n = 8 :

F2

F6 F4 F2 F0 F2 F4 F6

(A.10)

Now, the only difference from the n = 8 case is the presence of an additional P1 in the

degenerating fiber at the locus s = 0. Based on this, we can already deduce the general form

of the configuration of surfaces:

n = 7 :

F1

S F3 F1 F1 F1 F3 F5

(A.11)

where S is a surface which intersects F3 along a P1 of self-intersection −3 in the F3. Now,

to pass from the n = 8 case to the n = 7 case, we see that we simply need to blowup a

point on the +6 curve of the leftmost F6 in line (A.10). After performing this blowup the

self-intersection of the curve shifts to +5, as one would expect for an F5 surface. So, we

denote this one point blowup of F6 as Bl(1)F6. Summarizing, then, the configuration of

surfaces appearing for the −7 curve theory is:

n = 7 :

F1

Bl(1)F6 F3 F1 F1 F1 F3 F5

(A.12)

as shown in the upper left of Figure 7. By the same token, further blowups on F6 lead us to

e7 gauge theories with additional half hypermultiplets. Similar considerations also apply for

the resolved geometries associated with fiber enhancements of the other single curve theories.

Passing to the phase containing the canonical 5D fixed point is quite tricky in this exam-

ple. As shown in Figure 7, a sequence of flops must be performed until finally the resulting

surfaces can be contracted to two fixed points.
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Figure 7: Geometry of the −7 theory. In red we have indicated the generic E7 fiber along the
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