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Context: Anti-Müllerian hormone (AMH) reduces aromatase activity and sensitivity of follicles to
FSH stimulation. Therefore, elevated serum AMH may indicate a higher threshold for response to
ovulation induction in women with polycystic ovary syndrome (PCOS).

Objective: This study sought to determine the association between AMH levels and ovulatory
response to treatment among the women enrolled into the Pregnancy in PCOS II (PPCOS II) trial.

Design and setting: This was a secondary analysis of data from a randomized clinical trial in
academic health centers throughout the United States

Participants: A total of 748 women age 18–40 years, with PCOS and measured AMH levels at
baseline, were included in this study.

Main Outcome Measures: Couples were followed for up to five treatment cycles to determine
ovulation (midluteal serum progesterone � 5 ng/mL) and the dose required to achieve ovulation.

Results: A lower mean AMH and AMH per follicle was observed among women who ovulated
compared with women who never achieved ovulation during the study (geometric mean AMH,
5.54 vs 7.35 ng/mL; P � .0001; geometric mean AMH per follicle, 0.14 vs 0.18; P � .01) after
adjustment for age, body mass index, T, and insulin level. As AMH levels increased, the dose of
ovulation induction medication needed to achieve ovulation also increased. No associations were
observed between antral follicle count and ovulation.

Conclusions: These results suggest that high serum AMH is associated with a reduced response to
ovulation induction among women with PCOS. Women with higher AMH levels may require higher
doses of medication to achieve ovulation. (J Clin Endocrinol Metab 101: 3288–3296, 2016)
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Anti-Müllerian hormone (AMH) is a dimeric glyco-
protein member of the TGF-� family. In women,

AMH is derived primarily from preantral and early antral
follicles and has been shown in recent years to accurately
reflect the follicular pool (1–3). Although the AMH level
is used to assess the ovarian reserve in many scenarios, it
has served most commonly to assess the likelihood of an
adequate response during ovarian stimulation for assisted
reproduction (4–8). In this context, AMH is predictive of
the number of oocytes retrieved (9–15), and increasingly
is being used to guide selection of the stimulation protocol
(16–20).

During the last decade, serum AMH has also been eval-
uated in women with polycystic ovary syndrome (PCOS).
Women with this disorder have an increased follicular
pool and frequently present with oligo- or anovulation.
Since 2003, the diagnostic criteria for PCOS has included
an assessment of the follicular pool by specific ultrasound
findings (21). There is support for the notion that AMH
serves as a surrogate marker for the antral follicle count in
the diagnosis of PCOS (22–28), and it has been posited
that elevated AMH due to follicular excess, rather than
facilitating ovulation, plays a critical role in the arrest of
follicular growth that is characteristic of PCOS (29, 30).

An association between the high circulating AMH in
women with PCOS and their chronic anovulation has long
been noted, and seems to be due to several mechanisms.
First, AMH directly inhibits aromatase activity in human
and rodent granulosa cells (31–33). Further, Durlinger
noted in an in vitro mouse model that direct culture with
AMH inhibited the start of follicle growth from the pool
of resting primordial follicles and attenuated FSH-stimu-
lated preantral follicle growth (34). In vitro studies with
human granulosa cells have shown an inhibition of aro-
matase activity and reduced follicular response to FSH in
the presence of AMH (32, 35). Thus, excess AMH inhibits
estradiol production and FSH action, stalling the FSH/E2-
induced feed-forward loop that further increases the cel-
lular FSH receptor and allows follicles to grow and ma-
ture. In this manner, it can be conceptualized that excess
AMH is detrimental to the process of folliculogenesis.

Our objective was to evaluate the association between
AMH level and ovulation in PCOS patients randomly as-
signed to treatment with either clomiphene citrate or letro-
zole. We hypothesized that a higher AMH level would be
associated with lower ovulation rates in response to ovu-
lation induction, and for those who did ovulate, that a
higher AMH level would be associated with greater med-
ication dose requirements to achieve ovulation.

