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Abstract

Slurry packing capillary columns for ultrahigh pressure liquid chromatography is complicated by 

many interdependent experimental variables. Previous results have suggested that combination of 

high slurry concentration and sonication during packing would create homogeneous bed 

microstructures and yield highly efficient capillary columns. Herein, the effect of sonication while 

packing very high slurry concentrations is presented. A series of six, 1 m × 75 μm internal 

diameter columns were packed with 200 mg/mL slurries of 2.02 μm bridged-ethyl hybrid silica 

particles. Three of the columns underwent sonication during packing and yielded highly efficient 

separations with reduced plate heights as low as 1.05.
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1. Introduction

The benefits of sub-2 μm chromatographic supports have largely focused separation 

technologies towards ultrahigh pressure liquid chromatography (UHPLC) [1]. Theoretically, 

sorbents on this scale provide higher separation efficiencies and shorter separation times. 

True benefit from these materials is dependent, however, on homogeneous packing of the 

sorbent into a column. This is complicated by the smaller particle’s requirement of 

significantly increased packing pressure and presents a major challenge in the creation of a 

uniform bed structure. As packing material continues in the direction of smaller particles, 

dispersion due to transcolumn heterogeneity becomes significantly more important. This 

type of dispersion is estimated to account for up to 70% of the total dispersion for small 

molecules in UHPLC columns [2].
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Packing that results in a well performing column requires the formation of a homogeneous 

bed structure across all scales, from transchannel to transcolumn, within the column [3]. 

Study of “optimal” packing conditions has lead to more detailed understanding of the 

physical process [4–14]. Unfortunately this process is dynamic and highly influenced by 

many interdependent parameters. The results of these studies have yielded many opinions on 

the “art” of column packing as opposed to the science. More recently, collaboration between 

our groups has examined certain packing parameters including the effects of particle 

properties, capillary column diameter and slurry concentration [15–17]. Most importantly 

these studies have been informed by three-dimensional reconstructions via confocal laser 

scanning microscopy (CLSM) of the packing microstructure. These renderings have allowed 

for detailed expositions of morphological features corresponding to specific packing 

conditions, which are then related to explain the column’s kinetic performance.

Morphological heterogeneity between a column’s wall region and bulk packing is often the 

main contributor to poor column performance [18–23]. Previous studies have indicated that 

the differences in these regions are dependent on slurry concentration [16,17]. Detailed 

understanding of the packing microstructure has guided empirical packing studies to obtain 

well performing columns. For example, our initial results suggest that there is a specific 

“intermediate” slurry concentration capable of balancing the antagonizing effects associated 

with a low or high slurry concentration for each particle diameter [16]. Further study of this 

proposition confirmed balancing of packing defects and demonstrated that increasing slurry 

concentration suppresses wall effects and reduces transcolumn bed heterogeneities through 

prevention of both locally high porosity and particle size segregation [17].

We further noticed that even though slurry concentrations higher than “optimal” continue to 

suppress wall effects, the columns perform poorly [17]. The benefits of high slurry 

concentrations eventually begin to diminish as the number and size of packing voids in the 

bed structure increases. Giddings suggested voids would impact eddy dispersion negatively 

and contribute significantly to chromatographic band broadening [3]. Voids increase velocity 

extremes and eddy dispersion on both transchannel and short-range interchannel scales. The 

detriment of incorporated voids was also illustrated with dispersion simulations that resulted 

in stating the column’s overall performance is more dependent on reduction of large voids 

than obtaining high packing densities [24].

The conclusions to our most recent study propose that even higher efficiency UHPLC 

columns may result from formation of a homogenous bed structure across the entire column 

through the combination of high slurry concentration and sonication to prevent the formation 

of larger voids [17]. To date sonication has been used in column packing, but only to limited 

effect and not in association with very high slurry concentrations [25–29]. Reduction of the 

total number of voids should allow for realization of more homogeneous and highly efficient 

columns.

To test this a set of 6 capillary columns, all 1 m in length × 75 μm internal diameter (i.d.), 

were packed with 200mg/mL slurries. Three of the columns were packed with the 

application of sonication and three were not. Columns packed with sonication yielded 
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performance with reduced plate heights approaching 1 and a realized (instead of 

extrapolated as often reported) 470,000 plates/m.

