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Abstract 
 
Over the past decade, the Rosetta biomolecular modeling suite has informed diverse biological questions 
and engineering challenges ranging from interpretation of low-resolution structural data to design of 
nanomaterials, protein therapeutics, and vaccines. Central to Rosetta’s success is the energy function: a 
model parameterized from small molecule and X-ray crystal structure data used to approximate the energy 
associated with each biomolecule conformation. This paper describes the mathematical models and 
physical concepts that underlie the latest Rosetta energy function, beta_nov15. Applying these concepts, 
we explain how to use Rosetta energies to identify and analyze the features of biomolecular models. 
Finally, we discuss the latest advances in the energy function that extend capabilities from soluble proteins 
to also include membrane proteins, peptides containing non-canonical amino acids, carbohydrates, nucleic 
acids, and other macromolecules. 
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Introduction 
 
Proteins adopt diverse three-dimensional conformations to carry out the complex mechanisms of life. 
Their structures are constrained by the underlying amino acid sequence1 and stabilized by a fine balance 
between enthalphic and entropic contributions to non-covalent interactions.2 Energy functions that seek 
to approximate the energy of these interactions are fundamental to computational modeling of 
biomolecular structures. The goal of this paper is to describe the energy calculations used by the Rosetta 
macromolecular modeling program:3 we explain the underlying physical concepts, mathematical models, 
latest advances, and application to biomolecular simulations.  
 
Energy functions are based on Anfinsen’s hypothesis that native-like protein conformations represent 
unique, low-energy, thermodynamically stable conformations.4 These folded states reside in minima on 
the energy landscape, and they have a net favorable change in Gibbs free energy, which is the sum of 
contributions from both enthalpy (∆H) and entropy (∆S) relative to the unfolded state. To follow these 
heuristics, macromolecular modeling programs require a mathematical function that can discriminate 
between the unfolded, folded, and native-like conformations. Typically, these functions are a linear 
combination of terms that compute energies as a function of various degrees of freedom.  
 
The earliest macromolecular energy functions combined a Lennard-Jones potential for van der Waals 
interactions5–7 with harmonic torsional potentials8 that were parameterized using force constants from 
vibrational spectra of small molecules.9–11 These formulations were first applied to investigating the 
structures of hemolysin,12 trypsin inhibitor,13 and hemoglobin14 and have now diversified into a large 
family of commonly used energy functions such as AMBER,15 DREIDING,16 OPLS,17 and  
CHARMM.18,19 Many of these energy functions also rely on new terms and parameterizations. For 
example, faster computers have enabled the derivation of parameters from ab initio quantum 
calculations.20 The maturation of X-ray crystallography and NMR protein structure determination 
methods has enabled development of statistical potentials derived from per-residue, inter-residue, 
secondary-structure, and whole structure features.21–28 Additionally, there are alternate models of 
electrostatics and solvation, such as a Generalized Born approximation of the Poisson-Boltzmann 
equation29 and polarizable electrostatic terms that accommodate varying charge distributions.30  
 
The first version of the Rosetta energy function was developed for proteins by Simons et al.31 Initially, it 
used statistical potentials describing individual residue environments and frequent residue-pair 
interactions derived from the Protein Databank (PDB).32 Later, the authors added terms for packing of van 
der Waals spheres, hydrogen bonding, secondary-structure, and van der Waals interactions to improve the 
performance of ab initio structure prediction.33 These terms were for low-resolution modeling, meaning 
that the scores were dependent on only the coordinates of the backbone atoms and that interactions 
between the side chains were treated implicitly.  
 
To enable higher resolution modeling, in the early 2000s, Kuhlman et al.34 implemented an all-atom 
energy function that emphasized atomic packing, hydrogen bonding, solvation, and protein torsion angles 
commonly found in folded proteins. This energy function first included a Lennard-Jones term35, a pairwise 
additive implicit solvation model,36 a statistically-derived electrostatics term, and a term for backbone-
dependent rotamer preferences.37 Shortly after, several terms were added, including and an orientation-
dependent hydrogen bonding term38 in agreement with electronic structure calculations.39 This 
combination of traditional molecular mechanics energies and statistical torsion potentials enabled Rosetta 
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to reach several milestones in structure prediction and design including accurate ab initio structure 
prediction.40 hot-spot prediction,41,42 protein—protein docking,43 and specificity redesign44 as well as the 
first de novo designed protein backbone not found in nature45 and the first computationally designed new 
protein—protein interface.46  
 
The Rosetta energy function has changed dramatically since it was last described in complete detail by 
Rohl et al.47 in 2004.  It has undergone significant advances ranging from improved models of hydrogen 
bonding48 and solvation,49 to updated evaluation of backbone50 and rotamer conformations.51 Along the 
way, these developments have enabled Rosetta to address new biomolecular modeling problems including 
refinement of low-resolution X-ray structures,52 development of protein binders,53 and the design of 
vaccines,54 biomineralization peptides,55 self-assembling materials,56 and enzymes that perform new 
functions.57,58 Instead of arbitrary units, the energy function is now also calibrated to compute energies in 
kcal/mol. The details of these energy function advances are distributed across code comments, methods 
development papers, application papers, and individual experts, making it challenging for Rosetta 
developers and users in both academia and industry to learn the underlying concepts. Moreover, members 
of the Rosetta community are actively working to generalize the all-atom energy function for use in 
different contexts59,60 and for all biomolecules including RNA,61 DNA,62,63 small-molecule ligands,64 non-
canonical amino acids and backbones,65–67 and carbohydrates,68 further encouraging us to reexamine the 
underpinnings of the energy function. Thus, there is a need for an up-to-date description of the current 
energy function.  
 
