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Abstract

This work demonstrates an innovative numerical method for counting and locating eigenvalues with the
Evans function. Utilizing the geometric phase in the Hopf bundle, the technique calculates the winding of
the Evans function about a contour in the spectral plane, describing the eigenvalues enclosed by the contour
for the Hocking-Stewartson pulse of the complex Ginzburg-Landau equation. Locating eigenvalues with the
geometric phase in the Hopf bundle was proposed by Way [1], and proven by Grudzien, Bridges & Jones [2].
Way demonstrated his proposed method for the Hocking-Stewartson pulse, and this manuscript redevelops
this example as in the proof of the method in [2], modifying his numerical shooting argument, and introduces
new numerical results concerning the phase transition.
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1. Introduction

Way in his PhD thesis [1], supervised by Bridges at the University of Surrey, developed numerical results
which supported the hypothesis that parallel transport in the Hopf bundle could locate and measure the
multiplicity of of eigenvalues for linearizations of reaction-diffusion, differential operators. The eigenvalue
problem for the operator linearized about the steady state gives rise to a dynamical system on Cn. The Hopf
bundle is represented as S2n−1 ⊂ Cn over the base space CPn−1, and thus has a realization in the phase
space for an arbitrary dynamical system. By projecting λ dependent special solutions in Cn onto S2n−1

the dynamics induce parallel transport in the Hopf bundle. In the fiber S1 the parallel transport gives a
winding number that, relative to a reference phase for the contour, counts the multiplicity of eigenvalues
enclosed by the λ parameter, as proven by Grudzien, Bridges & Jones [2]. Way demonstrated his method
for the Hocking-Stewartson pulse of the complex Ginzburg-Landau equation, utilizing the exterior algebra
formulation as Afendikov & Bridges did for the Evans function [3]. This work re-examines this example
and the method—§2 will re-develop this example as in the proof of the method by Grudzien, Bridges &
Jones [2], and with the example framed in this context, §4 introduces new numerical results concerning the
phase transition. The numerical example highlights two important features that differentiates the method
of geometric phase from other Evans function formulations; namely, the geometric phase method it utilizes
either the stable or unstable manifold for the computation of the eigenvalues, and the computation of the
eigenvalue is continuous in the wave parameter, yielding a continuous accumulation of the eigenvalue driven
by the system dynamics.
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2. The Hocking-Stewartson Pulse of the Complex Ginzburg-Landau Equation

The scaled, complex Ginzburg-Landau equation is given by

ρeiψYt = Yxx − (1 + iω)2Y + (1 + iω)(2 + iω) | Y |2 Y (2.1)

where ρ > 0, ψ and ω are specified real parameters for the system. The Hocking-Stewartson pulse is the
steady state solution for the Complex Ginzburg-Landau equation, given by

Y (x, t) = (cosh(x))
−1−iω

(2.2)

Bates & Jones [4] prove that stability of a steady state can demonstrated by stability of the linearization of
equation (2.1), therefore, consider the linearization about the pulse.

Definition 2.1. Let L be the linearization of the operator defining equation (2.1) about the Hocking-
Stewartson pulse (2.2).

Considering solutions proportional to eλt, one can derive a non-autonomous system on C4 with asymptotic
limits in x, as done by Afendikov & Bridges [3]. The system will be of the form

v′ = A(x, λ)v v ∈ C4

limx→±∞A(x, λ) = A±∞(λ) ′ = d
dx

(2.3)

and it is equivalent to the eigenvalue problem in the following sense.

Lemma 2.2. A solution to the λ dependent system on C4 is continuous and bounded if and only if it is an
eigenfunction and λ is an associated eigenvalue.

Proof. This is proven by Alexander, Gardner & Jones [5] and the reader is referred there for the proof.

Remark 2.3. The linearization of the complex Ginzburg-Landau equation about the pulse, L in definition
2.1, has essential spectrum on the set

Sess = {ρ−1e∓iψ(ω − s2 − 1)∓ 2iρ−1ωe∓iψ, s ∈ R+} (2.4)

and for the parameter values ω = 3, ρ = 1√
5

, and ψ = arctan(2) there is a known double eigenvalue at λ = 0,

and simple eigenvalues at approximately λ = −6.6357 and λ = 15 estimated by Afendikov & Bridges [3].

Definition 2.4. Assume Ω ⊂ C is open, simply connected and contains only discrete eigenvalues of L.
System (2.3) is said to split in Ω if A±∞(λ) are hyperbolic and each have exactly k eigenvalues of positive
real part (unstable eigenvalues) and n−k eigenvalues of negative real part (stable eigenvalues), including
multiplicity, for every λ ∈ Ω.

