
Direction-Projection-Permutation for High Dimensional

Hypothesis Tests

Susan Weia,1, Chihoon Leea,2, Lindsay Wichersb,3, Gen Lia, and J.S. Marrona

aDepartment of Statistics and Operations Research, University of North Carolina -

Chapel Hill.

bDepartment of Environmental Sciences and Engineering, School of Public Health,

University of North Carolina - Chapel Hill.

April 4, 2013

Abstract

Motivated by the prevalence of high dimensional low sample size datasets in mod-

ern statistical applications, we propose a general nonparametric framework, Direction-

Projection-Permutation (DiProPerm), for testing high dimensional hypotheses. The

method is aimed at rigorous testing of whether lower dimensional visual differences are

statistically significant. Theoretical analysis under the non-classical asymptotic regime

of dimension going to infinity for fixed sample size reveals that certain natural varia-

tions of DiProPerm can have very different behaviors. An empirical power study both

confirms the theoretical results and suggests DiProPerm is a powerful test in many

settings. Finally DiProPerm is applied to a high dimensional gene expression dataset.
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binary classification; Maximal Data Piling; permutation test; Support Vector Machine;

two-sample problem.

1 Introduction

We propose a nonparametric procedure for testing high dimensional hypotheses that is

especially practical in high dimensional low sample size (HDLSS) settings. HDLSS data sets

arise in many modern applications of statistics, including genetics, chemometrics, and image

analysis. An intuitive approach to looking for differences between two high dimensional

distributions is by looking for differences between their one dimensional projections onto

some appropriate direction. DiProPerm is a three-stepped procedure based on this idea.

The procedure is as follows:

1. Direction — take the normal vector to the separating hyperplane of a binary linear

classifier trained on the class labels.

2. Projection — project data from both samples onto this direction and calculate a

univariate two-sample statistic. An illustration of this can be seen in the first panel

of Figure 1.

3. Permutation — assess the significance of this univariate statistic by a permutation

test. Namely, (a) pool the two samples and permute the class labels; (b) take the

normal vector to the binary linear classifier retrained on the permuted class labels;

(c) project data onto this direction and re-calculate the univariate two-sample statistic.

An illustration of this can be seen in the last three panels of Figure 1. For a level α

test, we reject the null if the original test statistic is among the 100α% largest of the

permuted statistics.

DiProPerm is not a single test but a general hypothesis testing framework. The number of

combinations of direction and univariate statistic is large. We will focus on a select few in

this paper but more options are discussed in detail in Section C of the Supplement.

In general, we are interested in testing the hypotheses: 1) equality of two distributions

and 2) equality of means. That any DiProPerm test is an exact level α test for equality

of distributions follows immediately from general permutation test theory. A perhaps sur-

prising point is that for testing equality of means, validity does not hold for some natural

versions of DiProPerm. In this paper we study the theoretical properties of two particular
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DiProPerm tests. We will show that one is valid for testing equality of means while the

other is not.

1.1 A Motivating Example

Lower dimensional projections in directions of interest are often used to understand struc-

ture in high dimensional data. One example is the directions found by applying Principal

Component Analysis (PCA), see Jolliffe (2002) for an excellent introduction, which yields

directions maximizing variation. When there are two classes however, as in the case we are

studying, additional insights come from directions based on binary linear classifiers, where

a binary classification decision is based on the value of a linear combination of the data

features.

In very high dimensions many linear classifiers over-fit. Here is a simple example illus-

trating this. Draw two independent samples, each of size 50, from the 1000-variate standard

Gaussian distribution. We use the Distance Weighted Discrimination (DWD) direction in

step 1 of DiProPerm (Marron et al., 2007). DWD is a binary linear classifier similar to the

Support Vector Machine (SVM) with certain advantages in high dimensions, see Cortes and

Vapnik (1995) for an introduction to SVM.

The first panel of Figure 1 shows the one dimensional projection of the data onto the

DWD direction trained on the original class labels. Colors are used to represent original

class membership and are thus constant throughout the first three panels. The projections

are jittered on the y-axis to allow easy visualization. A kernel density estimate of the

projections is plotted in the background (solid black line). We see that the projections in

the first panel of Figure 1 are very well separated despite the fact that the samples arise

from the same underlying distribution. This clear over-fitting artifact common in HDLSS

data is a strong motivation for DiProPerm.

The middle two panels of Figure 1 show projections of the data onto re-trained DWD

directions, each based on a realization of randomly permuted class labels. Symbols are

used to represent permuted class labels and are thus different in the first three panels. We

find the projections here to be well separated with respect to the symbols. Relative to

the second and third panels, the original separation we observed in the first panel is quite

unremarkable, suggesting that the two underlying distribution are not different.

The last panel in Figure 1 confirms this observation. We perform a DiProPerm test

with 100 permutations and display the statistic, chosen here to be the difference of sample

means, calculated for each permutation. The vertical line is the original statistic calculated
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Figure 1: The data are standard 1000-variate Guassian. In the first panel, the DWD

direction is trained on the original class labels, represented by colors (same in all panels).

In the second and third panels, the DWD directions are trained on realizations of randomly

permuted class labels, represented by symbols (different in each panel). The separation

in the first panel is comparable to that in the second and third panels. One hundred

permutation statistics resulting from a DiProPerm test are shown in the last panel which

confirms the separation in the first panel is not significant.

on the unprojected data. We see that based on the DiProPerm test, the null hypothesis of

equal distributions should not be rejected.

1.2 The Hypotheses

Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples of Rd-valued random vec-

tors, d ≥ 1 with distributions F1 and F2, respectively. We are interested in testing the null

hypothesis of equality of distributions

H0 : F1 = F2 versus H1 : F1 6= F2 (1)

Let µ(F ) denote the mean of a distribution F . Another item of interest is to test the weaker

null hypothesis of equality of means

H0 : µ(F1) = µ(F2) versus H1 : µ(F1) 6= µ(F2) (2)

Note that the multivariate Behrens-Fisher problem concerns testing (2) under normality.

1.3 Overview

The outline for the paper is as follows. A review of related work is presented in Section 2.

In Section 3, two DiProPerm tests are closely examined. HDLSS asymptotics are used to

investigate the validity of these two tests for the weaker null hypothesis of equality of means
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in Section 4. In Section 5 we perform a Monte Carlo power study comparing DiProPerm

to other methods. Finally in Section 6, DiProPerm is applied to a real microarray dataset.