Materials and Methods

Design and target population
This is a secondary analysis utilizing data from the PPCOS II

trial, a multicenter, double-blind, randomized clinical trial (36,
37) comparing ovulation and live-birth rate in response to treat-
ment with escalating doses of clomiphene citrate or letrozole for
up to a total of five cycles. We have previously reported baseline
AMH levels (38) and their change at end of study (36). The trial
was registered on ClinicalTrials.gov as number NCT00719186.
Each participating center’s Institutional Review Board approved
the study, and participants provided written informed consent.
A Data Safety and Monitoring Board (DSMB) provided
oversight.

The study design, methods, inclusion, and exclusion criteria
have been described in detail elsewhere (36–38). In brief, 750
women with PCOS who were actively seeking pregnancy were
enrolled. Females were between 18 and 40 years, with anovu-
lation (defined as menstrual interval at least 45 days and/or � 8
menses/y), combined with either hyperandrogenism (hirsutism
or hyperandrogenemia) or polycystic appearing ovaries by ul-
trasound according to the Rotterdam criteria (39). Documenta-
tion of tubal patency was required, as well as a semen analysis
with at least 14 million sperm per milliliter for the male partners.
Exclusion criteria included contraindications to clomiphene or
letrozole, poorly controlled diabetes, previously undiagnosed
liver dysfunction, renal disease, significant anemia, history of
thromboembolic events, or uncontrolled hypertension. Partici-
pants were randomly assigned to receive either an initial oral
dose of 50 mg of clomiphene citrate or 2.5 mg of letrozole for 5
days per menstrual cycle and for up to five treatment cycles. The
dose was increased in subsequent cycles in cases of nonresponse
(midluteal progesterone � 3 ng/mL) or poor ovulatory response
(progesterone levels indicative of ovulation but with values clus-
tering just above the cutoff) (36–38), up to a maximum of 150
mg/d of clomiphene citrate or 7.5 mg/d of letrozole, both given
for 5 days.

Data collection
Demographics and reproductive history were obtained using

standardized forms, and waist circumference was measured to
the nearest 0.1 cm. The degree of hirsutism was assessed at base-
line using the modified Ferriman-Gallwey method (40). Fasting
blood collected at baseline was used for all hormonal assays (38).
Samples were batched and analyzed at the Ligand Assay and
Analysis Core Laboratory at the University of Virginia. AMH
was analyzed on samples stored at –80°C for approximately 13
months, using the Beckman-Coulter Gen 2 ELISA assay with no
predilution. The sensitivity of the assay was to 0.25 ng/mL, with
a range of 0.25–15 ng/mL. The interassay coefficient of variation
was 7.0%, and the intraassay coefficient of variation was 3.0%
(38). AMH levels were available for 748 of the 750 women en-
rolled onto the trial, and the data from the remaining 748 women
were analyzed below. Insulin and LH were measured using the
Immulite assay (Siemens Diagnostics), with all intra- and inter-
assay coefficients of variation less than 6.2% (38). Fasting glu-
cose levels were determined on a glucose analyzer using the glu-
cose oxidase method, with all intra- and interassay coefficients of
variation less than 1.5% (38). Insulin resistance (homeostasis
model assessment for insulin resistance [HOMA-IR]) was cal-
culated based on the homeostasis model (41). Total T was mea-
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sured by RIA (Siemens Diagnostics), with intra- and interassay
coefficients of variation less than 7.1% (38). This assay has been
shown to have similar precision and quality control measures as
commonly used liquid chromatography–tandem mass spectrom-
etry assays of total T (42). Antral follicle count, which included
both the left and right ovaries, was assessed during transvaginal
ultrasound (using a 5–9-mHz vaginal probe, most centers used 5
mHz) at baseline, using standardized procedures as outlined pre-
viously (36). AMH per follicle was based on a concomitant AMH
divided by the total antral follicle count.

The primary outcomes for this analysis were ovulation and
the lowest dose required to achieve ovulation. Ovulation was
defined as the first treatment cycle with a midluteal serum pro-
gesterone level greater than 5 ng/mL.

