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The number of primary events per variable affects estimation of the
subdistribution hazard competing risks model
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Abstract
Objectives: To examine the effect of the number of events per variable (EPV) on the accuracy of estimated regression coefficients,
standard errors, empirical coverage rates of estimated confidence intervals, and empirical estimates of statistical power when using the Fi-
neeGray subdistribution hazard regression model to assess the effect of covariates on the incidence of events that occur over time in the
presence of competing risks.

Study Design and Setting: Monte Carlo simulations were used. We considered two different definitions of the number of EPV. One
included events of any type that occurred (both primary events and competing events), whereas the other included only the number of pri-
mary events that occurred.

Results: The definition of EPV that included only the number of primary events was preferable to the alternative definition, as the num-
ber of competing events had minimal impact on estimation. In general, 40e50 EPV were necessary to ensure accurate estimation of regres-
sion coefficients and associated quantities. However, if all of the covariates are continuous or are binary with moderate prevalence, then 10
EPV are sufficient to ensure accurate estimation.

Conclusion: Analysts must base the number of EPVon the number of primary events that occurred. � 2017 The Author(s). Published
by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Quantifying the occurrence of an adverse event or
outcome over time is an important issue in clinical medi-
cine and public health research. There is an increasing in-
terest in the incidence of nonfatal events (e.g., incidence
of heart disease, occurrence of an infection) or the inci-
dence of cause-specific mortality (e.g., incidence of death
due to cardiovascular disease or death due to cancer). In
such settings, the presence of competing risks must be
taken into account when assessing the effect of prognostic
factors on the incidence of an outcome over time.
A competing risk is an event whose occurrence precludes
the occurrence of the event of interest [1e6]. For instance,
when evaluating the effect of risk factors on the incidence
of death due to cardiovascular disease, death to noncar-
diovascular causes serves as a competing risk because
subjects who die of a noncardiovascular cause
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What is new?

Key findings
� The number of type 1 events (primary events) was

more important than the number of events of any
type for assessing the number of events per
variable (EPV) when estimating a subdistribution
hazard model.

� Forty to 50 EPV are necessary to ensure accurate
estimation of regression coefficients and associated
quantities.

� If all of the covariates are continuous or are binary
with moderate prevalence, then 10 EPV are suffi-
cient to ensure accurate estimation.

What this adds to what was known?
� Previous research has examined the number of

EPV necessary to fit logistic regression models (bi-
nary outcomes) or a Cox proportional hazards
models (survival outcomes in the absence of
competing risks). The current research extends
the findings of these earlier studies to the setting
in which competing risks are present.

What is the implication and what should change
now?
� Authors and analysts need to be aware that the

number of type 1 events (or the primary event of
interest) is the key number when determining the
number of EPV and whether there are an adequate
number of events for fitting the desired subdistribu-
tion hazard model.

(e.g., cancer) are no longer at risk of death due to cardio-
vascular disease.

Na€ıve use of the conventional Cox proportional hazards
model that censors the competing event leads to biased
estimates of the effect of covariates on incidence in the
presence of competing risks [2,3,7]. In response, Fine
and Gray [8] developed the subdistribution hazard model
which allows one to model the effects of covariates on
the cumulative incidence function in the presence of
competing risks. It is increasingly being acknowledged
that the subdistribution hazard model should be used when
evaluating incidence of an outcome over time in the
competing risks setting [9].

Peduzzi et al. published an influential series of articles
examining the effect of the number of events per variable
(EPV) on the accuracy of estimation of regression coeffi-
cients for the logistic regression model and for the Cox
proportional hazards model in the absence of competing
risks [10e12]. For a logistic regression model for use with
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binary outcomes, the number of events was defined to be
the smaller of the number of events and the number of
nonevents (or the smaller of the number of successes
and the number of failures). For a Cox proportional haz-
ards regression model, the number of events was defined
as the number of subjects for whom an event was
observed to occur (i.e., the number of noncensored sub-
jects). Their studies used simulations based on 673 pa-
tients enrolled in a trial comparing medical and surgical
management of coronary artery disease. Based on these
simulations, they recommended that at least 10 EPV be
observed to enable accurate estimation of the regression
coefficients. These papers have been very influential, with
the article on logistic regression being cited 1,610 times
and the article on the Cox regression model being cited
527 times (source: Science Citation Index; Date accessed:
June 16, 2016).