2 Related work

There is extensive literature on testing equality of distributions for two multivariate dis-

tributions under the classical setting of sample size larger than dimension. For the more

challenging HDLSS setting, several methods have been developed and we discuss two of

them here.

First, there are nearest neighbor tests Bickel and Breiman (1983); Henze (1988); Schilling

(1986) which are based on nearest neighbor coincidences - the number of neighbors around

a data point that belong to the same sample. The null distribution of the test statistic can

be derived parametrically using normal theory or nonparametrically using a permutation

test. A more recent contribution to testing equality of distributions under HDLSS settings

is Szekely and Rizzo’s nonparametric energy test (Szekely and Rizzo, 2004). The energy

test statistic is based on the Euclidean distance between pairs of sample elements. Here

significance is accessed through permutation testing.

The nearest neighbor test and the energy test require calculation of all pairwise distances

between sample elements. The computational complexity of both tests is independent of

dimension, and is thus suitable for the HDLSS setting. In Section 5.1 we perform an

empirical power study comparing DiProPerm to the energy test.

For testing equality of means for two multivariate distributions, the classical Hotelling

T 2 test is often used in the setting of sample size larger than dimension. However, the

Hotelling T 2 statistic is not computable in HDLSS situations because the covariance matrix

is not of full rank. To address this issue, the methods in (Bai and Saranadasa, 1996),(Chen

and Qin, 2010), and (Srivastava and Du, 2008) replace the covariance matrix in the Hotelling

T 2 statistic by a diagonalized version.

Taking a different approach, the method proposed by Lopes et al. projects the high

dimensional data onto a random subspace of low enough dimension so that the traditional

Hotelling T 2 statistic may be used (Lopes et al., 2011). All of these tests have the disadvan-

tage that equal covariances are assumed, which is not a restriction we place on DiProPerm.

In Section 5.2 we perform an empirical power study comparing DiProPerm to the Random

Projection test proposed in Lopes et al. (2011).
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3 The Choice of The Univariate Statistic

Here, we study the difference between two particular choices of the univariate statistic

in Step 2 of DiProPerm. First, let the Mean Difference (MD) direction be the vector

connecting the centroids of each sample. For simplicity, we will use this particular direction

to compare two natural statistics of the projections: 1) the Mean Difference (MD) statistic

— the difference of sample means, and 2) the two-sample t-statistic (t) — difference of

sample means divided by {s1/m+s2/n}1/2 where s1 and s2 are sample standard deviations

of each class, sized m and n respectively. Henceforth we specify different DiProPerm tests

by concatenating the direction name and two sample univariate statistic name. Following

this convention, the DiProPerm test that uses the MD direction and the MD statistic will

be referred to as the MD-MD test and the DiProPerm test that uses the MD direction

and the two-sample t statistic as the MD-t test.

We provide a toy example to contrast the difference between the MD and t statistic.

We draw independent samples, each of size 50, where the first sample arises from the 1000-

variate standard Gaussian distribution and the second the 1000-variate distribution with

iid marginal t(5) distributions. Note that the samples arise from different distributions

that have the same means. Figure 2 shows the one dimensional projection of the data onto

various MD directions and the MD and t statistic applied to these projections.

The lengths of the longer horizontal black bars represent the MD statistics while the

lengths of the shorter horizontal bars represent the sample standard deviations of the pro-

jected data in each permuted group. The MD statistic and two-sample t statistic calculated

on the projected data are displayed towards the top of each panel. We see that the t-

statistic in the first panel is much higher than the permuted t-statistics in the second and

third panels. On the other hand, the MD statistic is about the same between the original

and permuted worlds. We confirm this is a systematic pattern by looking at 1000 permuta-

tions and calculating the MD-t statistic. The distribution of the permuted MD-t statistics

can be seen in the last panel of Figure 2. We see that the original MD-t statistic, repre-

sented as a vertical line, is among the larger permutation statistics, leading us to reject the

null hypothesis. The distribution of the MD-MD permutation statistics, not shown here,

looks very similar to the last panel of Figure 1, where the original statistic is close to the

middle of the permutation distribution. Thus under this setting the MD-t test rejects the

null while the MD-MD does not.

This apparent inconsistency is due to the fact that the MD and t statistics are actually

testing different hypotheses. The former is testing the weak hypothesis of equality of means

6



−5 0 5
0

0.05

0.1

0.15

Original

MD projections

t stat = 32.96

MD stat = 7.54

−5 0 5
0

0.05

0.1

Permutation 1

MD projections

MD stat = 7.18

t stat = 24.64

−5 0 5
0

0.05

0.1

Permutation 2

MD projections

MD stat = 7.46

t stat = 28.37

24 26 28 30 32 34

0

0.05

0.1

0.15

0.2

MD-t statistics

100 Permutations

Figure 2: The first sample arises from a standard 1000-variate Gaussian distribution and

the second sample arises from the 1000-variate distribution with iid t(5) marginals. In the

first panel, the MD direction is trained on the original class labels, represented by colors.

In subsequent panels, the MD direction is trained on realizations of permuted class labels,

represented by symbols. Note that the MD-MD statistic is similar across the first three

panels while the MD-t statistic is much larger in the first panel. One thousand permutation

MD-t statistics are shown in the last panel. The empirical p-value is small suggesting the

test that uses MD-t would reject the null.

while the latter is testing the strong hypothesis of equality of distributions. In light of this,

each test is correct in its decision. This phenomenon is studied in detail in the next section.

4 Hypothesis Test Validity

In this section, we study the validity of the MD-MD and the MD-t for testing 1) equality

of distributions and 2) equality of means. We work with the MD direction because it is

most amenable to theoretical analysis. Future work will include other directions such as

DWD, SVM, etc. High dimensional geometric representation of SVM and DWD described

in Bolivar-Cime and Marron (2013) could provide the basis for this endeavor.

That both the MD-MD and the MD-t are exact tests for equality of distributions follows

from standard theory on permutation tests. We will discuss how an exact level α test can

be constructed by a permutation test. Let N = m + n and write Z = (Z1, . . . , ZN ) =

(X1, . . . , Xm, Y1, . . . , Yn) for the pooled sample. Let {π(1), . . . , π(N)} be a permutation of

{1, . . . , N}. Write Zπ = (Zπ(1), . . . , Zπ(N)) for the permuted sample. Let GN denote the set

of all permutations π of {1, . . . , N}. Then for any test statistic Vm,n = Vm,n(Z1, . . . , ZN ),

we can calculate Vm,n(Zπ(1), . . . , Zπ(N)) for all π ∈ GN . The test that rejects the null if

the original statistic Vm,n(Z1, . . . , ZN ) is larger than (1−α)100% of the permuted statistics
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Vm,n(Zπ(1), . . . , Zπ(N)) is an exact level α test. The exactness comes from the fact that the

unconditional distribution and the permutation distribution of the statistic coincide under

the null of equal distributions. It follows that the MD-MD test and the MD-t test, and any

other DiProPerm test, are exact for testing equality of distributions.