In this paper, we describe the concepts and calculations underlying the current Rosetta all-atom energy 
function called beta_nov15. Our discussion aims to expose the physical and mathematical details of the 
energy function required for rigorous understanding. In addition, we explain how to apply the computed 
energies to analyze structural models produced by Rosetta simulations. We hope this paper will provide 
critically needed documentation of the energy methods as well as an educational resource to help students 
and scientists interpret the results of these simulations.  
 
Computing the total Rosetta energy 
 
The Rosetta energy function approximates the energy of a biomolecule conformation. This quantity, called 
∆𝐸total, is computed from a linear combination of energy terms 𝐸' which are calculated as a function of 
geometric degrees of freedom, 𝛩, chemical identities, aa, and scaled by a weight on each term, 𝑤, as 
shown in Eq. 1.  
 

∆𝐸total = 𝑤'𝐸'(𝛩', aa')'   (1) 
 
Here, we explain the Rosetta energy function term by term. First, we describe energies of interactions 
between non-bonded atom-pairs important for atomic packing, electrostatics, and solvation. Second, we 
explain empirical potentials used to model hydrogen- and disulfide-bonds. Next, we explain statistical 
potentials used to describe backbone and side-chain torsional preferences in proteins. After, we explain a 
set of terms that accommodate features not explicitly captured yet important for native structural feature 
recapitulation. Finally, we discuss how the energy terms are combined into a single function used to 
approximate the energy of biomolecules. For reference, items in the fixed width font are names of 
energy terms in the Rosetta code. The energy terms are summarized in Table 1.  
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Table 1: Summary of Energy terms in the beta_nov15 energy function 
Term Description Weight Units Ref. 

fa_atr Attractive energy between two atoms on different 
residues separated by distance, d 

1.0 kcal/mol [5,6] 

fa_rep Repulsive energy between two atoms on different 
residues separated by distance, d 

0.55 kcal/mol [5,6] 

fa_intra_rep Repulsive energy between two atoms on the same 
residue, separated by distance, d 

0.005 kcal/mol [5,6] 

fa_sol Gaussian exclusion implicit solvation energy 
between protein atoms in different residues 

1.0 kcal/mol [36] 

lk_ball_wtd Orientation-dependent solvation of polar atoms 
assuming ideal water geometry 

1.0 kcal/mol [49,69] 

fa_intra_sol Gaussian exclusion implicit solvation energy 
between protein atoms in the same residue 

1.0 kcal/mol [36] 

fa_elec Energy of interaction between two non-bonded 
charged atoms separated by distance, d 

1.0 kcal/mol [49] 

hbond Energy of hydrogen bonds 1.0 kcal/mol [38,48] 

dslf_fa13 Energy of disulfide bridges 1.25 kcal/mol [48] 

rama_prepro Probability of backbone 𝜙, 𝜓 angles given amino 
acid type 

0.45 
kcal/mol/kT 

kT [49,50] 

p_aa_pp Probability of amino acid identity given backbone 
𝜙, 𝜓 angles 

0.4 
kcal/mol/kT 

kT [50] 

fa_dun Probability that a chosen rotamer is native-like 
given backbone 𝜙, 𝜓 angles 

0.7 
kcal/mol/kT 

kT [51] 

omega Backbone-dependent penalty for cis 𝜔 dihedrals 
that deviate from 0° and trans 𝜔 dihedrals that 
deviate from 180° 

0.6 
kcal/mol/AU 

Arbitrary 
Units 
(AU) 

[70] 

pro_close Penalty for an open proline ring and proline 𝜔 
bonding energy 

1.25 
kcal/mol/AU 

Arbitrary 
Units 

[50] 

yhh_planarity Sinusoidal penalty for non-planar tyrosine 𝜒3 
dihedral angle 

0.625 
kcal/mol/AU 

Arbitrary 
Units 

[48] 

ref Reference energies for amino acid types 1.0 
kcal/mol/AU 

Arbitrary 
Units 

[1,50] 
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Terms for atom-pair interactions 
 
van der Waals interactions are short-range attractive and repulsive forces that vary with atom-pair 
distance. Whereas attractive forces result from the cross-correlated motions of electrons in neighboring 
non-bonded atoms, repulsive forces occur because electrons cannot occupy the same orbitals by the Pauli 
exclusion principle. To model van der Waals interactions, Rosetta uses the Lennard-Jones (LJ) 6-12 
potential5,6 which calculates the interaction energy of atoms 𝑖 and 𝑗 in different residues given their 
summed atomic radii 𝜎',7,a atom-pair distance, 𝑑',7, and the geometric mean of well depths, 𝜖',7 (Eq. 2). 
The atomic radii and well depths are derived from small molecule liquid phase data optimized in context 
of the energy model.49   
 

𝐸vdw(𝑖, 𝑗) = 𝜀',7
>?,@
A?,@

BC
− 2 >?,@

A?,@

F
   (2) 

 
Rosetta splits the LJ potential at the function’s minimum (𝑑',7 = 𝜎',7) into two components that can be 
weighted separately: attractive (fa_atr) and repulsive (fa_rep). By decomposing the function this way, 
we can alter component weights without changing the minimum-energy distance or introducing any 
derivative discontinuities. Many conformational sampling protocols in Rosetta take advantage of this 
splitting by slowly increasing the weight of the repulsive component to traverse rugged energy landscapes 
and to prevent structures from unfolding during sampling.71  
 