2. Materials and methods

2.1. Chemicals and materials

75 μm i.d. cylindrical fused-silica tubing was purchased from Polymicro Technologies 

(Phoenix, AZ). The capillaries were packed with C18-modified bridged-ethyl hybrid (BEH) 

silica particles provided by Waters Corporation (Milford, MA) with a Sauter diameter of 

2.02 μm. The Sauter diameter was calculated from a scanning electron microscope (SEM) 

based particle size distribution obtained from the measurement of ~1200 C18-modified 1.9 

μm BEH particles from the same batch using a JSM-7500F SEM (Joel, München, 

Germany). HPLC grade acetonitrile, acetone (reagent grade), tri-fluoroacetic acid (TFA), 

and the test analytes for chromatographic characterization (L-ascorbic acid, hydroquinone, 

resorcinol, catechol, 4-methyl catechol) were obtained from Fisher Scientific (St. Louis, 

MO). Kasil frits for the packed capillaries were prepared with potassium silicate from PQ 

Corporation (Valley Forge, PA) and formamide from Sigma–Aldrich (St. Louis, MO). HPLC 

grade water for chromatographic experiments was obtained from a Millipore NANOpure 

water system (Billerica, MA).

2.2. Preparation of capillary UHPLC columns

Preparation of the capillary UHPLC columns has been described previously in detail [8–14]. 

Modifications to the procedure will be highlighted here. Column blanks (160 cm × 75 μm 

i.d.) were fritted using the Kasil method [30]. The extra 60 cm was needed to over pack 

slightly to allow for bed compression (~10 cm) as well as to reach from the packing vessel to 

the sonication bath (~50 cm). In order to prepare outlet frits, the ends of capillaries were 

depressed onto a glass microfiber filter (Reeve Angel, Clifton, NJ) wetted with 50/50 (v/v) 

potassium silicate/formamide. The column blanks were then dried overnight at 50 °C and the 

resulting frits were ~125 μm in length. Slurries were prepared by mixing a known mass of 

the particles in a known volume of acetone (to achieve 200 mg/mL) and suspended with a 10 

min sonication cycle using a Cole Parmer Ultrasonic Cleaner 8891 (Vernon Hills, IL).

Prior to packing, the inlet to the column blank was fixed within a UHPLC fitting. The outlet 

was threaded through the top of a piece of shipping foam padding that was cut to fit snugly 

within the sonication bath’s included basket. The portion of capillary blank to be packed (in 

this case ~108 cm) was pulled through the top of the foam entirely. This portion of the 

column blank was then coiled and taped to the bottom of the foam padding to keep it in 

place. To ensure the created outlet frit did not loose integrity due to sonication, it was 

threaded back through the shipping foam padding (from the bottom side, in which the 

majority of the capillary was taped) until the frit and 2 cm of outlet end of the column blank 

protruded from the top of the foam padding. This arrangement corresponded to the outlet of 

column blank being 2 cm above the water line in the sonication bath. The slurry was then 

placed into a packing reservoir and the inlet of the column blank was secured to the reservoir 

using the already affixed UHPLC fitting. The foam supporting the coiled capillary was 

placed into the sonication bath, ensuring that the desired final length (already coiled and 
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secured to the bottom of the foam) remained submerged under water and that the 2 cm of the 

blanks outlet, including the installed frit, remained above the water line. Sonication during 

packing was conducted with an Elmasonic P 60 H (Elma Schmidbauer GmbH, Singen, 

Germany) sonication bath. The sonication bath was set to sweep mode at 80 kHz. Packing 

was initiated using acetone as a pushing solvent at 150 bar from a DSHF-300 Haskel pump 

(Burbank, CA). The packing pressure was immediately increased to 2070 bar when the 2 

visible cm of bed had been packed. The maximum packing pressure was chosen to maintain 

consistency between these experiments and previously reported packing studies [15–17]. 