The matter of establishing validity for testing equality of means is not as straightforward

on the other hand. In general, permutation tests cannot be expected to be valid for testing

weaker hypotheses such as equality of means. For instance, if the covariances are not the

same, we have to be very careful with our choice of direction and two-sample statistic. The

signal in the covariances may confound our interpretation of tests that are sensitive to both

the signal in the mean and the signal in the variances. This is consistent with our results

which show that under normality and balanced sample sizes, the MD-MD remains valid for

testing equality of means under heterogeneous covariances. On the other hand, the MD-t

is invalid when the covariances are not the same.

4.1 MD-MD

In this section, we establish that the MD-MD test is an exact test for equality of means

under normality and balanced sample sizes. The MD-MD test statistic, Tm,n(Z), is the

mean of the projections of the X’s onto the unit vector in the direction of X̄− Ȳ minus the

mean of the projections of the Y ’s onto the unit vector in the direction of X̄ − Ȳ :

Tm,n(Z) = Tm,n(X1, . . . , Xm, Y1, . . . , Yn) (3)

=
1

m

m∑

i=1

X ′i
(X̄ − Ȳ )

||X̄ − Ȳ ||
− 1

n

n∑

j=1

Y ′j
(X̄ − Ȳ )

||X̄ − Ȳ ||
(4)

= ||X̄ − Ȳ || (5)

Theorem 1. Let X1, . . . , Xm be an iid sample from the d-variate Gaussian distribution

N(µX ,Σx) and Y1, . . . , Yn be an independent sample drawn iid from the d-variate Gaussian

distribution N(µY ,Σy) where ΣX 6= ΣY . If m = n then the unconditional distribution and

the permutation distribution of Tm,n(Z) are equal under the null µX = µY .

Proof. Under µX = µY , X̄ − Ȳ is distributed as

N(0,Σx/m+ Σy/n) (6)

and the permutation distribution of X̄ − Ȳ is

m∑

r=0

(
m
r

)(
n
r

)
(
N
m

) N

(
0,

(m− r)Σx + rΣy

m2
+
rΣx + (n− r)Σy

n2

)
(7)
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If m = n, the expressions in (6) and (7) are the same, in which case the unconditional and

permutation distribution of Tm,n(Z) are also the same.

4.2 MD-t

The MD-t statistic, denoted by Um,n(Z), is the result of applying the unbalanced sample

sizes, unequal variance two-sample t-test statistic (also known as Welch’s t-test (Welch,

1947)) to the projections onto the MD direction. Let a · b denote the standard dot product

between two vectors in Rd. The sample variances of the projected data can be expressed as

s2
X̃

=
1

m− 1

m∑

i=1

[(Xi − X̄) · (X̄ − Ȳ )]2

and

s2
Ỹ

=
1

n− 1

n∑

i=1

[(Yi − Ȳ ) · (X̄ − Ȳ )]2.

Define Sm,n(Z) = Sm,n(X1, . . . , Xm, Y1, . . . , Yn) = s2
X̃
/m+ s2

Ỹ
/n. The MD-t statistic is

Um,n(Z) = Um,n(X1, . . . , Xm, Y1, . . . , Yn) = Tm,n(Z)2/{Sm,n(Z)}1/2

where Tm,n(Z) is as in Section 4.1. We use the term “projected” rather loosely here since

we have not normalized by ||X̄− Ȳ ||. This is of no actual consequence since the two-sample

t-statistic is scale invariant.

Under equal means the numerator in the MD-t statistic behaves similarly in the permu-

tation world and the original world. However, we will see that the denominator of the MD-t

statistic has very different behavior. We find that the denominator of the MD-t is larger in

the permuted world, as seen in Figure 2. This has the effect of making the unconditional

distribution of the MD-t statistic larger than the permutation distribution.

To gain some intuition, consider the following toy HDLSS example. Suppose we observe

X1, X2 ∼ F1 and Y1, Y2 ∼ F2 where F1 = N(0, Id) and F2 = N(0, σ2Id), σ
2 6= 1. The

points X1, X2, Y1, Y2 form the vertices of a tetrahedron in three dimensional space. The

two-dimensional plane generated by Y1, Y2 and X̄ is shown in Figure 3. Distances between

elements of interest are calculated using standard HDLSS asymptotics, see Hall et al. (2005)

for examples of this type of calculation. All distances have an additional OP (1) term that

is not shown to avoid clutter. The geometric configuration in Figure 3 has the implication

that s2
Ỹ

is small. To see this, note the projections of Y1 and Y2 onto the MD direction

X̄ − Ȳ is close to the projection of Ȳ itself. A similar argument can be applied to show s2
X̃

is small.
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√
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√
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√
d(1/2 + σ2)

√
d/2(1 + σ2)

X̄
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Ȳ

Figure 3: Plane generated by Y1, Y2 and X̄ where X1, X2 ∼ F1 = N(0, Id) and Y1, Y2 ∼

F2 = N(0, σ2Id) for σ2 6= 1. Note that the projections of Y1 and Y2 onto X̄ − Ȳ is close to

the projection of Ȳ onto X̄ − Ȳ . This has the implication that s2
Ỹ

will be small.

Now let’s look at what happens in the permutation world. Figure 4 shows the two-

dimensional plane generated by the realization of a random permutation where X∗1 = X2,

X∗2 = Y2 and Y ∗1 = X1 and Y ∗2 = Y1. Notice that the distance between Y ∗1 and X̄∗ is

different than the distance between Y ∗2 and X̄∗. This has the effect of making s2
Ỹ ∗ , the

sample variance of the the projections of Y ∗1 and Y ∗2 , large. To see this, note the projections

of Y ∗1 and Y ∗2 onto the permuted MD direction are not close to the projection of Ȳ ∗. A

similar argument can be applied to show s2
X̃∗ , the sample variance of the projections of X∗1

and X∗2 , is large. The derivations for the distances shown in Figures 3 and 4 can be found

in the supplement.