The repulsive van der Waals energy, fa_rep, varies as a function of atom-pair distance. At short 
distances, atomic overlap results in strong forces that lead to large changes in the energy. The steep 1/𝑑',7BC 
term can cause poor performance in minimization routines and overall structure prediction and design 
calculations.72,73 To alleviate this problem, we weaken the repulsive component by replacing the 1/𝑑',7BC 
term with a softer linear term when 𝑑 ≤ 	0.6𝜎',7. The term is computed using the atom-type specific 
parameters 𝑚',7 and 𝑏',7 which are fit to ensure derivative continuity at 𝑑 = 	0.6𝜎',7 After the linear 
component, the function transitions smoothly to the 6-12 form until 𝑑',7 = 𝜎, where it reaches zero and 
remains zero (Eq. 3; Fig. 1A).  
  

 𝐸rep(𝑖, 𝑗) = 𝑤',7conn

𝑚',7	𝑑',7 + 𝑏',7 𝑑',7 ≤ 	0.6𝜎',7

𝜀',7
>?,@
A?,@

BC
− 2 >?,@

A?,@

F
+ 1 0.6𝜎',7	<	𝑑',7 ≤ 𝜎',7	

0 𝜎',7 < 𝑑',7

',7   (3) 

 
Rosetta also includes an intra-residue version of the repulsive component, fa_intra_rep, with the same 
functional form as the fa_rep term (Eq. 3). We include this term because the knowledge-based rotamer 
energy (fa_dun, below) under-estimates intra-residue collisions.  
 
The attractive van der Waals energy, fa_atr has a value of  −𝜖'7 when 𝑑',7 = 0 and then transitions to 
the 6-12 potential as the distance increases (Eq. 4; Fig. 1B). For speed, we truncate the LJ term beyond 
6.0 Å where the van der Waals forces are small. To avoid derivative discontinuities, we use a cubic 

                                                
a In Rosetta, 𝜎',7 has the same definition as the 𝑟',7min variable in CHARMM. 
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polynomial function, 𝑓poly 𝑑',7  after 4.5 Å to transition the standard Lennard-Jones functional form 
smoothly to zero. These smooth derivatives are necessary to ensure that bumps do not accumulate in the 
distributions of structural features at inflections points in the energy landscape during conformational 
sampling with gradient-based minimization (Sheffler 2006, Unpublished).  
 

𝐸atr = 𝑤',7conn 	

– 𝜀',7 𝑑',7 ≤ 	𝜎'7

𝜀',7 	
>?,@
A?,@

BC
− 2 >?,@

A?,@

F
𝜎',7 < 𝑑',7 ≤ 4.5	Å

𝑓 abc 𝑑',7 4.5	Å	 ≤ 𝑑',7 ≤ 6.0	Å	
0 6.0	Å	 ≤ 𝑑',7

',7   (4) 

 
All three terms are multiplied by a connectivity weight 𝑤',7conn to exclude the large repulsive energetic 
contributions that would otherwise be calculated for atoms separated by fewer than four chemical bonds 
(Eq. 5). This weight is common to molecular force fields that assume covalent bonds are not formed or 
broken during a simulation. Rosetta uses four chemical bonds as the “crossover” separation when 𝑤',7conn 
transitions from zero to one (rather than the three chemical bonds used by traditional force fields) to limit 
the effects of double-counting due to knowledge-based torsional potentials. 
 

𝑤',7conn =
0 𝑛',7bonds ≤ 3
0.2 𝑛',7bonds = 4
1 𝑛',7bonds ≥ 5

 (5) 

 
The comparison between Eq. 2 and the modified LJ potential (Eq. 3-4) is shown in Fig. 1A and Fig. 1B. 
 

 
Figure 1: Van der Waals and electrostatics energies 
Comparison between pairwise energies of non-bonded atoms computed by Rosetta and the form computed by traditional 
molecular mechanics force fields. Here, the interaction between the backbone nitrogen and carbon are used as an example. 
(A) Lennard-Jones van der Waals energy with well-depths 𝜖Nbb = 0.162 and 𝜖Cbb = 0.063 and atomic radii  𝑟Nbb =
1.763 and 𝑟Cbb = 2.011 (red) and Rosetta fa_rep (blue). (B) Lennard-Jones van der Waals energy (red) and Rosetta 
fa_rep (blue). As the atom-pair distance approaches 6.0 Å, the fa_atr term smoothly approaches zero and deviates 
slightly from the original Lennard-Jones potential. (C) Coulomb electrostatics energy with a dielectric constant 𝜖 = 10, 
and partial charges  𝑞Nbb = −0.604 and 𝑞Cbb = 0.090 (red) compared with Rosetta fa_elec (blue). The fa_elec 
model is shifted to reach zero at the cutoff distance 6.0 Å.  
 