Statistical analysis
Descriptive statistics were used to compare characteristics

between women by quartile of baseline AMH level, given that at
present international standards for AMH thresholds do not exist
(43). ANOVA, Kruskal-Wallis tests, �2 tests, or Fisher’s exact
tests were used, as appropriate, to determine differences across
quartiles. Geometric means and 95% confidence intervals (CIs)
of AMH level, AMH level per follicle, and antral follicle count
were compared by ovulatory status and by treatment group ad-
justed for age, body mass index (BMI), T, and insulin level. Geo-
metric means were used given that AMH levels were not nor-
mally distributed. Further, geometric means and 95% CIs were
compared by dose and treatment group adjusted for the same
factors. The percentage of ovulatory and anovulatory cycles
were compared by quartiles of AMH, AMH per follicle, and
antral follicle count. Logistic regression models were used to

estimate odds ratios (ORs) and 95% CIs for the association be-
tween AMH, AMH per follicle, and antral follicle count, and
achieved ovulation using both continuous and quartiles models.
Unadjusted models were compared with models that 1) adjusted
for age alone, 2) adjusted for age, BMI, T, and insulin level, 3)
adjusted for age, BMI, T, insulin, and treatment group, and 4)
adjusted for age, waist circumference, T, and insulin. Additional
models were evaluated that assessed the association between
AMH, AMH per follicle, and antral follicle count and ovulatory
status per cycle using modified Poisson regression with robust
errors to estimate the risk of an ovulatory cycle and 95% CIs
accounting for multiple cycles per woman. The area under the
receiver operating characteristics curve was also calculated.
Analyses were conducted in SAS version 9.4 (SAS Institute).

Results

Demographic characteristics of participants overall,
and by quartile of AMH level are shown in Table 1.
Treatment arms were similar with regard to all charac-
teristics assessed and are presented elsewhere (36).
Women in the highest quartile of AMH level tended to
be younger, have lower BMI, smaller waist circumfer-
ence, lower insulin, glucose, HOMA-IR, as well as
higher T and LH concentrations. No differences in hir-
sutism, smoking status, or treatment assignment were
observed by AMH quartile.

Table 1. Demographic Characteristics of Women in PPCOS II by Quartile of Baseline AMH Level

Characteristicsa

AMH (ng/mL)b

Overall Quartile1: <3.58
Quartile 2:
3.58–6.19

Quartile 3:
6.20–10.23

Quartile 4:
>10.23 P-valuec

n, (%) 748 187 (25) 187 (25) 187 (25) 187 (25)
Age, y 28.9 � 4.2 30.1 � 4.6 28.2 � 3.9 28.7 � 4.1 28.5 � 4.2 �.0001
BMI, kg/m2 35.1 � 9.2 39.7 � 9.7 35.0 � 8.6 34.5 � 8.2 31.2 � 8.3 �.0001
Waist circumference, cm 105.9 � 20.5 114.7 � 19.6 105.8 � 19.0 105.3 � 19.5 97.7 � 20.3 �.0001
Hirsutism, mFG score

Mean � SD 17.0 � 8.5 17.2 � 8.5 17.5 � 8.4 17.3 � 8.8 15.9 � 8.4 .27
mFG �8 97 (13) 17 (9) 22 (12) 28 (15) 30 (16) .12
mFG 8–16 276 (37) 80 (43) 60 (32) 64 (34) 72 (39)
mFG �16 375 (50) 90 (48) 105 (56) 95 (51) 85 (45)

Insulin, �IU/mL 19.3 � 27.0 24.8 � 42.6 18.6 � 17.2 18.9 � 21.8 14.7 � 17.4 �.0001
Glucose, mg/dL 86.0 � 12.6 89.3 � 15.2 86.0 � 10.8 84.7 � 12.0 84.2 � 11.5 .0003
HOMA-IR 4.4 � 9.1 6.1 � 16.2 4.0 � 3.6 4.2 � 6.1 3.2 � 4.2 �.0001
T, ng/dL 55.0 � 28.8 40.3 � 19.3 53.5 � 31.0 57.6 � 25.3 68.7 � 30.7 �.0001
LH, mIU/mL 11.1 � 8.5 8.6 � 8.0 11.7 � 8.8 11.3 � 7.2 13.0 � 9.4 �.0001
Current smokingd 111 (35) 25 (34) 31 (33) 28 (39) 27 (34) .88
Treatment