The toy example above suggests the denominator of the MD-t statistic is larger in the

permutation world than in the original world. The next result gives us a sense of just how

far apart are the permutation and unconditional distributions of Sm,n(Z).

Theorem 2. Let X1, . . . , Xm be a sample from the d-variate Gaussian distribution N(µx, σ
2
xId)

and Y1, . . . , Yn be an independent sample from the d-variate Gaussian distribution N(µy, σ
2
yId)

where σ2x 6= σ2y are scalars. Under µx = µy, we have

1

d
Sm,n(Z)

d−→ (
σ2x
m

+
σ2y
n

)

{
1

m− 1

σ2x
m
χ2(m− 1) +

1

n− 1

σ2y
n
χ2(n− 1)

}
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Figure 4: Plane generated by a particular permutation realization of X1, X2, Y1, and Y2.

Note that the projections of Y ∗1 and Y ∗2 onto X̄∗ − Ȳ ∗ is not close to the projection of Ȳ ∗

onto X̄∗ − Ȳ ∗. This has the implication that s2
Ỹ ∗ may be large.

as d goes to infinity. For the permuted version, we have for some non-zero constant c,

1

d2
Sm,n(Zπ)→ c in probability.

The results of this theorem are surprising in that the denominator of the MD-t statistic

is actually of different orders in the unconditional and permutation worlds. In particular,

in the unconditional world Sm,n(Z) grows like a random variable times d, while in the

permutation world it grows like a constant times d2.

Let us revisit the toy example earlier and see what Theorem 2 can tell us. We make

50 draws from F1 = N(0, Id) and another 50 independent draws from F2 = N(0, 100Id).

We show in Figure 5, using 1000 Monte Carlo realizations, the simulated permutation and

unconditional distributions of the MD-t statistic for various dimensions.

Under the conditions in Theorem 2, when µx = µy, the numerator of the MD-t statistic

is proportional to a χ2(d) variable for both the unconditional and permutation distribution.

On the other hand, by the results in Theorem 2 Sm,n(Z) is of the order
√
d and d for the

unconditional and permuted distributions, respectively. Thus we should expect the MD-t

statistic to be of the order
√
d in the original unconditional world and 1 in the permutation

world. This is consistent with Figure 5 — the unconditional distribution is centered around
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Figure 5: The unconditional and permutation distribution of the MD-t statistic for the dis-

tributions F1 = N(0, Id) and F2 = N(0, 100Id). The separation between the unconditional

and permutation distribution increases with dimension.

√
d while the permutation distribution is not growing with d. As Figure 5 illustrates, the

unconditional distribution quickly separates from the permutation distribution as dimension

increases. Thus it is very important that the MD-t statistic not be used when the goal is

to test for equality of means. On the other hand, this shows the MD-t test has some power

for testing equality of distributions against equal means alternatives.

4.3 Power surfaces

In this section, we study the power of the MD-MD and MD-t for testing equality of means.

In the simulations that follow, we make m draws from F1 = N(µ1, σ
2
1Id), and n independent

draws from F2 = N(0, Id). We set d = 500 and m = n = 50 for balanced sample sizes and

m = 50, n = 100 for unbalanced. The dimension d and sample sizes m and n are chosen to

reflect a HDLSS setting. The significance level is set at α = 0.05. Power is estimated using

1000 Monte Carlo simulations. Figure 6 displays a 3D surface of power versus µ1 versus

σ21, using a color spectrum from cool to warm corresponding to the range 0 to 1. We also

show an image underneath the surface where each pixel corresponds to the point in the 3D

surface above.
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Figure 6a displays the estimated power surface of MD-MD under balanced sample sizes.

By Theorem 1, MD-MD is an exact test for equality of means under balanced sample sizes

and normality. This is consistent with what we see in Figure 6a — when the means are equal

(i.e. µ1 = 0), the power is around α = 0.05, as indicated by the streak at µ1 = 0. When

sample sizes are unbalanced, see Figure 11 in Section B of the Supplement, the MD-MD is

no longer an exact test and may not even be asymptotically valid as d→∞. In Section B

of the Supplement, we propose a modification of MD-MD that should be used when sample

sizes are unbalanced.
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Figure 6: Power surfaces for testing equality of means of the distributions F1 = N(µ1, σ
2
1Id)

and F2 = N(0, Id). We see that MD-MD attains the correct level under balanced sample

sizes. The MD-t test is not valid for testing equality of means regardless of balanced or

unbalanced sample sizes.

Figures 6b and 6c show that under heterogeneous covariances (when σ21 6= 1), the MD-

t test of equal means does not attain the correct level for either balanced or unbalanced

sample sizes. In the immediate region around (µ1, σ
2
1) = (0, 1), the power of the MD-t

test is close to α as expected. However as we move away from (µ1, σ
2
1) = (0, 1), the power

quickly increases. Thus if we use the MD-t test for equality of means, we will reject too

often. On the other hand this shows that the MD-t test has some power for testing equality

of distributions against alternatives where the means are equal but the distributions are

not.

5 Comparison with Other Methods

In this section we compare DiProPerm to other methods in the simulation contexts described

in Table 1. First, for testing equality of distributions, we compare the DiProPerm tests

DWD-t and MD-t to the energy test proposed by Szekely and Rizzo (Szekely and Rizzo,
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2004). Next, for testing equality of means, we compare the DiProPerm tests DWD-MD and

MD-MD to the Random Projection test proposed by Lopes, Jacob and Wainwright (Lopes

et al., 2011). Our simulation results show that no test is universally most powerful. As

such, our goal is to learn general lessons about the situations under which each method can

be expected to do well.

Simulation Sample 1 Sample 2

S1 N(0, Id) t(5)d

S2 N(0,ΣB) N(µ,ΣB)

S3 N([3, 30, 0, . . . , 0], Id)

N([3,−30, 0, . . . , 0], Id)

N([−3, 30, 0, . . . , 0], Id)

N([−3,−30, 0, . . . , 0], Id)

Table 1: Simulation settings. The notation N(µ,Σ) denotes a multivariate Gaussian dis-

tribution with mean µ and covariance Σ. In S1, the notation t(5)d denotes the d-variate

distribution with iid marginal distribution t(5). In S2, the first 25% of the coordinates in

µ are zero and the rest are set to 1/
√
n. The covariance matrix ΣB has a block structure

(described further in the text). In S3, each distribution is an equally weighted Gaussian

Mixture of the components listed.