When analyzing survival data in which competing risks
are present, there are multiple types of events: the primary
event of interest (e.g., death due to cardiovascular causes)
and the competing events (e.g., death due to noncardiovas-
cular causes). The effects of the number of the different
types of events on the accuracy of estimation of the coef-
ficients of a subdistribution hazard model have not been
explored. The results in Peduzzi et al. are not applicable
owing in part to competing events and in part to a nonstan-
dard weighting technique in the partial likelihood estima-
tion procedure which addresses independent censoring
[8]. Given the increasing use of the subdistribution hazard
model for estimating the effect of covariates on incidence
in the presence of competing events, the objective of the
current paper is to examine the effect of the number of
EPV on the accuracy of estimation of the coefficients of
a subdistribution hazard model. The paper is structured
as follows: in Section 2, we describe the design of a series
of Monte Carlo simulations to examine the impact of the
number of EPVon the accuracy of estimation of regression
coefficients for a subdistribution hazard model. In Section
3, we report the results of these simulations. In Section 4,
we summarize our findings, which differ somewhat from
those in Peduzzi et al. and discuss them in the context of
the existing literature.
2. Monte Carlo simulationsdmethods

In this section, we describe the design of a series of
Monte Carlo simulations to examine the effects of the num-
ber of EPVon the accuracy of estimation of the coefficients
of a subdistribution hazard model. In Section 2.1, we
describe data on patients hospitalized with acute myocar-
dial infarction (AMI or heart attack). In Section 2.2, we
describe analyses that were conducted using these data to
determine parameters for the data-generating process in
the subsequent Monte Carlo simulations. In Section 2.3,
we describe the data-generating process that was used to
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simulate survival data from a specified subdistribution haz-
ard model. In Section 2.4, we describe the statistical ana-
lyses that were conducted in the simulated data. Finally,
in Section 2.5, we describe the factors that were allowed
to vary in the Monte Carlo simulations.

2.1. Data sources

We used data from the Enhanced Feedback for Effective
Cardiac Treatment (EFFECT) Study, which collected
detailed clinical data on patients hospitalized with AMI
between April 1, 1999, and March 31, 2001 (phase 1),
and between April 1, 2004, and March 31, 2005 (phase
2), at 103 hospitals in Ontario, Canada [13]. Data on
patient demographics, vital signs and physical examination
at presentation, medical history, and results of laboratory
tests were collected by trained cardiovascular nurse
abstractors using retrospective chart review. For the
current study, we restricted the study sample to those
patients who were discharged alive from hospital. The
initial sample consisted of 15,569 subjects. Four hundred
five (2.6%) subjects with missing data on continuous base-
line covariates necessary to estimate the subdistribution
hazard model were excluded from the current case study,
leaving 15,164 patients for analysis (10,063 patients in
phase 1 and 5,101 patients in phase 2).

Subjects were linked deterministically, using an encoded
version of the patient’s health insurance number to the Vital
Statistics database maintained by the Ontario Office of the
Registrar General. The Vital Statistics database contains
information on date of death and cause of death (based
on ICD-9 codes) for residents of Ontario. Each subject
was followed for 5 years from the date of hospital discharge
for the occurrence of death. For those subjects who died
within 5 years of discharge, the cause of death was noted
in the Vital Statistics database. For the purposes of these
analyses, cause of death was categorized as cardiovascular
vs. noncardiovascular causes of death. A total of 4,276
(28%) patients died during the 5 years of follow-up. Of
these, 2,518 (59%) died of cardiovascular causes, whereas
1,758 (41%) died of noncardiovascular causes.
Table 1. Estimated regression coefficients from subdistribution hazard mod

Variable
Beta coefficient
(log-hazard ratio)