The column was allowed to pack until the formed bed was visible outside the packing foam, 

which meant the 108 cm of bed had been packed. The temperature of the bath was kept at 

30° C by adding a small amount of ice as necessary and measured using the sonication 

bath’s temperature readout on the display. After the desired length was reached, the packing 

pressure was slowly released to atmospheric pressure. The column was then connected to a 

DSXHF-903 Haskel pump (Burbank, CA) using an UHPLC injection apparatus. Each 

column was flushed for 1 h in 50/50 (v/v) water/acetonitrile with 0.1% TFA at 3500 bar, 

after which the pressure was gradually released and reinitiated at 700 bar to form a 

temporary inlet frit with a heated wire stripper from Teledyne Interconnect Devices (San 

Diego, CA). Columns were then clipped to a 100 cm bed length and an inlet frit was 

installed using the Kasil method.

2.3. Chromatographic analysis

Column efficiency was tested under isocratic elution conditions using a 200 μM test mixture 

(L-ascorbic acid, dead-time marker; hydroquinone, resorcinol, catechol, and 4-methyl 

catechol) and an UHPLC injection apparatus [9]. The mobile phase used for evaluation was 

50/50 (v/v) water/acetonitrile with 0.1% TFA. Analytes were detected amperometrically. 

Electrochemical detection was conducted at a 8 μm × 300 μm carbon fiber microelectrode 

held at +1.1 V vs. Ag/AgCl reference electrode [31]. This electrode was placed at the outlet 

of the UHPLC column. Current-to-voltage conversion was conducted using an SR750 

current amplifier (Stanford Research Systems, Sunnyvale, CA) with a 109 V/A gain and a 3 

Hz, 3 dB low-pass bandwidth filter. An Intel Core 2 Duo desktop computer with a 16-bit 

A/D converter was used to acquire data at 21 Hz. Data were collected with a custom-written 

LabView 6.0 program (National Instruments, Austin, TX).

Columns were analyzed over a range of mobile phase velocities to create plots of the plate 

height H vs. the average mobile phase velocity uav for each analyte in the test mixture. 

Reduced plate height curves h = H/dp vs. v = uavdp/Dm were calculated using the particles’ 

Sauter diameter (dp = 2.02 μm) and Dm, the pressure-dependent diffusion coefficient of an 

analyte in the bulk mobile phase [32]. High frequency noise was removed from the 

chromatograms using a digital frequency filter and low frequency baseline drift was 

eliminated by background subtraction. Retention times and theoretical plate counts N were 

determined using an iterative statistical moments (±3σ) algorithm written in Igor Pro 6.0 

(Wavemetrics, Inc., Lake Oswego, OR) [11].
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3. Results and discussion

Studied here are six capillaries packed at a very high slurry concentration. Previous studies 

of 100 mg/mL slurries yielded relatively well performing capillary columns with minimum 

reduced plate height (hmin) values near 1.5 [10,16]. For this experiment a concentration of 

200 mg/mL was chosen to ensure excess to an intermediate slurry concentration, enhanced 

suppression of radial defects and a high number of large packing voids, wherein the 

cumulative effects of these voids would be expected to yield relatively poor chromatographic 

efficiency. Three of the capillaries within this study underwent sonication and three did not. 

For the sake of consistency, all six were placed in the same orientation within the sonication 

bath during packing, whether sonication was applied or not.

Plotted in Fig. 1 is an example chromatogram showing the performance of one of the three 

columns packed with sonication. Inset in Fig. 1 is an enlargement of the hydroquinone peak, 

overlaid with a Gaussian fit and residuals. Iterative statistical moments (±3σ) were used for 

plate counts of all reported data. These plate counts are more conservative than those 

calculated by full width at half height and Gaussian fit methods. For example the inset 

hydroquinone peak would have plate counts of 558,000 using full width at half height and 

556,000 using a Gaussian fit. Reduced plate height h for these plate determination methods 

would be 0.88. Fig. 2 plots the reduced van Deemter fits (h = a + b/v + cv) for hydroquinone 

for each of the six columns. Most notably the six columns fall into two distinct groups, those 

that underwent the application of sonication and those that did not. The consistency of the 

columns that underwent sonication is very high. Overall efficiency of these columns 

approaches a reduced plate height of 1.05. Columns that were not exposed to sonication did 

not exhibit similarly high reproducibility in reduced parameters and showed poorer 

performance with hmin between 1.8 and 2.2.