Simulation S1 in Table 1 was taken from Szekely and Rizzo. Simulation S2 is a modifi-

cation of a simulation found in Lopes, Jacob, and Wainwright. Following their simulation

setting, we let the covariance matrix ΣB be block-diagonal with identical blocks B ∈ R5×5

along the diagonal. The matrix B has diagonal entries equal to 1 and off-diagonal entries

equal to 0.2. The mean vector is set to the zero vector in sample 1. In the second sample,

the mean vector is set to zero in the first 25% of the coordinates and the rest is set to

1/
√
n. Simulation S3 looks at data arising from equally weighted Gaussian mixtures with

the components listed in Table 1. All DiProPerm tests are implemented using 1000 permu-

tations. Power is estimated through 1000 Monte Carlo simulations at 0.1 significance level.

In Figures 7 and 8 we display the power against a range of dimensions.
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5.1 Equality of distributions

The energy statistic is based on the Euclidean distance between pairs of sample elements.

The two-sample test statistic is

εm,n =
mn

N


 2

mn

m∑

i=1

n∑

j=1

||Xi − Yj || −
1

m2

m∑

i=1

m∑

j=1

||Xi −Xj || −
1

n2

n∑

i=1

n∑

j=1

||Yi − Yj ||




The first term measures the average distance between the samples and the last two terms

measure the average distance within each sample. The significance of the energy test statis-

tic is assessed using a permutation test. In our implementation of the energy test, we used

1000 permutations.

For all simulations in Figure 7, the sample sizes are set to be unbalanced: m = 50, n =

150. Figure 7 compares the power of MD-t, DWD-t, and the energy test for testing equality

of distributions. The first panel shows the result of simulation S1. The standard Gaussian

and t(5)d both have mean zero but different covariances. Note that the signal in the covari-

ance grows stronger with dimension. In light of this, it is not surprising that the MD-t and

DWD-t do not perform as well as the energy test which is more attuned to variance effects.

However, as the dimension increases all three tests attain full power.

The second panel of Figure 7 shows the results for simulation S2. All three tests perform

well with power increasing to 1 with dimension. Note that the mean effect is along the 45

degree line. The structure of ΣB has the implication that the directions with highest

variation are for some constant c, (c, c, c, c, c, 0, . . . , 0), (0, 0, 0, 0, 0, c, c, c, c, c, 0, . . . , 0), and

etc. Thus the mean effect is further exaggerated by the covariance structure making this a

rather unchallenging setting for all three methods.

The result of simulation S3 is shown in the last panel of Figure 7. Here, both the

DiProPerm DWD-t and MD-t test are seen to be more powerful than the energy test. This

is not surprising since by way of its construction, the energy test can be expected to have

difficulty in separating Gaussian mixture data types. The MD-t has good performance but

DWD-t has the best power because DWD was developed to handle Gaussian mixture data

types.

5.2 Equality of means

In the RP test proposed by Lopes, Jacob and Wainwright, the data is first projected down

to a dimension low enough so that the regular Hotelling T 2 statistic may be applied (Lopes

et al., 2011). The projection matrix is a k×d matrix with iid N(0, 1) entries where k is the
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Figure 7: Power comparison of DWD-t, MD-t and the energy test for testing equality of

distributions under the various simulation settings in Table 1.

dimension of the lower dimensional subspace. In our implementation of the RP method, we

follow the authors’ recommendation and set the tuning parameter k = bn/2c. The samples

are assumed to arise from Gaussian distributions with equal covariances. The resulting

statistic then follows an F distribution under the null of equal means. For all simulations

in Figure 8, the sample sizes are set to be balanced: m = 50, n = 50. The standard

multivariate Gaussian and the multivariate t(5)d both have mean zero, and thus the power

of MD-MD and RP should be around α = 0.1 in simulation S1. The first panel of Figure

8 shows this is indeed the case. Note that if MD-MD or RP were to be used for testing

equality of distributions, neither would have power against alternatives such as in S1.

In simulation S2, the RP method does not perform as well as MD-MD or DWD-MD. This

is perhaps due to the DiProPerm tests being able to pick up the mean effect more efficiently

than the RP method which tries to sense random directions in very high dimensions. Note

that simulation S2 is a setting in which the MD statistic is powerful for either direction

DWD or MD as the mean effect is strong. Re-examining Figure 7, we see that the DWD-

MD is more powerful than the DWD-t and the MD-MD more powerful than the MD-t for

simulation S2. Recall that the covariance structure in S2 amplifies the mean effect. The

DiProPerm tests that use the two-sample t-statistic may have lower power than their MD

counterpart because the standardization in the t-statistic cancels out some of the effect.

In the Gaussian mixture S3 simulation, the DWD-MD and the RP test are both substan-

tially more powerful than the MD-MD test. In this setting, the direction of discrimination

is in the first coordinate direction but the direction of most variation is along the second

coordinate. Not surprisingly, MD-MD has trouble in this setting. The RP test, which uses

the Mahalanobis distance, is able to correct for this false signal in the second coordinate
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direction. DWD-MD is seen to perform slightly better than the RP test. Again, DWD is

designed to work well in discriminating Gaussian mixture data types and this result matches

our expectation.
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Figure 8: Power comparison of MD-MD versus the RP method for testing equality of means

under the various simulation settings in Table 1.

6 Application: Microarray data analysis

The first application of DiProPerm to a real dataset can be found in Wichers et al. (2007).

DiProPerm was applied to an HDLSS dataset and used to find a statistically significant

difference between heart rates of rats among different treatment groups. In this section we

will apply DiProPerm to a different kind of HDLSS data — gene expression microarray

data.

Two HDLSS datasets are examined. The first dataset is denoted UNCGEO and the

second UNCUP, following the naming convention of their source which can be found at

http://peroulab.med.unc.edu/. The UNCGEO datasets consists of gene expression data

of 9674 genes measured on 50 breast cancer patients at UNC. The UNCUP dataset looks

at the same set of genes measured on 80 breast cancer patients in another study at UNC.

We performed many different hypotheses of interest within each dataset. We highlight two

particular comparisons here which highlight the main point that formal hypothesis testing

is an important component of visualization in high dimensions.

The UNCGEO patients are divided into standard breast cancer subtypes: 1) Luminal

A versus 2) Luminal B and the UNCUP data into the groups: 1) Luminals (Luminal A

and Luminal B) versus 2) HER and Basal. Luminals have a very different gene expression

signature from HER and Basal. On the other hand, the difference between Luminal A and

Luminal B is less clear cut. For each dataset, we use DWD-t to test equality of distributions
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between the gene expression in group 1 and group 2. Note that we have a HDLSS setting

here since the number of genes well exceeds the sample sizes in each subgroup.