Age 0.8927
Systolic blood pressure (SBP) �0.1414
Heart rate 0.1770
Creatinine 0.1374
Previous AMI 0.4754
Previous CHF 0.4900
Elevated cardiac enzymes 0.1310
ST depression myocardial infarction �0.1740
PCI during hospital admission �0.5172

Abbreviations: AMI, acute myocardial infarction; CHF, congestive heart
Age, systolic blood pressure, heart rate, and creatinine were standardized

coefficient denotes the change in the log-subdistribution hazard for a one-s
2.2. Empirical analyses in the EFFECT data

The following nine predictor variables were selected a
priori for inclusion in a subdistribution hazard model pre-
dicting the occurrence of cardiovascular death: age, heart
rate at hospital admission, systolic blood pressure at
admission, initial serum creatinine, history of AMI, history
of heart failure, ST depression myocardial infarction,
elevated cardiac enzymes, and in-hospital percutaneous
coronary intervention. These variables were selected
because they are components of the GRACE risk score
for predicting mortality in patients with acute coronary
syndromes [14]. The first four variables are continuous,
whereas the last five are dichotomous. We standardized
the four continuous variables so that they had mean zero
and unit variance. The prevalences of the five binary vari-
ables were as follows: history of AMI (23.6%), history of
heart failure (4.8%), ST depression myocardial infarction
(43.8%), elevated cardiac enzymes (95.2%), and in-
hospital percutaneous coronary intervention (4.0%). Thus,
the binary covariates had prevalences that ranged from
very low to very high. The estimated regression coeffi-
cients, subdistribution hazard ratios, and associated 95%
confidence intervals are reported in Table 1. We fit a
second subdistribution hazard model for the competing
event of noncardiovascular death to estimate the effect of
the nine covariates on the CIF of noncardiovascular death.

2.3. Data-generating process

We used the analyses conducted in the previous subsec-
tion to inform the parameters used in the Monte Carlo
simulations. Our data-generating process was a hybrid
approach, in which we used previously described CIFs,
but the distribution of the covariates and the effect of co-
variates on the two CIFs were determined from empirical
analyses of EFFECT data. When simulating event types
and event times, we used a method of indirect simulation
described by Beyersmann et al. [15] (Section 5.3.6),
which in turn is based on an approach described by Fine
and Gray [8]. In doing so, one only needed to specify
el

Subdistribution
hazard ratio

95% confidence
interval for hazard ratio

2.44 (2.32, 2.57)
0.87 (0.83, 0.90)
1.19 (1.15, 1.24)
1.15 (1.11, 1.18)
1.61 (1.48, 1.75)
1.63 (1.44, 1.86)
1.14 (0.93, 1.40)
0.84 (0.77, 0.92)
0.60 (0.41, 0.86)

failure; PCI, percutaneous coronary intervention.
to have mean zero and unit variance. Thus, the associated regression
tandard deviation increase in the given continuous variable.
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the underlying subdistribution hazard functions and not
the cause-specific hazard functions.

We simulated nine baseline covariates for each subject
whose distribution would be similar to that of the nine pre-
dictors variables described above. Four of the simulated
covariates were continuous and were drawn from indepen-
dent standard normal distributions (because the four
continuous covariates had been standardized to have mean
zero and unit variance in the empirical analyses described
above). Five of the simulated covariates were binary and
were drawn from Bernoulli distributions with parameters
equal to the five prevalences described in Section 2.2.

For each subject, we simulated a time-to-event
outcome from an underlying subdistribution hazard
model. The coefficients of the two underlying subdistribu-
tion hazard models were equal to those obtained in the
empirical analysis described in Section 2.2. The cumula-
tive incidence functions for the primary and competing
events were those described by Beyersmann et al. [15]
and by Fine and Gray [8]. Further details on simulation
of the time-to-event outcome are provided in Section A
of Appendix in the Supplemental Material section at
www.jclinepi.com that is available online.
2.4. Statistical analyses in simulated data sets

In each of the simulated data sets, we fit a subdistribu-
tion hazard model in which the subdistribution hazard of
the primary event of interest was regressed on the nine
simulated baseline covariates. From the fitted regression
model, we extracted the following quantities: (1) the esti-
mated regression coefficients; (2) the estimated standard er-
rors of the estimated regression coefficients; (3) the
estimated 95% confidence intervals for the estimated
regression coefficients; and (4) the statistical significance
of the estimated regression coefficients.