Clomiphene Citrate 375 (50) 91 (49) 90 (48) 99 (53) 95 (51) .78
Letrozole 373 (50) 96 (51) 97 (52) 88 (47) 92 (49)

Abbreviation: ; mFG, modified Ferriman-Gallwey.
a Values are Mean � SD and n (%) as indicated.
b AMH levels not available for two participants (one in each treatment group of the original trial).
c Two-sided P-values for continuous variables calculated using ANOVA or the Kruskal-Wallis test, and for categorical variables using �2 tests or
Fisher’s exact test where appropriate.
d There were 430 values missing for current smoking status.
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AMH levels were significantly lower among women
who achieved ovulation over the trial (up to five treatment
cycles), compared with women who did not achieve ovu-
lation both overall, and within each treatment group (P �
.0001) (Figure 1A). There were no significant differences
between the treatment groups. AMH per follicle was also
significantly lower among women who achieved ovula-
tion compared with women who did not achieve ovulation
overall, and among women treated with clomiphene, but
not among those women treated with letrozole (Figure
1B). No differences in antral follicle count were observed
between women who did and did not achieve ovulation
either overall, or by treatment group (Figure 1C). A trend
toward higher AMH levels at increased doses of ovulation
induction medication was observed for both clomiphene
citrate and letrozole (Table 2). Results were similar for
AMH per follicle, although no differences were observed

for antral follicle count. Importantly, we did not observe
a level of AMH at or above which no one ovulated, and the
area under the receiver operating characteristics curve was
0.59.

We also observed that women in the highest quartile of
baseline AMH had a lower odds of ovulation compared
with women in the lowest quartile (75% achieved ovula-
tion in the fourth quartile compared with 87% in the first
quartile;Table3).Thisheldafter adjustment foragealone,
as well as adjustment for age, BMI, T, and insulin, and
additional adjustment for treatment group. Adjustment
for waist circumference rather than BMI yielded similar
results. Similar results were also observed for AMH per
follicle, in that women in the second, third, and fourth
quartiles compared with the first quartile had a lower odds
of anovulation. Women in the third quartile of antral fol-
licle count had a lower odds of ovulation compared with
women in the lowest quartile. Similar results were ob-
served when utilizing all cycles for analysis (Supplemental
Table 1). Each one unit increase in AMH level and AMH
per follicle was also associated with lower odds of ovula-
tion after adjustment for age, BMI, T, and insulin levels,
although the association was only marginally significant
for AMH per follicle (AMH: OR, 0.94; 95% CI, 0.92–
0.97; AMH per follicle: OR, 0.71; 95% CI, 0.49–1.03).
No associations were observed with antral follicle count
(OR, 1.00; 95% CI, 0.99–1.01)

Discussion

In a cohort of women with PCOS, we have observed that
AMH levels were significantly lower among women who
ovulated in response to medical treatment compared with
women who never achieved an ovulatory cycle. Moreover,
baseline AMH levels were lowest among women requiring
the lowest dose to achieve ovulation, suggesting that high
AMH is associated with a reduced response to ovulation
induction, and women with higher AMH levels tended to
need higher doses of ovulatory medication to achieve
ovulation.

These results are consistent with prior studies of ovu-
lation induction in smaller numbers of women with PCOS
that observed an association of high AMH levels and lack
of ovulation after treatment with laparoscopic ovarian
diathermy and clomiphene (44, 45), and after ovulation
induction with gonadotropins (4). We found that higher
doses of ovulation induction agents were required to
achieve ovulation for women with higher AMH levels, in
agreement with the work of others (4, 44, 45). The prior
studies associating high levels of AMH with a lack of re-
sponse to ovarian stimulation suggested that anovulation