Figure 9 shows the data projected onto DWD directions. The projections in the left

panel do not overlap at all whereas the projections in the right panel have a small amount

of overlap. These projection plots suggest that the separation is better for Luminal A vs.

Luminal B in the UNCGEO dataset than for Luminals vs. HER & Basal in the UNCUP

dataset. However as previously seen in the toy example in Section 1.1, great care is needed

before drawing conclusions of this type.
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Figure 9: One dimensional projection plots onto DWD directions for the UNCGEO dataset

and the UNCUP dataset. The separation in the projection plot for the UNCGEO dataset

is more visually pronounced than in the UNCUP dataset. We will rigorously assess this

visual result using DiProPerm.

Figure 10 displays the DiProPerm test results. Each dot represents the test statistic

resulting from a single permutation in the permutation test. We mark the position of the

original univariate t-statistic with a vertical dashed line. The empirical p-values show the

difference in the UNCGEO dataset is not significant while the difference in the UNCUP

dataset is very significant. (We also display the Guasisan fit p-value and Gaussian fit z-

score, two other types of “p-values” described in Section C.3 of the Supplement). This result

on a real world dataset parallels what we saw on the simulated toy dataset in Section 1.1

— what may seem to be a visually striking separation in lower dimensional visualizations

could well be an artifact of over-fitting or sampling variation.
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Figure 10: DWD-t test result for the UNCGEO (left) and UNCUP (right) datasets. In the

UNCGEO study (left), the difference between the Luminal A and Luminal B subgroups

is not significant. In the UNCUP study (right), the difference between the Luminals and

HER & Basal subgroups is very significant. This is surprising because the projection plots

in Figure 9 suggest the contrary.

7 Matlab Software

Matlab software for DiProPerm is available at http://www.unc.edu/~marron/marron_software.html.
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A Proofs

Lemma 1. Let X1, . . . , Xm be a sample from the d-variate Gaussian distribution N(µx, σ
2
xId)

and Y1, . . . , Yn be an independent sample from the d-variate Gaussian distribution N(µy, σ
2
yId)

where σ2x 6= σ2y. Let X̃k = X ′k(X̄ − Ȳ ). Let X̃1:k−1 be the sample mean of X̃1, . . . X̃k−1.

Under µx = µy, we have, for k = 2, . . . ,m

d−1/2((X̃k − X̃1:k−1))

{ k
k−1σ

2
x(σ2x/m+ σ2y/n)}1/2

d−→ N(0, 1) as d→∞.

Similarly we have

d−1/2((Ỹk − Ỹ1:k−1))
{ k
k−1σ

2
y(σ

2
x/m+ σ2y/n)}1/2

d−→ N(0, 1) as d→∞

k = 2, . . . , n.

Proof. We can write X̃k − X̃1:k−1 as a sum of products

X̃k − X̃1:k−1 =

d∑

p=1

(Xk − X̄1:k−1)
(p)(X̄ − Ȳ )(p) (8)

where X(p) simply refers to the p-th component in the d-dimensional vector X. The expec-

tation of the summands in (8) is zero:

E(Xk − X̄1:k−1)
(p)(X̄ − Ȳ )(p) = E(X

(p)
k X̄(p))− E(X̄

(p)
1:k−1X̄

(p))

− E(X
(p)
k Ȳ (p)) + E(X̄

(p)
1:k−1Ȳ

(p))

= 0

Next we look at the variance of the summands. Recall for Gaussian data, zero covariance

is equivalent to independence. We know the covariance between (Xk − X̄1:k−1)(p) and

(X̄ − Ȳ )(p) is zero since the expectation of the latter is zero and the expectation of the

product was shown above to be zero as well. Thus each summand in (8) is the product of

two independent variables. The variance of a product of independent variables (see ?? for

a derivation), U and V , is

(EU)2V ar(V ) + (EV )2V ar(U) + V ar(U)V ar(V ). (9)

Thus we have

V ar(Xk − X̄1:k−1)
(p)(X̄ − Ȳ )(p) = V ar(Xk − X̄1:k−1)

(p)V ar(X̄ − Ȳ )(p)

=
k

k − 1
σ2x(σ2x/m+ σ2y/n)
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By the Central Limit Theorem, we have

d1/2(1d(X̃k − X̃1:k−1))

{ k
k−1σ

2
x(σ2x/m+ σ2y/n)}1/2

d−→ N(0, 1) as d→∞

Lemma 2. Let X1, . . . , Xm be a sample from the d-variate Gaussian distribution N(µx, σ
2
xId)

and Y1, . . . , Yn be an independent sample from the d-variate Gaussian distribution N(µy, σ
2
yId)

where σ2x 6= σ2y. Let π be a permutation of {1, . . . , N = m + n}. Let Z̄π = (Z̄π(1:m) −

Z̄π(m+1:N)) be the MD direction trained on the permuted labels determined by π. We have

for i = 1, . . . ,m,

E((Zπ(i) − Zπ(1:m))
(k)Z̄(k)

π )

is non-zero. Similarly, for i = m+ 1, . . . , N , we have

E((Zπ(i) − Zπ(m+1:N))
(k)Z̄(k)

π )

is non-zero.

Proof. We prove the first statement. The second can be shown in a similar fashion. Let

P (n, k) denote the number of k permutations of n, i.e.

P (n, k) = n · (n− 1) · (n− 2) · · · (n− k + 1)

We have for i = 1, . . . ,m and k = 1, . . . , d,

E((Zπ(i) − Zπ(1:m))
(k)Z̄(k)

π ) = E((Zπ(i) − Z̄π(1:m))
(k)(Z̄π(1:m) − Z̄π(m+1:N))

(k))

= EZ
(k)
π(i)Z̄

(k)
π(1:m) − EZ

(k)
π(i)Z̄

(k)
π(m+1:N) − E(Z̄

(k)
π(1:m))

2 + EZ̄
(k)
π(1:m)Z̄

(k)
π(m+1:N)

=
(EZ

(k)
π(i))

2

m
+

m

m− 1
µ2 − µ2 − E(Z̄

(k)
π(1:m))

2 + µ2

=
var(Z

(k)
π(i)) + µ2

m
+

m

m− 1
µ2 − (var(Z̄

(k)
π(1:m)) + µ2)

=
var(Z

(k)
π(i))

m
− var(Z̄(k)

π(1:m))

=
m

N
{σ

2
x

m
− 1

m2

1

w1

m−1∑

r=0

P (m− 1, r)P (n,m− r)[rσ2x + (m− r)σ2y ]}

+
n

N
{
σ2y
m
− 1

m2

1

w2

n−1∑

r=0

P (n− 1, r)P (m,m− r)[rσ2y + (m− r)σ2x]}
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where w1 and w2 are the weights

w1 :=
m−1∑

r=0

P (m− 1, r)P (n,m− r) and w2 :=
n−1∑

r=0

P (n− 1, r)P (m,m− r)

Thus if σ2x 6= σ2y , we have E((Zπ(i) − Zπ(1:m))
(k)Z̄

(k)
π ) is nonzero.