We estimated the bias in the estimated regression coeffi-
cients across 1,000 simulated data sets from the same
scenario along with the relative bias, empirical coverage
rates of estimated 95% confidence intervals, mean squared
error of the estimated regression coefficients, the ratio of
the mean estimated standard error to the empirical standard
deviation of the estimated regression coefficients, and empir-
ical power. These quantities are described in greater detail in
Section B of Appendix in the Supplemental Material section
at www.jclinepi.com that is available online.
2.5. Design of the Monte Carlo simulations

Our Monte Carlo simulations used a full factorial design
in which the following two factors were allowed to vary:
the number of EPV and the proportion of subjects with co-
variates equal to zero who experience the primary event of
interest as time gets arbitrarily large (which we denote by
p). The expected number of EPV was allowed to take on
10 values: from 5 to 50 in increments of 5. The parameter
p was allowed to take on eight values: from 0.2 to 0.9 in
increments of 0.1. We thus examined 80 (10 � 8) different
scenarios.

In each scenario, we simulated data sets of size
N 5 2,000 using the data-generating process described in
Section 2.3. Our target was to have 1,000 simulated data
sets for analysis in each scenario. If, in a given simulated
data set, the estimation procedure for fitting the subdistribu-
tion hazard model did not converge, then that simulated
data set was discarded and a replacement data set was
simulated. Thus, for a given scenario, we continued to
generate simulated data sets until we obtained 1,000 data
sets in which the estimation procedure for the subdistribu-
tion hazard model converged.

We repeated the complete set of Monte Carlo simula-
tions twice because the total sample size needed for a fixed
number of EPV differed depending on how the number of
EPV was defined. In the first set of simulations, the number
of EPV was based on the number of events of either type
that occurred. In the second set of simulations, the number
of EPV was based on the number of primary events (events
of type 1) that occurred.

All simulations and statistical analyses were conducted
using the R statistical software package [16] (version
3.1.2). The subdistribution hazard models were fit using
the crr function in the cmprsk package (version 2.2-6).
3. Monte Carlo simulationsdresults

The results of the Monte Carlo simulations are reported
graphically in Figures 1 to 4. Each figure consists of nine
panels, one for each of the covariates in the subdistribution
hazard model. In each panel, we describe the relationship
between a given performance measure (e.g., percent bias
in the estimated regression coefficient) and the number of
EPV for the covariate in question. Each figure contains
eight lines, one for each of the different values of the
parameter p (the proportion of subjects with covariate
values equal to zero for whom a type 1 event was observed
to occur as t/N).

The relationship between the number of EPV and the
number of data sets that had to be simulated to obtain
1,000 simulated data sets in which the subdistribution hazard
model converged is discussed in Section C of Appendix in
the Supplemental Material section that is available online.
3.1. Number of EPV based on the number of events of
any type that occurred

In this section, we discuss the results of the simulations
when the number of EPV was based on the number of
events of any type (i.e., type 1 events and type 2 events) that
were observed to occur.

As these results are based on the number of events of
any type that occurred, it is important to be aware of the
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Fig. 1. Effect of the number of EPV on relative bias. EPV, events per variable; AMI, acute myocardial infarction; PCI, percutaneous coronary inter-
vention; SBP, systolic blood pressure.
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relative frequency of the different types of events that
occurred. In each iteration of each scenario, we determined
the ratio of the number of type 1 events that occurred to the
number of type 2 events that occurred. We also determined
the proportion of observed events that were type 1 events.
We then determined the mean of this ratio and the mean
of this proportion across the 1,000 iterations. The left panel
of Fig. S2 in the Supplemental Material at www.jclinepi.
com that is available online describes the mean ratio of
the number of primary events to competing events across
the different scenarios. The right panel of Fig. S2 at
www.jclinepi.com describes the mean proportion of events
that were type 1 events across the different scenarios. As
would be anticipated, the ratio and the proportion of type
1 events increased as p increased.