Fig. 3 plots uav vs. pressure normalized for column length. The data naturally falls into two 

groups separated by column packing procedure. Higher average velocities for ascorbic acid 

are apparent for those columns prepared with sonication. Regarding the known effects of 

high slurry concentrations and their tendency to incorporate very wide void size distributions 

[17], we can interpret these results as similar to a packing prepared with a highly poly-

disperse particle size distribution (one significantly broader and more skewed than that of 

the packed BEH material: the utilized BEH material exhibits approximately 15% relative 

standard deviation for the particle size distribution). Based on Fig. 2 we know that the 

columns packed with sonication have a more homogeneous bed structure due to the 

improved efficiency. This translates into substantially narrowed distribution of sizes for local 

interstitial void fractions with respect to the columns that did not undergo sonication. This 

homogenization of the bed microstructure leads to higher observed velocity and 

permeability for the dead time marker through the column. Simulations yielded similar 

results in which a reduced width and tail in the interstitial void volume distribution improved 

hydraulic permeability [33]. Packing columns with very high slurry concentration and 

sonication boosts separation efficiency while improving mobile phase permeability. That is, 

a narrower width and more uniform distribution of interparticle void volumes produces more 

uniform and less tortuous flow paths. Whereas an ultrasound-induced homogenization of the 

packing microstructure over the column cross-section can explain both, higher separation 
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efficiency and permeability, the permeability might additionally benefit from a slightly lower 

packing density.

The performance of columns undergoing sonication far exceeds reports of other highly 

efficient capillary columns [10]. However, these results are not unexpected. First, the 

experimental setup has been optimized to limit extra-column band broadening as injection, 

detection and unpacked bed (frits) produce negligible extra-column band broadening. 

Second, it is known that reduced plate heights can approach values below 1.5 for very low 

aspect ratio capillaries (column-to-particle diameter ratios dc/dp < 20) [9,15]. In this case 

dc/dp is 37.1, nearly twice that value. No theoretical basis exists for this limitation on 

minimum plate height. Transcolumn exchange of an analyte molecule on the 75 μm 

dimension of the capillary diameter is fast and any exchange between different regions of 

local flow velocity is quickly terminated by transverse dispersion [34]. Third, from past 

CLSM studies we know that the integral porosity deviation approaches zero as slurry 

concentration increases (indicative of wall region in a bed that attains average packing 

density as the bulk region of that bed) [17]. The very high slurry concentrations utilized here 

should further suppress localized heterogeneities. Finally, simulations of plate height in 

computer-generated packing have yielded reduced plate heights below unity [22].

4. Conclusions

The results presented here highlight the beneficial effects of two packing variables: very 

high slurry concentration and sonication. The remarkable performance of these columns, 

which far exceeds previous separation efficiencies seen in our lab and elsewhere for fully 

porous particles packed into capillary columns, leads us to believe that we have successfully 

mitigated the incorporation of packing voids while suppressing radial heterogeneity 

previously identified at a capillary column’s wall. Packed capillary columns with 

performance approaching reduced plate heights of 1 offer new frontiers into the use of 

UHPLC columns. When packed to a meter long and producing 500,000 theoretical plates, 

the opportunity for fast separations at high pressure with very high peak capacities could 

greatly improve one-dimensional separations of very complex samples. The fundamental 

study of slurry packing as a function of slurry concentration has given insight into the 

packing process and guided studies to greatly improve slurry packing of capillary columns.
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Fig. 1. 
Example chromatogram for one of the three columns packed with sonication and run at 1630 

bar. This column is represented by red triangles in Figs. 2 and 3. Peaks from left to right are 

L-ascorbic acid, hydroquinone, resorcinol, catechol and 4-methyl catechol. The inset 

presents an enlargement of the hydroquinone peak used for the reduced plate height curves 

in Fig. 2. The experimental data is plotted in black, the Gaussian fit in blue and the residuals 

are plotted in red. A black dashed line is overlaid at 0 signal for reference. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 2. 
Plot of reduced van Deemter fits for hydroquinone on each of the 6, 1-m long columns. 

Columns packed with sonication are presented in red while columns prepared without 

sonication are plotted in black. Marker shapes (circles, squares and triangles) distinguish 

each column within the parameters represented by color. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Plot of the linear velocity of the dead time marker, L-ascorbic acid, against pressure drop 

normalized for column length. Columns packed with sonication are presented in red while 

columns prepared without sonication are plotted in black. Marker shapes (circles, squares 

and triangles) distinguish each column within the parameters represented by color. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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