Lemma 3. Let Z1, Z2 be two random variables in Rd such that Z
(k)
1 Z

(k)
2 are i.i.d. for

k = 1, . . . , d and E(Z
(k)
1 Z

(k)
2 ) exists and is finite. Then

1

d2
(Z1 · Z2)

2 → [E(Z
(k)
1 Z

(k)
2 )]2 in probability

Proof. By the Law of Large Numbers, we have

1

d
(Z1 · Z2)→ E(Z

(k)
1 Z

(k)
2 ) in probability.

By Continuous Mapping Theorem, we have

1

d2
(Z1 · Z2)

2 → [E(Z
(k)
1 Z

(k)
2 )]2 in probability.

Now we have all the necessary ingredients to prove Theorem 2 in Section 4.2.

Proof of Theorem 2. To prove the first part of Theorem 2, we decompose s2
X̃

and s2
Ỹ

into a

sum of independent variables. Let X̃k−1 be the sample mean of the first k − 1 projections

X̃1, . . . X̃k−1. We will write s2
X̃

in a recursive fashion. Define s21 = 0. We will use the

following recursive formula to define s2k for k = 2, . . . ,m

(k − 1)s2k = (k − 2)s2k−1 +
k − 1

k
(X̃k − X̃k−1)

2 (10)

Since s2k−1 is independent of (X̃k− X̃k−1)2, this recursive viewpoint allows us to decompose

s2
X̃

= s2m into a sum of independent terms. Using the result in Lemma 1 and the second-

order Delta method, we have

1
d(X̃k − X̃1:k−1)2

k
k−1σ

2
x(σ2x/m+ σ2y/n)

d−→ χ2(1) as d→∞ (11)

Inputting expression (11) into the recursion defined in (10) and exploiting the independence

of the individual terms in s2
X̃

, we get

1

d
s2
X̃

d−→ 1

m− 1
σ2x(

σ2x
m

+
σ2y
n

)χ2(m− 1) as d→∞
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Similarly, we can show for the sample of projections Ỹ1, . . . , Ỹn,

1

d
s2
Ỹ

d−→ 1

n− 1
σ2y(

σ2x
m

+
σ2y
n

)χ2(n− 1) as d→∞

Thus we have

1

d
Sm,n(Z) =

1

d

(
s2
X̃

m
+
s2
Ỹ

n

)

d−→ 1

m− 1

σ2x
m

(
σ2x
m

+
σ2y
n

)χ2(m− 1) +
1

n− 1

σ2y
n

(
σ2x
m

+
σ2y
n

)χ2(n− 1)

For the second part in Theorem 2, we expand the sample variance of the projected

values in the permuted group as follows:

s2
Z̃π(1:m)

=
1

m− 1

m∑

i=1

(Z̃π(i) − Z̃π(1:m))
2

=
1

m− 1

m∑

i=1

((Zπ(i) − Zπ(1:m)) · (Z̄π(1:m) − Z̄π(m+1:N)))
2

Lemma 2 shows E(Zπ(i)−Z̄π(1:m))
(k)(Z̄π(1:m)−Z̄π(m+1:N))

(k) is nonzero. Now apply Lemma

3 with Z1 = (Zπ(i)−Zπ(1:m)) and Z2 = (Z̄π(1:m)−Z̄π(m+1:N)) to see that 1
d2
s2
Z̃π(1:m)

converges

in probability to a nonzero constant. A similar argument can be applied to s2
Z̃π(m+1:N)

.

Combining these results, it immediately follows that 1
d2
Sm,n(Zπ) converges in probability

to a nonzero constant.

B MD-scaled MD

We established in Section 4.1 that under certain conditions, the MD-MD test is valid when

sample sizes are balanced. Under these same conditions, MD-MD is no longer a valid test

however when sample sizes are unbalanced. Here we propose a modification of MD-MD,

called MD-scaled MD, that is asymptotically valid, as m,n→∞ for fixed d, for equality of

means when covariances are unequal and sample sizes are unbalanced.

We have chosen the classical asymptotic regime here to take advantage of the following

results. Janssen proved the permutation test for equality of means based on the studentized

statistic,

m1/2(X̄ − Ȳ )/{s2x +
m

n
s2y}1/2 (12)
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where s2x and s2y are the standard unbiased estimators of σ2x and σ2y , is asymptotically valid

as m,n → ∞ for the univariate case (Janssen, 1997). Janssen’s result easily extends to

the multivariate case if we assume a spherical covariance structure. Let X1, . . . , Xm be a

sample from a d-variate distribution with mean and covariance (µX , σ
2
xId) and Y1, . . . , Yn be

an independent sample with mean and covariance (µY , σ
2
yId). We propose the MD-scaled

MD DiProPerm test whereby the MD direction is used in Step 1 of DiProPerm and a scaled

MD statistic as in Equation (12) is used in Step 2. The MD-scaled MD statistic is

Tm,n(Z)/{s2x/m+ s2y/n}1/2 (13)

where Tm,n(Z) is as in Section 4.1. The asymptotic validity of the MD-scaled MD statistic

(as m,n → ∞) follows immediately from Janssen’s result. Note that normality is not an

assumption here.
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(a) MD-MD: Unbalanced
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(b) MD-scaled MD: Unbalanced

Figure 11: Power surface of the MD-MD and the MD-scaled MD for testing equality of

means for distributions F1 = N(µ1, σ
2
1Id) and F2 = N(0, Id). When sample sizes are

unbalanced, the MD-scaled MD test attains the correct level while the MD-MD does not.