Lemma 2.5. For the parameter values ω = 3, ρ = 1√
5

, and ψ = arctan(2) system (2.3) splits on the domain

{λ ∈ C : Re(λ) > 0}. Moreover, Ω ⊂ C can be chosen such that {λ ∈ C : Re(λ) > 0} ⊂ Ω and −6.6357 ∈ Ω.

Proof. Afendikov & Bridges [3] demonstrate that the autonomous limits, A±∞(λ), each have exactly 2 stable
and unstable eigenvalues respectively, for each λ such that Re(λ) > 0, and in general for λ /∈ Sess. For ω = 3,
ρ = 1√

5
, and ψ = arctan(2), the essential spectrum is a curve in C that does not intersect −6.6357; therefore

an open Ω ⊂ C can be chosen containing λ = −6.6357 without intersecting the essential spectrum, and for
such an Ω, system (2.3) splits on the domain.

Remark 2.6. With the splitting condition satisfied, one may construct the Evans function as done by
Alexander, Gardner & Jones [5]—the method of geometric phase was proven by Grudzien, Bridges & Jones
[2] under these hypotheses for the Evans function.
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In order to capture the winding of the unstable manifold of the asymptotic system A−∞(λ), the compound
matrix method is utilized, defining a dynamical system on the exterior algebra Λ2(C4).

Definition 2.7. Let the matrix A(λ, x) define dynamical system of the form (2.3) on C4. If {zj}21 are vectors

in C4, the corresponding A(2) system on Λ2(C4) ≡ C(4
2) ≡ C6 is defined:

Z ′ = A(2)(λ, x)Z =
d

dx
(z1 ∧ z2) (2.5)

=A(λ, x)z1 ∧ z2 + z1 ∧A(λ, x)z2 (2.6)

A
(2)
±∞(λ) = lim

x→±∞
A(2)(λ, x) (2.7)

Remark 2.8. The system (2.5) yields coordinates for the evolution of the two dimensional subspaces of
C4, which allows one to consider the evolution of the unstable manifold for the asymptotic system A−∞(λ),
and particularly the winding it accumulates both in the sense of the relative geometric phase considered by
Grudzien, Bridges & Jones [2] and the Chern number of the determinant bundle of the unstable manifold,
constructed by Alexander, Gardner & Jones [5]. By way of the proof in [2], these winding formulations are
seen to be equivalent for special solutions which allow trivializations of the determinant bundle.

Explicitly, Afendikov & Bridges derive the compound matrix system

ux = A(λ, x)u x ∈ R λ ∈ C u ∈ C6

A(λ) =


0 0 1 −1 0 0
a32 0 0 0 0 0
a42 0 0 0 0 1
−a31 0 0 0 0 −1
−a41 0 0 0 0 0

0 −a41 a31 −a42 a32 0


(2.8)

with components defined

a31 =λρ cos(ψ) + 1− ω2 − (2− ω2)(q̂22 + 3q̂21) + 6ωq̂1q̂2

a32 =− λρ sin(ψ)− 2ω − 2(2− ω)q̂1q̂2 + 3ω(q̂21 + 3q̂22)

a41 =λρ sin(ψ) + 2ω − 2(2− ω)q̂1q̂2 − 3ω(3q̂21 − q̂22)

a42 =λρcos(ψ) + 1− ω2 − (2− ω2)(q̂21 + 3q̂22)− 6ωq̂1q̂2

and q̂1, q̂2 derived from the expression for the pulse in C4, where

q̂1 =
cos (ω log(cosh(x)))

cosh(x)

q̂2 =
− sin (ω log(cosh(x)))

cosh(x)

The non-autonomous system (2.8) has the symmetric asymptotic limits

A∞(λ) = limx→±∞A(λ, x) =


0 0 1 −1 0 0

−p(λ) 0 0 0 0 0
η(λ) 0 0 0 0 1
−η(λ) 0 0 0 0 −1
−p(λ) 0 0 0 0 0

0 −p(λ) η(λ) −η(λ) −p(λ) 0

 (2.9)
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where the parameters are defined

p(λ) = 2ω + λρ sin(ψ) (2.10)

η(λ) = 1− ω2 + λρ cos(ψ) (2.11)