The relationship between the relative bias and number of
EPV is reported in Fig. S3 in the Supplemental Material at
www.jclinepi.com that is available online. On each panel,
we have superimposed horizontal lines denoting relative
biases of �10% and 10%, under the subjective assessment
that an absolute relative bias of less than 10% is of lesser
concern. For the four continuous variables (age, systolic
blood pressure, heart rate, and creatinine), the absolute rela-
tive bias was almost always less than 10% even when the
number of EPV was as low 5. For two of the three binary
covariates whose prevalence was either very low or very
high, the magnitude of the relative bias tended to be very
large when the number of EPV was low. To improve the
interpretability of the plots, we truncated the vertical axis
at an absolute relative bias of 100%. For the binary covari-
ates, the number of EPV had to be substantially larger to
have minimal bias in estimating the regression coefficients.
A substantially higher number of EPV was required when
the prevalence of the covariate was either very low or very
high, compared to when the prevalence was closer to 0.5.
For a given number of EPV, the absolute relative bias
tended to decrease as p increased (i.e., as the probability
of experiencing a type 1 event for a subject with covariates
equal to zero increased). When p was low and the covariate
had a very high prevalence, moderate bias was observed
even when the number of EPV was equal to 50.

The relationship between the number of EPV and the
ratio of the mean estimated standard error to the standard
deviation of the estimated regression coefficients is
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Fig. 2. Ratio of mean standard error to empirical SD of sampling distribution. EPV, events per variable; AMI, acute myocardial infarction; PCI,
percutaneous coronary intervention; SBP, systolic blood pressure; SD, standard deviation.
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described in Fig. S4 in the Supplemental Material at www.
jclinepi.com available online. For the four continuous vari-
ables, this ratio was approximately equal to one when the
number of EPV was at least 10. A similar phenomenon
was observed for those binary covariates whose prevalence
was moderate. However, for those binary covariates with a
very low or very high prevalence, a substantially higher
number of EPV was necessary for the ratio to be close
to one.

The relationship between the number of EPVand empir-
ical coverage rates of the estimated 95% confidence inter-
vals is described in Fig. S5 in the Supplemental Material at
www.jclinepi.com available online. Due to our use of 1,000
iterations per scenario, any empirical coverage rate that
was less than 0.9365 or greater than 0.9635 would be
statistically significantly different than the advertised rate
of 0.95 using a standard normal-theory test and a signifi-
cance level of 0.05. Accordingly, we have superimposed
horizontal lines denoting coverage rates of 0.9365 and
0.9635 on each panel. In general, once the number of
EPV exceeded 15e20, the empirical coverage rates tended
to be approximately equal to the nominal rates.
The relationship between the number of EPV and the
empirical estimate of statistical power to detect a nonnull
hazard ratio is described in Fig. S6 in the Supplemental
Material at www.jclinepi.com. As would be expected, in
general, statistical power increased with increasing number
of EPV. Furthermore, power increased with increasing p.
Some aberrant results were observed in the case of binary co-
variates for which the prevalence was very low or very high.
In these settings, statistical power displayed a U-shaped rela-
tionship with the number of EPV. These anomalous findings
are likely due to the large biases in estimation that were
observed to occur with a low number of EPV.
3.2. Number of EPV based on the number of primary
events that occurred

In this section, we discuss the results of the simulations
when the number of EPV was based only on the number of
primary events that were observed to occur.

The relationship between the relative bias and number of
EPV is reported in Fig. 1. For the continuous covariates,
very low bias was observed across all values of the number

http://www.jclinepi.com
http://www.jclinepi.com
http://www.jclinepi.com
http://www.jclinepi.com


10 20 30 40 50

0.
93

5
0.

94
5

0.
95

5
0.

96
5

EPV

C
ov

er
ag

e 
ra

te
Age

10 20 30 40 50

0.
92

0.
93

0.
94

0.
95

0.
96

EPV

C
ov

er
ag

e 
ra

te

SBP

10 20 30 40 50

0.
93

5
0.