We study the empirical power of the MD-MD and MD-scaled MD for testing equality

of means when sample sizes are unbalanced. We set m = 50, n = 100 and make m draws

from F1 = N(µ1, σ
2
1Id) and n draws from F2 = N(0, Id) for d = 500. The sample sizes and

dimension are chosen to reflect a HDLSS setting. The significance level is set at α = 0.05.

Power is estimated using 1000 Monte Carlo simulations and displayed using a color spectrum

from cool to warm, corresponding to the range 0 to 1.

Figure 11, as in the figures in Section 4.3, displays the simulated power surface of MD-

MD and MD-scaled MD. We see that when sample sizes are unbalanced and covariances

unequal (σ21 6= 1), MD-MD does not attain the correct level. Indeed MD-MD will reject

increasingly often as the signal in σ21 grows. On the other hand, we see from Figure 11b

that the MD-scaled MD test attains the correct level under unbalanced sample sizes. This
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simulated power study also suggests that the asymptotics for the MD-scaled MD test is in

effect for relatively small sample sizes and a much larger dimension.

C Additional Implementation Options

C.1 Direction

The following binary linear classifiers are among many possible choices for the direction

vector used in Step 1 of DiProPerm and all are implemented in the DiProPerm software:

1. The Mean Difference method is a simple binary linear classifier, also called the centroid

method (Hastie et al., 2003), where points are assigned to the class whose centroid

is closest. The normal vector to the separating hyperplane is the unit vector in the

direction of the line segment connecting the centroids of each class, (X̄ − Ȳ ).

2. Fisher Linear Discrimination (FLD) was an early binary linear classification method,

see Chapter 11 of Mardia et al. (1979) for an introduction. FLD seeks a separation

that maximizes the between sum-of-squares of the two classes while minimizing the

within sum-of-squares of each class. The normal vector to the separating hyperplane

is the unit vector in the direction of W−1(X̄ − Ȳ )′ where W is the d× d matrix

W =

m∑

i=1

(Xi − X̄)(Xi − X̄)′ +
n∑

j=1

(Yj − Ȳ )(Yj − Ȳ )′

3. Support Vector Machine (SVM) is a popular binary linear classification method that

minimizes training error while maximizing the margin between the two classes. See

Hastie et al. (2003) for a good introduction.

4. Distance Weighted Discrimination (DWD) is a binary linear classifier similar to SVM

except each data point has some weight in the final classifier (Marron et al., 2007).

DWD better avoids the data piling problem exhibited by SVM in high dimensions.

5. Maximal Data Piling (MDP) is a binary linear classifier such that the projections

of the data points from each class onto its normal direction vector have two distinct

values (Ahn and Marron, 2010).

Notice that we have not included any PCA directions on this list. This is because PCA is

tailored to find directions that show maximal variation, which is different from our objec-

tive of finding directions that show separation between the two-samples. A more serious
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disadvantage to using PCA as the direction in step 1 of DiProPerm is that the univari-

ate two-sample test statistic calculated in step 2 of DiProPerm would be invariant under

relabelings.

C.2 Projection and univariate statistic

In the second step of DiProPerm, we project the data onto the direction in step one and

compute a univariate two-sample statistic on the projected values. Large values of the test

statistic indicate departure from the null hypothesis. The following univariate two-sample

statistics are among many reasonable choices for the DiProPerm procedure and all are

implemented in the DiProPerm software.

1. Two Sample t statistic

2. Difference of sample means

3. Difference of sample means scaled, as in Equation (13)

4. Difference of sample medians

5. Difference of sample medians, divided by the median absolute deviation.

6. Area Under the Curve (AUC), from Receiver Operating Characteristic (ROC) curve

7. Paired sampling t-statistic

It is of interest to note that the classical Hotelling T 2 statistic is a special case of the

general DiProPerm framework. The FLD direction vector and the difference of sample

means combination gives the statistic (X̄ − Ȳ )W−1(X̄ − Ȳ )′. This is in fact the Hotelling

T 2 test statistic scaled by a factor of 1
n−2

n
n1n2

. To see this, recall the Hotelling T 2 statistic

is

T 2 =
n1n2
n

(X̄ − Ȳ )S−1u (X̄ − Ȳ )′

where

Su =

∑m
i=1(Xi − X̄)(Xi − X̄)′ +

∑n
j=1(Yj − Ȳ )(Yj − Ȳ )′

n− 2
=

W

n− 2

The MD-FLD statistic is 1
n−2

n
n1n2

T 2 .
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C.3 Permutation

In the final step of DiProPerm, an approximate permutation test is conducted to assess the

significance of the test statistic in step two. Our permutation test is approximate because

we perform a large number of random rearrangements of the labels on the observed data

points, rather than all possible rearrangements. There are three kinds of indicators we

commonly use and all are implemented in the DiProPerm software:

1. Empirical p-value: this is calculated as the proportion of the rearrangement test statis-

tics that exceed the original test statistic. The empirical p-value has the disadvantage

of often being zero. We may wish to compare two separations to see which is more

significant. This motivates the next quantity.

2. Gaussian fit p-value: we fit a Gaussian distribution to the permutation test statistics

and based on this calculate the percentage of rearrangement test statistics that ex-

ceed the original test statistic. (The term p-value is used loosely here). We do this

not because we believe the permutation statistics are actually Gaussian, but because

this provides a basis on which we can compare two DiProPerm results. In certain

settings where the Gaussian fit p-value may suffer from round-off error, we use the

next quantity as an alternative.

3. z-score: we fit a Gaussian distribution to the permutation test statistics and calcu-

late the corresponding z-score of the original test statistic with respect to the fitted

distribution.

When interpreting the results of DiProPerm tests, it is generally useful to print all three

indicators. When it is non-zero, the empirical p-value is the most interpretable. When it

is zero we next look to the Gaussian fit p-value. Finally if the Gaussian fit p-value suffers

from round-off error, the z-score is preferable.

D HDLSS calculations

Let X ∼ N(0, σ2xId) and Y ∼ N(0, σ2yId). We will study the asymptotic behavior of the

distance between X and Y . We have simply by definition

||X − Y ||2/(σ2x + σ2y) ∼ χ2(d).
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Then by the Central Limit Theorem,

√
d

(
||X − Y ||2/(σ2x + σ2y)√

2d
− 1√

2

)
→ N(0, 1)

as d→∞. Applying the Delta Method, we get

√
d


 ||X − Y ||

21/4
√

(σ2x + σ2y)d
− 1

21/4


 = OP (1)

and thus

||X − Y || =
√

(σ2x + σ2y)d+OP (1)
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