The method of geometric phase makes use of a loop of eigenvectors, chosen analytically in the parameter
λ, that correspond to the dominant unstable eigenvalue for the limiting systems at ±∞. The method is to
measure the relative winding the loop at −∞ accumulates through its evolution as it meets a corresponding
loop of eigenvectors at +∞. An algorithm for constructing these loops of eigenvectors is given by Humpherys,
Standstede & Zumbrun [6]. However, for the asymptotic system (2.9) such bases can be constructed explicitly.
The unique eigenvalues of most positive and most negative real part for system (2.9) are given by σ+, σ−

respectively, and have associated eigenvectors
σ+ =

√
2
√
η +

√
η2 + p2, X+(λ) =


2σ+

−2p
(σ+)2

−(σ+)2

−2p
σ+
(
(σ+)2 − 2η

)




(2.12)


σ− = −

√
2
√
η +

√
η2 + p2, X−(λ) =


2σ−

−2p
(σ−)2

−(σ−)2

−2p
σ−
(
(σ−)2 − 2η

)




. (2.13)

These eigenvectors correspond to the Grassmann coordinates for the un/stable subspace of the asymptotic
system on C4.

Remark 2.9. For x < 0 and | x | taken sufficiently large, the λ dependent initial conditions defined by
(2.12) approximate the unstable manifold of the fixed point 0 for the asymptotic system, and can be used for
initial conditions for the numerical method.

3. The Method of Geometric Phase

The strategy for determining the eigenvalues of the linear operator L with the Evans function is to choose
a contour K in the complex plane which does not intersect the spectrum of L and to calculate the winding of
the Evans function around K. The same strategy applies with the geometric phase formulation calculating
the winding of the Evans function in the winding in the fibers of the Hopf bundle. This section develops the
method of geometric phase with L, the linearization of the complex Ginzburg-Landau equation about the
Hocking-Stewartson pulse.

Hypothesis 3.1. Assume that the contour K is a smooth, simple closed curve in Ω ⊂ C such that there
is no spectrum of L in K. Let K◦ be the region enclosed by K—assume K◦ is homeomorphic to the disk
D ⊂ R2 and that K is parametrized by λ(s) : [0, 1] ↪→ K with standard orientation.

The Hopf bundle S11 is realized within the phase space of the exterior system on C4, Λ2(C4) ≡ C6, by
spherical projection; in general the generic Hopf bundle S2n−1 is realized similarly in Cn.

Definition 3.2. The Hopf bundle is a principal fiber bundle with full space S2n−1, base space CPn−1, and
fiber S1. The fiber S1 acts naturally on S2n−1 by scalar multiplication by the associated element in the
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unitary group U(1), and with respect to this action, the quotient is CPn−1. The spaces are related by the
diagram

S1 −−−−→ S2n−1y π

CPn−1

(3.1)

where π is the quotient map induced by the group action.

With respect to this coordinate realization of the Hopf bundle in the phase space Cn, one may define a
natural choice of connection. A connection describes the motion of a path within the fibers of the bundle—it
is possible to define a connection via a connection 1-form, as below. For a full discussion on the theory of
principal fiber bundles and connections the reader is referred to Kobayashi & Nomizu [7].

Definition 3.3. For the Hopf bundle S2n−1, viewed in coordinates in Cn, define the connection 1-form ω
pointwise for p ∈ S2n−1 as a mapping of the tangent space of the Hopf bundle Tp(S

2n−1) ⊂ Tp(Cn)

ωp : Tp(S
2n−1) → iR ∼= G

Vp 7→ 〈Vp, p〉Cn

(3.2)

where G is the Lie algebra of the fiber S1 [1]. Defining a connection 1-form defines a connection and ω will
be denoted the natural connection on the Hopf bundle.

Remark 3.4. The natural connection is a connection of the generic Hopf bundle S2n−1 and it is the unique
connection for S3. This is proven by Way [1] in §3.5 and the reader is referred there for a full discussion.

The realization of the Hopf bundle, and its connection, in coordinates for Cn also yields an alternative
formulation for a non-zero path in Cn, implicitly describing the connection of its spherical projection.

Lemma 3.5. Let u(t) : [0, 1] → Cn be a non-zero path, and û(t) be its the spherical projection into S2n−1.
The natural connection of the tangent vector of û(t) is identically

ω
( d
dt
û(t)

)
= i

Im
(
〈u′(t), u(t)〉

)
(〈u(t), u(t)〉)

(3.3)

Proof. By definition

ω

(
d

dt
û(t)

)
=
〈 d
dt

u(t)〈
u(t), u(t)

〉 1
2

,
u(t)〈

u(t), u(t)
〉 1

2

〉
=
〈u′(t)〈u(t), u(t)〉 12

〈u(t), u(t)〉
−
u(t)Re

(
〈u′(t), u(t)〉

)
〈u(t), u(t)〉 32

,
u(t)

〈u(t), u(t)〉 12

〉
=
〈u′(t), u(t)〉
〈u(t), u(t)〉

−
Re
(
〈u′(t), u(t)〉

)
〈u(t), u(t)〉

= i
Im
(
〈u′(t), u(t)〉

)
〈u(t), u(t)〉

which verifies equation (3.3).