Figure 1. Comparison of geometric means (95% CIs) for (A) AMH
concentrations, (B) AMH per follicle, and (C) antral follicle count by
ovulatory status (comparing women who did not ovulate with women
who achieved ovulation during the study) overall and by treatment
group, adjusted for age, BMI, T, and insulin. *, P � .05 for comparison
between ovulation and no-ovulation groups.
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occurred at AMH levels that were lower than those ob-
served in the present study. This discrepancy could be due
to differences in the assays used given that the Beckman-
Coulter assay tends to yield higher results (3, 46–52). Our
findings differ from one prior study of 68 obese women
with PCOS that observed higher AMH levels among
women who responded to clomiphene citrate compared
with those who did not respond (53). Importantly, the
women in this prior study started the study receiving a
relatively high dose of clomiphene (150 mg) compared
with clinical practice protocols, and the protocol for the
current study, which use an escalating dose schedule and
start at 50 mg. This difference in protocol could partially
explain the differences in findings between the studies.
Notably, the women with PCOS in this prior study who
did not respond to treatment had AMH levels that were
even lower than the non-PCOS control group (53). Typ-
ically, AMH levels are higher among women with PCOS,
which calls into question the comparability of the two
study populations despite the fact that BMI was similar
(the average BMI in the PCOS group in their study was
36.7 kg/m2). Although we found no associations with an-
tral follicle count, it may be due to inaccuracy of counting
in the high ranges given that the counts in this study were
so high. Our results expand upon the findings in the pre-
vious studies by evaluating both clomiphene and letrozole,
as well as accounting for potentially confounding factors,
and using a much larger sample size (the largest previous
study included only 68 women) from a well-designed ran-
domized clinical trial.

These results are also in agreement with what is known
from in vivo and in vitro studies regarding the important
role of AMH in the regulation of ovarian function (54),
and regulation of GnRH release (55). In particular, AMH
has been shown to inhibit primordial follicle recruitment,
as well as decrease the responsiveness of the follicle to
FSH, which could have important downstream implica-
tions for ovulatory function (56–58). Elevated serum
AMH reflects increased production of intraovarian AMH,
which likely plays a role in the aberrations of follicle
growth and ovulatory response seen among women with
PCOS (59–61). In normal ovaries it has been shown that
a reduction of AMH in follicles greater than 9 mm seems
to be important in the selection of the dominant follicle
(59–61). These findings may thus be particularly relevant
for women with PCOS, given that women with PCOS are
producing excess AMH in their granulosa cells, which
could thus restrict the early stages of folliculogenesis and
lead to anovulation (27, 32, 60–62). These AMH-induced
processes make women with PCOS exceptionally chal-
lenging to treat because their large supply of preantral
follicles, when recruited with exogenous FSH, can rapidly
spiral into uncontrolled multiple follicle growth and risks
for ovarian hyperstimulation (63). It should also be noted
that other factors also influence follicle maturation, in-
cluding obesity and insulin resistance (29, 64). Given that
the women in this study had PCOS and were also obese, it
may be that the effects were accentuated, although we
adjusted for BMI as well as waist circumference to account
for this factor.

Table 2. AMH, AMH per Follicle, and Antral Follicle Count by Ovulation Induction Dose at First Ovulatory Response
Overall and by Treatment Group Unadjusted and Adjusted For Age, BMI, T, and Insulin

Dose at First
Ovulatory
Response1

Unadjusted Adjusted

Overall2 Clomiphene Letrozole Overall Clomiphene Letrozole

AMH
First dose 4.90 (4.38, 5.47)a 5.45 (4.66, 6.38)a 4.43 (3.79, 5.18)a 4.75 (4.31, 5.23)a 4.94 (4.29, 5.70)a 4.66 (4.08, 5.33)a

Second dose 6.07 (5.39, 6.83)ab 5.43 (4.53, 6.52)a 6.56 (5.60, 7.68)b 5.98 (5.40, 6.63)b 5.74 (4.89, 6.74)ab 6.05 (5.28, 6.93)b

Third dose 6.04 (5.34, 6.84)ab 6.17 (5.19, 7.34)a 5.92 (4.96, 7.07)ab 6.21 (5.58, 6.92)b 6.41 (5.50, 7.48)ab 5.97 (5.13, 6.95)ab

Never ovulated 6.87 (5.99, 7.88)b 6.81 (5.77, 8.04)a 6.97 (5.49, 8.85)b 7.09 (6.29, 7.99)b 7.01 (6.04, 8.13)b 7.33 (5.96, 9.01)b