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/106054doi: bioRxiv preprint first posted online Feb. 7, 2017; 

http://dx.doi.org/10.1101/106054
http://creativecommons.org/licenses/by-nc/4.0/


 8 

Electrostatics. Non-bonded electrostatic interactions arise from forces between fully and partially 
charged atoms. To evaluate these interactions, Rosetta uses Coulomb’s Law with partial charges originally 
taken from CHARMM and adjusted via a group optimization scheme (Table S3).49 Coulomb’s law is a 
pairwise term commonly expressed in terms of the distance between atoms 𝑖 and 𝑗 (𝑑',7), dielectric 
constant 𝜖, partial atomic charges for each atom 𝑞' and 𝑞7, and Coulomb’s constant, 𝐶o = 322 Å kcal/mol 
e-2 (with e being the elementary charge) (Eq. 6). 

 
𝐸Coulomb(𝑖, 𝑗) =

qrs?s@
t

B
A?,@
u   (6) 

 
To approximate electrostatic interactions in biomolecules, we modify the potential to account for the 
difference in dielectric constant between the protein core and solvent-exposed surface.74 Specifically, we 
substitute the constant 𝜖 in Eq. 6 with a sigmoidal function 𝜖 𝑑',7  that increases from 𝜖core = 6 to 
𝜖solvent = 80 when the atom-pair distance is between 0 Å and 4 Å (Eq. 7-8):  
 

𝜖 𝑑',7 = 𝑔 A?,@
x

𝜖core + 1 − 𝑔 A?,@
x

𝜖solvent (7) 
 

𝑔 𝑥 = 1 + 𝑥 + zu

C
exp(−𝑥)  (8) 

 
As with the van der Waals term, we make several heuristic approximations to adapt this calculation for 
simulations of biomolecules. To avoid strong repulsive forces at short distances, we replace the steep 
gradient with the constant 𝐸elec(𝑑min) when 𝑑',7 < 1.45 Å. Next, since the distance-dependent dielectric 
assumption results in dampened long-range electrostatics, for speed we truncate the potential at 𝑑max =
5.5	Å and we shift the Coulomb curve by subtracting a 1 𝑑maxC  term to shift the potential to zero at 𝑑max 
(Eq. 9).  
 

𝐸elec(𝑖, 𝑗, 𝑑',7) =
qrs?s@
t(A?,@)

B
A?,@
u −

B
Amaxu 𝑑 ≤ 𝑑max

0 𝑑max < 𝑑
  (9) 

 
We use cubic polynomials, 𝑓poly

elec,low(𝑑',7) and 𝑓poly
elec,high(𝑑',7) to smooth between the traditional form and 

our adjustments while avoiding derivative discontinuities. The energy is also multiplied by the 
connectivity weight, 𝑤',7conn (Eq. 5). The final modified electrostatic potential is given by Eq. 10 and 
compared to the standard form in Fig. 1C.  
 

𝐸fa_elec = 𝑤',7conn

𝐸elec(𝑖, 𝑗, 𝑑min) 𝑑',7 < 1.45		Å
𝑓poly
elec,low(𝑑',7) 1.45	Å ≤ 𝑑',7 < 1.85	Å

𝐸elec(𝑖, 𝑗, 𝑑',7) 1.85	Å	 ≤ 𝑑',7 < 4.5	Å
𝑓poly
elec,hi(𝑑',7) 4.5	Å ≤ 𝑑',7 < 5.5	Å

0 5.5	Å ≤ 𝑑',7

	',7  (10) 
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Solvation. Native-like protein conformations minimize the exposure of hydrophobic side chains to the 
surrounding polar solvent. Unfortunately, explicitly modeling all the interactions between solvent and 
protein atoms is computationally expensive. Instead, Rosetta represents the solvent as bulk water based 
upon the Lazaridis-Karplus (LK) implicit Gaussian exclusion model.36 Rosetta's solvation model has two 
components: an isotropic solvation energy, called fa_sol, that assumes bulk water is uniformly 
distributed around the atoms (Fig. 2A) and an anisotropic solvation energy, called lk_ball_wtd, that 
accounts for specific waters nearby polar atoms that form the solvation shell (Fig. 2B). 
 

 
Figure 2: A two component Lazaridis-Karplus solvation model 
Rosetta uses two energy terms to evaluate the desolvation of protein side chains: an isotropic (fa_sol) and anisotropic 
(lk_ball_wtd) term. (A) and (B) demonstrate the difference between isotropic and anisotropic solvation of the NH2 
group by CH3 on the asparagine side chain. The contours vary from low energy (blue) to high energy (yellow). The 
arrows represent the approach vectors for the pair potentials shown in C-E. In the bottom panel, we compare fa_sol, 
lk_ball and lk_ball_wtd energies for the solvation of the NH2 group on asparagine for three different approach 
angles: (C) in line with the 1HD2 atom, (D) along the bisector of the angle between 1HD1 and 1HD2 and (E) vertically 
down from above the plane of the hydrogens (out of plane). 
 
The isotropic (Lazaridis-Karpus) model36 is based on the function 𝑓desolv that describes the energy required 
to desolvate (remove contacting water) an atom 𝑖 when approached by a neighboring atom 𝑗. In Rosetta, 
we exclude Lazaridis-Karplus’ ∆𝐺ref term because we implement our own reference energy (discussed 
later). The energy of the atom-pair interaction varies with separation distance 𝑑',7, experimentally 
determined vapor-to-water transfer free energies ∆𝐺free, summed atomic radii 𝜎',7, correlation length 𝜆, 
and atomic volume of the desolvating atom 𝑉7 (Eq. 11). 
 

𝑓desolv =	−𝑉7
∆�?

free

C�
�
u�?>?

u
exp − A�>?,@

�?