With the choice of connection, one may measure the parallel translation of a path in the Hopf bundle—the
total parallel translation accumulated by a path is referred to as the geometric phase.
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Definition 3.6. Let γ ⊂ S2n−1 be a path in the Hopf bundle. Then the geometric phase of γ with respect
to the natural connection is the total winding in the fiber given as

GP (γ) =
1

2πi

∫
γ

ω (3.4)

For a general non-zero path γ parametrized by u(t) : [0, 1]→ Cn one may write the geometric phase as

GP (γ) =
1

2π

∫ 1

0

Im
(
〈u′(s), u(s)〉

)
(〈u(s), u(s)〉)

(3.5)

In his thesis [1], Way developed numerical results which calculated the geometric phase of special solutions
for the system (2.8). In particular, he considered solutions which corresponded to the stable manifold of
the system A+∞(λ) and, with respect to the equation (3.4), he calculated their phase with respect to the
contour K. The reformulation of the method of geometric phase, as in the proof by Grudzien, Bridges &
Jones [2], is elaborated below:

The Method of Geometric Phase

• Step 1: Choose a contour K in C that does not intersect the spectrum of the operator L, and let
λ(s) : [0, 1]→ K be a parametrization of K.

• Step 2: Varying λ ∈ K define a loop of eigenvectors, X±(λ), for the A
(2)
±∞(λ) system (2.9) where

X±(λ) corresponds to the dominant eigenvalue of positive real part.

• Step 3: Choose x0 “close” to −∞ and let X−(λ, x0) be a loop of initial conditions.

• Step 4: Integrate the loop of eigenvectors, following Y ′ = A(2)(λ, x)Y , to x1 “close” to +∞

• Step 5: Measure the relative geometric phase of X−(λ, ξ1) and X+(λ), ie:

GP
(
X−
(
K,x1

))
−GP

(
X+
(
K
))

(3.6)

where GP (γ) is defined as in equation (3.5).

Theorem 3.7. Let X+(λ, τ) be a solution to the system (2.8) which is in the unstable manifold for the

asymptotic system A
(2)
−∞(λ). As x1 → ∞, the relative geometric phase given by (3.6) converges to the

multiplicity of the eigenvalues enclosed by the contour K.

Proof. This theorem is proven in a general formulation by Grudzien, Bridges & Jones [2] and the reader is
referred there for a discussion of the general method.

Remark 3.8. In the above case where A−∞(λ) ≡ A∞(λ) ≡ A+∞(λ), one may take X−(λ) ≡ X+(λ) so
that the formulation in equation (3.6) is the difference of the geometric phase of the evolved solution and its
initial condition—numerically this is given by

GP
(
X−(λ, x1)

)
−GP

(
X−(λ, x0)

)
(3.7)

Note that the relative geometric phase need not be an integer, and indeed cannot always be an integer
value, as can be seen directly in the proof of the method of geometric phase in [2]. The phase calculation
must be continuous in x ∈ (−∞,∞) by the properties of the flow. Moreover, when X−(λ) = X+(λ) the
relative geometric phase will always start at zero and transition to the multiplicity of the eigenvalue, as
demonstrated in the following examples.

6



4. Numerical Results

This section describes the implementation of the numerical method and demonstrates the transition of the
geometric phase. In many Evans function formulations, solutions corresponding to the un/stable manifolds
for the systems A∓∞(λ) are integrated to some matching value, usually x = 0 where the winding of the
Evans function is calculated [8]. When computing the winding of the Evans function with the geometric
phase in the Hopf bundle, one considers the unstable or stable manifold and computes the geometric phase
accumulated relative to the opposite asymptotic condition. The accumulation of the geometric phase thus
introduces a new dependence on x1 where x1 is the final x value of the forward integration described in
the method of the geometric phase above. As in the examples shown by Grudzien, Bridges & Jones [2],
the geometric phase undergoes a transition as x1 grows large, but for the computation of eigenvalues of
the linearization of the complex Ginzburg-Landau equation about the Hocking-Stewartson pulse below, the
transition isn’t uniform across the eigenvalues or the integration parameter.