94
5

0.
95

5

EPV

C
ov

er
ag

e 
ra

te

Heart rate

10 20 30 40 50

0.
93

0.
94

0.
95

0.
96

EPV

C
ov

er
ag

e 
ra

te

Creatinine

10 20 30 40 50

0.
93

0
0.

94
0

0.
95

0
0.

96
0

EPV

C
ov

er
ag

e 
ra

te

Previous AMI (Prevalence: 23.6%)

10 20 30 40 50

0.
93

0.
94

0.
95

0.
96

EPV

C
ov

er
ag

e 
ra

te

Previous CHF (Prevalence: 4.8%)

10 20 30 40 50

0.
94

0
0.

95
0

0.
96

0

EPV

C
ov

er
ag

e 
ra

te

Enzymes (Prevalence: 95.2%)

10 20 30 40 50

0.
94

0
0.

95
0

0.
96

0

EPV

C
ov

er
ag

e 
ra

te

STEMI (Prevalence: 43.8%)

10 20 30 40 50
0.

92
0.

94
0.

96

EPV

C
ov

er
ag

e 
ra

te

PCI (Prevalence: 4.0%)

p=0.2
p=0.3
p=0.4
p=0.5

p=0.6
p=0.7
p=0.8
p=0.9

Fig. 3. Empirical coverage rates of 95% confidence intervals. EPV, events per variable; AMI, acute myocardial infarction; PCI, percutaneous cor-
onary intervention; SBP, systolic blood pressure.
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of EPV. For binary covariates with moderate prevalence,
minimal bias in estimation of the regression coefficients
was observed once the number of EPV was at least 10. In
general, for binary covariates with a very low or very high
prevalence, the number of EPV had to exceed 40e50
before bias was minimal. In a small number of scenarios,
the absolute relative bias exceeded 10% even when the
number of EPV was equal to 50.

The relationship between the number of EPV and the
ratio of the mean estimated standard error to the standard
deviation of the estimated regression coefficients is
described in Fig. 2. Once the number of EPV was equal
to at least 15, then the ratio of these two quantities tended
to lie between 0.9 and 1.1, indicating that the model-based
estimate of standard error was off by at most 10%.

The relationship between the number of EPV and empir-
ical coverage rates of the estimated 95% confidence inter-
vals is described in Fig. 3. The empirical coverage rates
tended to be approximately equal to the nominal rate once
the number of EPV was equal to at least 15.

The relationship between the number of EPV and the
empirical estimate of statistical power to detect a nonnull
hazard ratio is described in Fig. 4. As would be expected,
in general, statistical power increased with increasing
number of EPV. The value of p had a minimal effect on
empirical power. As above, some aberrant results were
observed in the case of binary covariates for which the
prevalence was very low or very high. In these settings,
statistical power displayed a U-shaped relationship with
the number of EPV. As above, we hypothesize that these
anomalous findings are likely due to the biases in estima-
tion that were observed to occur with a low number of
EPV.
3.3. Sensitivity analysisdcorrelated covariates

In the primary set of simulations, the nine baseline co-
variates were simulated to be independent of one another.
We examined the robustness of our findings to this
assumption. We repeated the set of simulations in which
the number of EPV was based on the number of primary
or type 1 events that were observed. When generating the
nine baseline covariates, we did so in a manner to induce
a pairwise correlation in covariates that reflected what
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Fig. 4. Empirical power. EPV, events per variable; AMI, acute myocardial infarction; PCI, percutaneous coronary intervention; SBP, systolic blood
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was observed in the EFFECT data. The relationship be-
tween the number of EPV and relative bias is described
in Fig. S7 of the Supplemental Material at www.
jclinepi.com available online. Results comparable to
those reported above were observed. Comparable results
for the other metrics were also observed (results not
shown).
3.4. Sensitivity analysisdeffect of estimating the
censoring distribution