C
	  (11) 
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At short distances, fa_rep prevents atoms from overlapping; however, many protocols briefly down-
weight or disable the fa_rep term. To avoid scenarios where 𝑓desolv encourages atom-pair overlap in the 
absence of fa_rep, we smoothly increase the value of the function to a constant at close distances when 
the van der Waals spheres overlap (𝑑',7 = 𝜎',7). At large distances, the function asymptotically approaches 
zero; therefore, we truncate the function at 6.0 Å for speed. We also transition between the constants at 
short and long distances using distance-dependent cubic polynomials 𝑓 abc

solv,low	and 𝑓poly
solv,high with constants 

𝑐o = 0.3 Å and 𝑐B = 0.2 Å that define a window for smoothing. The overall desolvation function is given 
by Eq. 12.  
 

𝑔desolv =

𝑓desolv(𝑖, 𝑗, 𝜎',7) 𝑑',7 ≤ 	𝜎',7 − 𝑐o
	𝑓 abc

solv,low(𝑖, 𝑗, 𝑑',7) 𝜎',7 − 𝑐o < 𝑑',7 ≤ 𝜎',7 + 𝑐B
𝑓desolv 𝑖, 𝑗, 𝑑',7 𝜎',7 + 𝑐B < 𝑑',7 	≤ 4.5	Å
𝑓poly

solv,high(𝑖, 𝑗, 𝑑',7) 4.5	Å < 𝑑',7 	≤ 6.0	Å
0  6.0	Å < 𝑑',7

	  (12) 

 
The total isotropic solvation energy (Eq. 13), fa_sol, is computed as a sum including atom j desolvating 
atom i and vice-versa and scaled by the previously-defined connectivity weight. 
 

𝐸fa_sol = 𝑤',7conn 𝑔desolv 𝑖, 𝑗 + 𝑔desolv(𝑗, 𝑖)',7   (13) 
 
Rosetta also includes an intra-residue version of the isotropic solvation energy, fa_intra_sol, with the 
same functional form as the fa_sol term (Eq. 13). 
 
A recent innovation (2016) is the addition of an energy term (lk_ball_wtd) to model the orientation-
dependent solvation of polar atoms. This anisotropic model increases the desolvation penalty for 
occluding polar atoms near sites where waters may form hydrogen bonding interactions. For polar atoms, 
we subtract off part of the isotropic energy of Eq. 13 and then add the anisotropic energy to account for 
the position of the desolvating atom relative to hypothesized water positions.  
 
To compute the anisotropic energy, we first calculate the set of ideal water sites around atom i, 𝒲' =
𝝂'B, 𝝂'C, … .  This set contains 1 to 3 water sites, depending on the atom type of atom i. Each site is 2.65 

Å from atom 𝑖 and has an optimal hydrogen-bond geometry, and we consider the potential overlap of a 
desolvating atom j with each water. The overlap is considered negligible until the van der Waals sphere 
of the desolvating atom j (radius 𝜎7) touches the van der Waals sphere of the water at site k (radius 𝜎�), 
and then the term smoothly increases over a zone of partial overlap of approximately 0.5 Å. Thus, for each 
water site, 𝑘, with coordinates 𝒗',�, we compute an occlusion measure 𝑑�C to capture the gap between the 
hypothetical water and the desolvating atom 𝑗 (Eq. 14), using the offset Ω = 3.7 Å2 to provide the ramp-
up buffer. 
 

𝑑�C = 𝒓7 − 𝒗',�
C − 𝜎� + 𝜎7

C
+ Ω  (14) 

 
Next, we find the soft minimum of 𝑑�C over all water sites in 𝒲' by computing the log-average:  
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𝑑min
C (𝑖, 𝑗) = − ln 	 exp −𝑑�C�∈𝒲?   (15) 

 
Then, 𝑑min

C  and Ω are used to compute a damping function 𝑓lkfrac (Eq. 16) that varies from zero when the 
desolvating atom is at least a van der Waals distance from any preferred water site to one when the 
desolvating atom overlaps a water site by more than ~ 0.5 Å. 
 

𝑓lkfrac 𝑖, 𝑗 	=

1 𝑑min
C 𝑖, 𝑗 < 0

1 − Amin
u ',7
�

	
C

0 ≤ 𝑑min
C 𝑖, 𝑗 < Ω

0 Ω ≤ 𝑑min
C 𝑖, 𝑗

  (16) 

 
We calculate the anisotropic energy of desolvating a polar atom 𝐸lk_ball by scaling the desolvation function 
𝑔desolv by the damping function 𝑓lkfrac and an atom-type specific weight 𝑤aniso that is typically ~0.7 (Eq. 
17). The amount of isotropic solvation energy subtracted is 𝑔desolv multiplied by 𝑤iso, where 𝑤iso is an 
atom-type specific weight typically ~0.3 (Eq. 18; the total weight on the isotropic contribution through 
both fa_sol and lk_ball_wtd terms is thus ~0.7). The isotropic and anisotropic components are then 
summed to yield a new desolvation function, ℎdesolv (Eq. 19).  
 