In each example below, the contour K is chosen to be the circle of radius .1 about λ0 where λ0 ∈
{0, 15,−6.6537}. The contour is discretized into 10, 000 even steps, and for each fixed λ in the discretization
of K, the the unstable eigenvector (2.12) is integrated from x0 = −10 forward to some x1. The Matlab
ODE45 solver is used to find the trajectory of the initial condition X+(λ, x0) with respect to the system
(2.8), and the trajectory is stored at step sizes of .04 in x. To compute the relative phase in equation (3.6),
the derivative of a path d

dsV (λ(s)) is approximated via the difference equation

V (λ(s) + δs)− V (λ(s)− δs)
2δs

.

From the connection equation (3.3), the geometric phase of X+(λ) and X−(λ, x1) is computed with the Euler
method. The difference of phases in equation (3.6) is computed for each stored value of x and the plot of the
accumulated geometric phase X−(λ, x1) is given for each of the three contours below—because the system
is symmetric, the relative geometric phase is describe by subtracting the initial geometric phase from the
terminal geometric phase. However, in each of these examples the initial geometric phase is approximately
zero, so that the terminal value in the phase plot is approximately eigenvalue multiplicity once the transition
has terminated.

The first figure demonstrates the phase transition for the simple eigenvalue at λ0 = 15. This figure
describes a relatively uniform phase transition, exhibited for other examples demonstrated by Grudzien,
Bridges & Jones [2].
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Figure 1: The phase transition plotted for the simple eigenvalue at λ ≈ 15

However, the other two plots for λ0 ∈ {0,−6.6357} demonstrate a non-uniform transition both in terms
of the fluctuation in the phase calculation, as well as the value of x for which the transition begins.

8



Figure 2: The phase transition plotted for the double eigenvalue at λ = 0.
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Figure 3: The phase transition plotted for the simple eigenvalue at λ ≈ −6.6357

The scale in x direction for the plot of the phase transition at λ0 = −6.6357 is longer, ending at x1 = 14.
Noticeably, the transition here begins later, and doesn’t terminate until it is nearly at the end of the other
plots, at x1 ≈ 10. This example in particular highlights the importance of understanding the phase transition
for applications.

5. Discussion

Evans function calculations are often useful as a stability index [5], describing the multiplicity of eigen-
values of positive real part by computing the winding of the Evans function along the imaginary axis, and
bounding the integral of the winding along a semi-circle of radius r, as r → ∞. In particular, in order
to utilize the method of calculating the winding with the geometric phase in the Hopf bundle, it will be
critical to understand the nature of the phase transition. As demonstrated in the example above, the phase
transition is neither uniform in the integration of the x direction, nor uniform across eigenvalues—indeed the
calculation may fluctuate and the initiation and termination of the transition differs for each of the above
results. For utilization as a stability index, one must understand the relationship between the transition and
the underlying steady state to efficiently compute the eigenvalues. The geometric phase must eventually
converge to the multiplicity of the eigenvalues enclosed by the contour, but a theoretical understanding of
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the transition of the phase will be an important development for both the numerical method and the un-
derstanding the eigenvalue problem itself—indeed the method of the geometric phase offers a unique insight
into the continuous accumulation of the eigenvalue as driven by the system dynamics, a new insight not
afforded by other Evans function methods.

Currently the method of geometric phase is limited by the dependence on the exterior algebra formulation—
for usual systems on Cn, where the stable and unstable manifolds are of dimension approximately n

2 , the
dimension of phase space for the exterior algebra grows approximately exponentially in n, as discussed by
Humpherys & Zumbrun [9]. However, the fact that the method of geometric phase relies only on either
the unstable or stable manifold for the eigenvalue calculation highlights the potential for future reductions.
Reducing the calculation of the phase to a frame of solutions spanning the un/stable manifold, rather than
the wedge product, is the subject of active research.

6. Conclusion

Way developed numerical results for the calculation of the geometric phase for solutions in the stable

manifold of the A
(2)
−∞(λ) system for the linearization of the complex Ginzburg-Landau equation about the

Hocking-Stewartson pulse, in his thesis [1]. This work builds on that discussion, framing the numerical
method in terms of the relative phase as in the proof of the method of geometric phase by Grudzien, Bridges
& Jones [2], as well as demonstrating the phase transition in the calculation with new numerical results. In
studying the numerical method, understanding the phase transition and its relationship to the underlying
wave will be critically important for finite approximations and particularly for use of the geometric phase for
stability indices. The varied nature of the phase transition across eigenvalues for a single example highlights
the need to understand this transition, and this work opens new theoretical questions for the advancement
of Evans function techniques, and the method of geometric phase.
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