The estimation procedure for fitting the subdistribution
hazard model uses inverse probability of censoring weight-
ing. We conducted a sensitivity analysis to determine the
impact of estimating the censoring weights on model per-
formance. To do so, we used data from the simulations
described in Section 3 (in which the number of EPV was
based on only the number of primary or type 1 events that
occurred). In each simulated data set, we conducted a
‘‘censoring complete’’ analysis, because for each subject,
both the event time and the censoring time were known
[17]. To do so, subjects for whom a type 2 event was
observed to have occurred had their event time replaced
by their simulated censoring time and their event indicator
was changed to indicate that they had been censored at this
time. Thus, the only subjects for whom an event was
observed to occur were those who experienced a type 1
event (and for whom the simulated type 1 event time was
before the simulated censoring time). All other subjects
were censored at their randomly generated censoring time.
Then, a conventional Cox proportional hazard model was
used to estimate the effect of covariates on the incidence
of the outcome.

The convergence issues that affected the subdistribution
estimation procedure in the presence of a low number of
EPV (Fig. S1 at www.jclinepi.com) were not present for
the censoring complete analysis. The conventional Cox
model converged in each of the first 1,000 simulated data
sets in each of the 80 scenarios. When conducting a
censoring complete analysis, the effect of the number of
EPV on performance did not differ meaningfully from that
of the subdistribution hazard model in those data sets in
which convergence was achieved (Section 3.2) (results
not shown).
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4. Discussion

Estimating the incidence of an adverse event or outcome
that occurs over time is an important issue in clinical med-
icine and population health research. Accurate estimation
of the effect of covariates on incidence requires that
competing risks be adequately accounted for. The
FineeGray subdistribution hazards model was developed
to model the effect of covariates on the CIF, allowing for
estimation of the effect of covariates on the incidence of
events over time. In the current study, we examined the
effect of the number of EPV on the accuracy with which
the coefficients of the underlying subdistribution hazard
model and their standard errors are estimated. We summa-
rize our findings in the following paragraphs and then place
these findings in the context of the existing literature.

We explored two different definitions of the number of
EPV. The first was based on the number of events of any
type that were observed to occur, whereas the second was
based on the number of type 1 events that were observed
to occur. We would suggest that the latter definition is to
be preferred over the former definition. In comparing
Figs. S3 through S6 at www.jclinepi.com with Figs. 1
through 4, one notes that with the former definition, the ef-
fect of the number of EPV on estimation depends on the
proportion of observed events that were type 1 events.
However, with the latter definition, the proportion of
observed events that were type 1 events did not have a
meaningful impact on the quality of estimation. This sug-
gests that the number of type 2 events that occurred did
not have a meaningful impact on the estimation of the sub-
distribution hazard model. For the remainder of the discus-
sion of our results, we will focus on the latter definition of
the number of EPV.

We found that estimation of regression coefficients
associated with continuous covariates (and associated
quantities such as standard errors and confidence intervals)
was accurate even when the number of EPV was at small
as five. For binary covariates, our findings were more com-
plex. The effect of the number of EPV on estimation of
regression coefficients (and associated quantities) for
binary covariates with a moderate prevalence was similar
to its effect on estimation of continuous covariates. How-
ever, for binary covariates with a very low prevalence or
a very high prevalence, a much higher number of EPV
was required for accurate estimation of the regression co-
efficients and associated quantities. In some settings, as
many as 40e50 EPV was required for estimation of regres-
sion coefficients with minimal bias. However, accurate
estimation of standard errors was observed once the num-
ber of EPV was at least 15. A similar lower bound on the
number of EPV tended to result in accurate estimation of
confidence intervals. These findings are qualitatively
similar to what is known about estimation of continuous
and binary covariate effects in other regression models,
including the standard proportional hazards model.
We would draw the reader’s attention to the high propor-
tion of simulated data sets in which the subdistribution
hazard model did not converge when the number of EPV
was low. When the number of EPV was based only on
the number of type 1 events, then the number of EPV
had to be at least 15 before the percentage of simulated data
sets in which convergence was not achieved was less than
10%. When the number of EPV was equal to 5, then lack
of convergence was observed in over 45% of the simulated
data sets. This has implications for analysts fitting subdistri-
bution hazard models in data sets in which the number of
EPV is very low. Not only is there the risk of inaccurate
estimates of covariate effects on incidence and incorrect
inferences, there is also a substantial risk that the model
estimation procedure will fail to converge. In contrast, in
a censoring complete analysis using the conventional Cox
regression model, lack of convergence was not present.
This suggests that in small samples, there may be instability
associated with the estimated weight, leading to nonconver-
gence in the crr function. Some of the differences in
convergence may also be due to the different convergence
criteria and the way that convergence is defined in the
different software procedures.