𝐸lk_ball(𝑖, 𝑗) 	= 𝑤aniso,'𝑔desolv(𝑖, 𝑗)𝑓lkfrac(𝑖, 𝑗)  (17) 
 

𝐸lk_ball_iso(𝑖, 𝑗) 	= −𝑤iso,'	𝑔desolv(𝑖, 𝑗) (18) 
 

ℎdesolv(𝑖, 𝑗) = 𝐸lk_ball_iso(𝑖, 𝑗) + 𝐸lk_ball(𝑖, 𝑗) (19) 
 
Like fa_sol, the energy of desolvating atom 𝑖 by atom 𝑗 and then 𝑗 by 𝑖 are summed to yield the overall 
lk_ball_wtd energy (Eq. 20) but only counting the desolvation of polar, hydrogen-bonding heavy 
atoms (O,N) defined as the set 𝒫. Fig. 2 shows a comparison between fa_sol, the lk_ball term (Eq. 
17), and the sum of fa_sol and lk_ball_wtd for the example of an asparagine NH2 desolvated from 
three different approach angles. As the approach angle varies, the sum of lk_ball_wtd and fa_sol 
creates a larger desolvation penalty when waters sites are occluded and a smaller penalty otherwise, 
relative to the fa_sol term alone. 

 
𝐸lk_ball_wtd = 	 𝑤',7connℎdesolv 𝑖, 𝑗 + 𝑤',7connℎdesolv 𝑗, 𝑖7∈𝒫'∈𝒫  (20) 

 
Hydrogen bonding. Hydrogen bonds are partially covalent interactions that form when a nucleophilic 
heavy atom donates electron density to a polar hydrogen.75 At short ranges (< 2.5 Å), they exhibit 
geometries that maximize orbital overlap.76 The interactions between hydrogen bonding groups are also 
partially described by electrostatics. While this hybrid covalent-electrostatic character is complex, it is 
crucial for capturing the structural specificity that underlies protein folding, function, and interactions.  
 
Rosetta calculates the energy of hydrogen bonds using fa_elec and a term called hbond that evaluates 
energies based on the orientation preferences of hydrogen bonds found in high-resolution crystal 
structures.38,48 To derive this model, we curated intra-protein polar contacts from ~8,000 high resolution 
crystal structures (Top8000 dataset77) and identified features using adaptive density estimation. We then 
empirically fit the functional form of the energy such that the Rosetta-generated polar contacts mimic the 
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distributions from Top8000. The resulting hydrogen bonding energy is evaluated for all pairs of donor 
hydrogens, H, and acceptors, A, as a function of four degrees of freedom (Fig. 3A): (1) the distance 
between the donor and acceptor, 𝑑�� (2) the angle formed by the donor, acceptor, and donor-heavy atom, 
𝜃��� (3) the angle formed by the acceptor’s parent atom (“base”) B, acceptor, and the donor, 𝜃��� and 
(4) the torsion, 𝜙�u���, formed by the donor, acceptor, and two subsequent parent atoms B and B2.  (Fig. 
3A). B, the parent atom of A, is the first atom on the shortest path to the root atom (e.g. Cα). The B2 atom 
of A is the parent atom of B (e.g., the sp2 plane is defined by B2, B, and A) 
 

 
Figure 3: Orientation-dependent hydrogen bonding model 
(A) Degrees of freedom evaluated by the hydrogen bonding term: acceptor—donor distance, 𝑑��, angle between the 
base, acceptor and hydrogen 𝜃���, angle between the acceptor, hydrogen, and donor, 𝜃���, and dihedral angle 
corresponding to rotation around the base—acceptor bond, 𝜙�u���. (B) Lambert-azimuthal projection of the 𝐸hbond

�u��� 
energy landscape for an sp2 hybridized acceptor.48 (C) 𝐸hbond

�u��� energy landscape for an sp3 hybridized acceptor. Example 
energies for the histidine imidazole ring acceptor hydrogen bonding with a protein backbone amide: (D) energy vs. the 
acceptor—donor distance, 𝐸hbond��  (E) energy vs. the acceptor-hydrogen-donor angle, 𝐸hbond���  (F) energy vs. the base-
acceptor—hydrogen angle, 𝐸hbond��� . 
 
To avoid over-counting, side-chain to backbone hydrogen bonds are excluded if the backbone group is 
already involved in a hydrogen bond. For speed, the component terms have simple analytic functional 
forms (Fig. 3B-F; Supporting Information Eq. S1-7). The term is also multiplied by two atom-type 
specific weights, 𝑤� and 𝑤�, that account for the varying strength of hydrogen bonds. The overall model 
is given by Eq. 21 where the 𝐸hbond

�u��� term depends on the orbital hybridization of the acceptor, 𝜌. Finally, 
the function is also smoothed with 𝑓(𝑥) (Eq. 22) to avoid derivative discontinuities and ensure that edge-
case hydrogen bonds are considered. 
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𝐸hbond = 𝑤�𝑤�𝑓 	𝐸hbond�� 𝑑�� + 𝐸hbond��� 𝜃��� + 𝐸hbond��� (𝜃���) + 𝐸hbond

�u��� 𝜌, 𝜙�u���	, 𝜃��� 	�,�  
(21) 

𝑓 𝑥 = 	
𝑥 𝑥 < −0.1

−0.025 + z
C
+ 2.5𝑥C	 −0.1	 ≤ 𝑥 < 0.1

0 0.1 ≤ 𝑥
  (22) 

 
Disulfide bonding. Disulfide bonds are covalent interactions that link sulfur atoms in cysteine residues. 
Typically, in Rosetta, we rely on a tree-based kinematic system78,79 to keep bond lengths and angles fixed 
so that we may sample conformation space changing only torsions. For this reason, we do not generally 
need terms that evaluate bond-length and bond-angle energetics. However, with disulfide bonds and 
proline (below), the extra bonds cannot be represented with a tree (since a tree graph is acyclic), and thus 
must be treated explicitly. Thus, disulfide bonds are a special case of inter-residue covalent contact that 
requires a representation with more degrees of freedom. To evaluate disulfide bonding interactions, 
Rosetta identifies pairs of cysteines that have covalent bonds linking the Sγ atoms. Then, Rosetta computes 
the energy of these interactions using an orientation-dependent model called dslf_fa13.48 The model 
was derived by curating intra-protein disulfide bonds from Top8000 and identifying features using kernel 
density estimates. For speed, the feature distributions are modeled using skewed Gaussian functions and 
a mixture of 1, 2, and 3, von Mises functions (Supporting Information Eq. S8-11).  
 