P-trend 0.0002 0.04 0.002 �0.0001 0.0006 0.0004
AMH per follicle

First dose 0.12 (0.10, 0.14)ac 0.13 (0.11, 0.17)a 0.11 (0.09, 0.13)a 0.12 (0.10, 0.13)a 0.12 (0.10, 0.14)a 0.11 (0.09, 0.14)a

Second dose 0.16 (0.14, 0.19)b 0.14 (0.11, 0.18)a 0.17 (0.14, 0.21)b 0.16 (0.14, 0.18)b 0.15 (0.12, 0.19)ab 0.16 (0.13, 0.19)b

Third dose 0.16 (0.14, 0.19)c 0.15 (0.12, 0.19)a 0.17 (0.14, 0.22)b 0.17 (0.15, 0.20)b 0.16 (0.13, 0.20)ab 0.18 (0.14, 0.21)b

Never ovulated 0.17 (0.14, 0.21)bc 0.18 (0.14, 0.23)a 0.15 (0.11, 0.21)ab 0.18 (0.15, 0.21)b 0.19 (0.15, 0.23)a 0.16 (0.12, 0.21)ab

P-trend 0.002 0.05 0.008 �0.0001 0.002 0.004
Antral Follicle Count

First dose 41.3 (38.2, 44.6)a 40.9 (36.6, 45.7)a 41.6 (37.5, 46.3)ab 41.3 (38.3, 44.6)a 41.7 (37.4, 46.6)a 41.3 (37.1, 45.9)ab

Second dose 38.4 (35.4, 41.7)a 38.7 (34.1, 43.9)a 38.2 (34.3, 42.5)ab 38.4 (35.3, 41.6)a 37.9 (33.4, 42.9)a 38.5 (34.5, 42.9)ab

Third dose 36.9 (33.9, 40.2)a 40.0 (35.4, 45.1)a 34.1 (30.3, 38.5)a 36.8 (33.8, 40.1)a 39.8 (35.3, 44.9)a 34.2 (30.3, 38.7)a

Never ovulated 40.6 (36.9, 44.6)a 38.3 (34.1, 43.1)a 45.2 (38.4, 53.3)b 40.7 (36.9, 44.7)a 38.2 (34.0, 43.0)a 45.2 (38.3, 53.3)b

P-trend 0.45 0.52 0.65 0.45 0.39 0.73

a Dose: For letrozole: first dose, 2.5 mg; second dose, 5.0 mg; third dose, 7.5 mg; and for clomiphene: first dose, 50 mg; second dose, 100 mg;
third dose, 150 mg.
b Values are geometric means and 95% CIs. Labeled means without a common letter differ. P � .05 (adjusted for multiple comparisons).
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Our study has many strengths, including measurement
of AMH in a large cohort of over 700 women, making this
the largest study of this kind to evaluate associations be-
tween AMH and response to ovulation induction in
women with PCOS. Moreover, trial outcomes were well
defined and well documented, and the study participants
were monitored prospectively during frequent scheduled
study visits to precisely document ovulation. One weak-
ness is that given the variability in AMH assays and a lack
of standardization, individual programs will need to as-
sess their own cut points based on local assays. However,
given that we did not identify a cut point above which no
one ovulated, the observations that women with higher
AMH levels may require higher doses of ovulation induc-
tion treatment still stand although this work does not re-
veal a predictive AMH threshold. It is also important to
recognize that we evaluated AMH in relation to achieved
ovulation during the study, which may have taken multi-
ple cycles. As such, this may have potentially limited the
power to detect associations even in this large cohort, al-
though we observed similar associations when evaluating
the association with ovulatory status during each cycle
under study.

In summary, we observed that in women with PCOS,
baseline serum AMH levels were higher among women

who did not respond to ovulation induction, although we
did not find an absolute level of AMH above which
women did not respond, and that AMH levels were sig-
nificantly lower among women who ovulated. In addition,
women with higher baseline AMH levels required higher
doses of clomiphene or letrozole to achieve ovulation.
These findings suggest that AMH may be a marker of
ovarian resistance to ovulation induction.
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