Our findings differ somewhat from those of Peduzzi
et al. [10] in the context of conventional survival analysis
using the Cox proportional hazards model. While admitting
that a single threshold for the required number of EPV was
difficult to choose, they recommended that a threshold of
10 EPV be used. When considering the subdistribution haz-
ard model, we found that a much higher threshold for the
number of EPV was necessary to permit accurate estima-
tion of regression coefficients. While the presence of
competing events and the method of estimation for the sub-
distribution hazard model may partially explain differences
between our findings and those in Peduzzi et al., differences
in the simulation designs may also play a role. However,
our observation that the quality of estimation was similar
for the conventional subdistribution hazard model and the
censoring complete analysis suggests that the weighting
in the Fine and Gray model is not responsible for the differ-
ences between our findings on the necessary number of
EPV and those of Peduzzi et al. This suggests that the dif-
ferences in the required number of EPV in our study and
those proposed by Peduzzi et al. are mostly due to the simu-
lation design and not the additional requirement to model
the censoring distribution in the FineeGray model. In
terms of design, the two studies are similar in that both sets
of simulations were based on an analysis of empirical data
of patients with heart disease. The simulations differed in
that their data consisted of one continuous variable (number
of diseased vessels) and six binary covariates. Apart from
one binary covariate with a prevalence of 0.07 (history of
CHF), the other five binary covariates in the earlier study
had less extreme prevalences [11]. As we observed above,
a much larger number of EPV was required when binary
covariates had very low or very high prevalence. It is likely
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the fact that we considered three covariates with extreme
prevalences that resulted in our higher threshold for the
required number of EPV. The discrepancy between our
findings and those of Peduzzi et al. reflects the observation
of Courvoisier et al., who suggested that the required num-
ber of EPV depended on the structure of the data and the
underlying model [18]. The current scenario reflects what
is often observed in clinical settings, in which there are
important risk factors whose prevalence is very low, but
which need to be incorporated into risk prediction models.
Furthermore, our scenario included a mixture of continuous
and binary covariates, and the prevalences of the binary co-
variates covered the full spectrum of what is typically
observed in practice.

In the presence of competing risks, investigators can
analyze the effect of covariates on the cause-specific hazard
function and on the CIF. Latouche et al. argued that for
complete understanding of the event dynamics, one should
estimate the effects of covariates on both the cause-specific
hazard and the cumulative incidence function [19]. The
conventional Cox model examined by Peduzzi et al. can
be used for examining the effect of covariates on the
cause-specific hazard function, by treating subjects who
experience competing events as being censored at the time
that the competing event occurred. Based on the earlier
work by Peduzzi et al., one would require that a minimum
of 10 events of interest occur for each covariate included in
the cause-specific hazard model. Based on the findings
from the current study, we would recommend that a mini-
mum of 40e50 events of the given type be observed per
variable when modeling the effect of covariates on the
CIF. If one were to follow the recommendation of Latouche
et al. and fit both cause-specific and CIF regression models,
this suggests that the larger of the two minimum number of
EPV would be requireddthat in this setting, one would
want a minimum of 40e50 events of the given type per
variable.

In conclusion, we recommend that, in general, for accu-
rate estimation of regression coefficients (and associated
quantities) of a subdistribution hazard model, that 40e50
EPV be observed. However, in some settings, this require-
ment can be relaxed substantially. If all of the covariates are
continuous or are binary with a moderate prevalence, then
the number of EPV can be as low as 10.
Supplementary data

Supplementary data related to this article can be found at
http://dx.doi.org/10.1016/j.jclinepi.2016.11.017.
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