The overall disulfide energy is computed as a function of six degrees of freedom (Fig. 4) that map to four 
component energies. First, the geometry of the sulfur-sulfur distance 𝑑�� is evaluated by 𝐸dslf�� 𝑑 . Second, 
the angle formed by either 𝐶�B or 𝐶�C with S-S bond is evaluated by 𝐸dslfq�� 𝜃 . Third, the dihedral formed 
by either  𝐶�B𝐶�B or 𝐶�C𝐶�C with the S-S bond is evaluated by 𝐸dslf

q q¡�� 𝜙 . Finally, the dihedral formed 
by 𝐶�B, 𝐶�C and the S-S bond is evaluated by 𝐸dslf

q¡��q¡(𝜙). The complete disulfide bonding energy 
evaluated for all S-S pairs is given by Eq. 23.  
 

𝐸dslf_fa13 = 𝐸dslf�� 𝑑�� + 𝐸dslfq�� 𝜃q¡¢��	 + 	𝐸dslf
q�� 𝜃q¡u��	 + 𝐸dslf

q q¡�� 𝜙q ¢q¡¢�� 	+�¢,�u

	𝐸dslf
q q¡�� 𝜙q uq¡u�� + 𝐸dslf

q¡��q¡(	𝜙q¡¢��q¡u)  (23) 
 

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/106054doi: bioRxiv preprint first posted online Feb. 7, 2017; 

http://dx.doi.org/10.1101/106054
http://creativecommons.org/licenses/by-nc/4.0/


 14 

 
Figure 4: Orientation-dependent disulfide bonding model 
(A) Degrees of freedom evaluated by the disulfide bonding energy: sulfur—sulfur distance, 𝑑££, angle between the 𝛽-
carbon and two sulfur atoms, 𝜃q��, dihedral corresponding to rotation about the 𝛼-Carbon and sulfur bond	𝜙q q¡��, and 

dihedral corresponding to rotation about the S—S bond	𝜙��. (B) 𝐸dslf��  (C)	𝐸dslfq�� (D) 𝐸dslf
q q¡�� (E)	𝐸dslf

q¡��q¡. 
 
Terms for Protein Backbone and Side Chain Torsions  
 
Rosetta evaluates backbone and side-chain conformations in torsion space to greatly reduce the search 
domain and increase computational efficiency. Traditional molecular mechanics force fields describe 
torsional energies in terms of sines and cosines which have at times performed poorly at reproducing the 
observed backbone-dihedral distributions in unstructured regions.80 Instead, Rosetta uses several 
knowledge-based terms for torsion angles that are fast approximations of quantum effects and more 
accurately model the preferred conformations of protein backbones and side-chains.  
 
Ramachandran. To evaluate backbone 𝜙 and 𝜓	angles, we defined an energy term called rama_prepro 
based on Ramachandran maps for each amino acid, using torsions from 3,985 protein chains with a 
resolution ≤ 1.8 Å, R-factor ≤ 0.22 and sequence identity ≤ 50%.81 Amino acids with low electron density 
(in the bottom 25th percentile of each residue type) were removed from the data set. The resulting ~581,000 
residues were used in adaptive kernel density estimates51 of Ramachandran maps with a grid step of 10˚ 
for both 𝜙 and 𝜓. Residues preceding proline are also treated separately because they exhibit distinct 𝜙,𝜓 
preferences due to steric interactions with the proline’s Cδ.82 The energy, called rama_prepro, is then 
computed by converting the probabilities to energies at the grid points via the inverted Boltzmann 
relation83 (Eq. 24; Fig 5). The energies are then evaluated using bicubic interpolation. The Supporting 
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Information includes a detailed discussion of why interpolation is performed on the backbone torsional 
energies rather than the probabilities (Fig. S3, Eqs. S12-13).  
 

𝐸rama_pre_pro =
− ln 𝑃reg(𝜙', 𝜓'|aa') C-terminus	or	𝑖+1	is	not	a	proline
− ln 𝑃prepro(𝜙', 𝜓'|aa') 𝑖+1	is	a	proline' 	  (24) 

 

 
Figure 5: Backbone torsion energies 
The backbone-dependent torsion energies are demonstrated for the lysine residue. (A) The 𝜙 angle is defined by the 
backbone atoms 𝐶'�B − 𝑁 − 𝐶� − 𝐶 and the 𝜓 angle is defined by 𝑁 − 𝐶� − 𝐶 − 𝑁'ªB. (B) rama_prepro energy of 
lysine without a proline at 𝑖+1. (C) rama_prepro energy of lysine with a proline at i+1. (D) p_aa_pp energy of 
lysine.  
 
Backbone design term. Rosetta also computes the likelihood of placing a specific amino acid side chain 
given an existing 𝜙,𝜓 backbone conformation. This term, called p_aa_pp represents the propensity of 
observing an amino acid relative to the other 19 canonical amino acids.84 The knowledge-based 
propensity, 𝑃 aa 𝜙, 𝜓  (Eq. 25) was derived using the adaptive kernel density estimates for 𝑃(𝜙, 𝜓|aa) 
and Bayes’ rule. The equation for p_aa_pp is given in Eq. 26 (Fig. 5D). 
  

𝑃 aa 𝜙, 𝜓 = « 𝜙,𝜓 aa « aa

« 𝜙, 𝜓 aa¬ «(aa¬)aa­
 (25) 

 
𝐸p_aa_pp = − ln « aa® 𝜙®, 𝜓®

« aa¯®  (26) 
 

Side-chain conformations. Protein side chains mostly occupy discrete conformations (rotamers) 
separated by large energy barriers. To evaluate rotamer conformations, Rosetta derives probabilities from 
the 2010 backbone-dependent rotamer library (dunbrack.fccc.edu/bbdep2010), which contains the 
frequencies, means, and standard deviations of individual 𝜒 angles for each 𝜒 angle 𝑘 of each rotamer of 
each amino acid type.51 The probability has three components: (1) observing a specific rotamer given the 
backbone dihedral angles (2) observing specific 𝜒 angles given the rotamer and (3) observing the terminal 
χ angle distribution, which is either Gaussian-like or continuous when the terminal 𝜒 angle is sp2 
hybridized (Eq. 27). Here, 𝑇 represents the number of rotameric 𝜒 angles + 1.  
 

𝑃 𝜒 𝜙,𝜓,aa =	𝑃 rot 𝜙, 𝜓,aa 𝑃(𝜒�|𝜙, 𝜓,rot,aa)�±² 𝑃(𝜒²|𝜙, 𝜓,rot,aa) (27) 
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The 2010 rotamer library distinguishes between rotameric and non-rotameric torsions. A torsion is 
rotameric when the third of the four atoms defining the torsion is sp3 hybridized (i.e. preferring ~60°, 
~180° and ~-60°, with steep energy barriers between the wells), If the last 𝜒 torsion is rotameric, 
probability 𝑝 𝜒² 𝜙, 𝜓,rot,aa  is fixed at one. On the other hand, a torsion is non-rotameric its third atom 
is sp2 hybridized: the library describes its probability distribution continuously, instead. The category of 
semi-rotameric amino acids with both rotameric and non-rotameric dihedrals encompasses eight amino 
acids: Asp, Asn, Gln, Glu, His, Phe, Tyr, and Trp.85 
 
The probability of each rotamer 𝑃 rot 𝜙, 𝜓, aa  is derived from the same dataset as the Ramachandran 
maps described above. The probabilities were identified using adaptive kernel density estimation and the 
same dataset is used to estimate the mean and standard deviation for each 𝜒 dihedral in the rotamer, and 
𝜇µ¶ and 𝜎µ¶, as functions of the backbone dihedrals, allowing us to compute a probability for the 𝜒 values 
using Eq. 28. 
 

𝑃(𝜒�|𝜙�, 𝜓�,rot)=	exp	 −
B
C

µ¶�·¸¶ ¹,º rot,aa)

>¸¶ ¹,º rot,aa)

C
 (28) 

 
This formulation is reminiscent of the Gaussian distribution, except that it is missing the normalization 
coefficient of 2𝜋𝜎µ¶ 𝜙, 𝜓 rot,aa) �B C

. After taking the log of this probability, the term resembles 
Hooke’s law where the spring constant is given by 𝜎µ¶

�C 𝜙, 𝜓 rot,aa). 
 
The full form of fa_dun is given by Eq. 29 as a sum over all residues r. The difference between the 
rotameric- and semi-rotameric models is also shown in Fig. 6.  
 

𝐸fa_dun= − ln 𝑃 rot® 𝜙®, 𝜓®, aa® + B
C

µ¶,¯�·¸¶ ¹¯,º¯ ¼a½¯,¾¾¯)

>¸¶ ¹¯,º¯ rot¯,¾¾¯)

C

�±²̄ +®

− ln 𝑃 𝜒²̄ ,® 𝜙®, 𝜓®, rot®, aa®   (29) 
 

The energy from − ln 𝑃 rot® 𝜙®, 𝜓®, aa®  is computed using bicubic-spline interpolation; 
𝑃 𝜒²̄ ,® 𝜙®, 𝜓®, rot®, aa®  is computed using tricubic-spline interpolation. To save memory, 
𝜇µ¶ 𝜙®, 𝜓® rot®, aa®), and 𝜎µ¶ 𝜙®, 𝜓® rot®, aa®) are computed using bilinear interpolation, though this 
has the effect of producing derivative discontinuities at the (𝜙,𝜓) grid boundaries. These discontinuities, 
however, do not appear to produce noticeable artifacts.50 
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Figure 6: Energies for side-chain rotamer conformations 
The Dunbrack rotamer energy, fa_dun, is dependent on both the 𝜙 and 𝜓 backbone torsions and the 𝜒 side-chain 
torsions. Here, we demonstrate the variation of fa_dun when the backbone is fixed in an α-helical conformation with 
𝜙 = -57˚ and 𝜓 = -47˚, and the 𝜒 values can vary. 𝜒B is shown in blue, 𝜒C shown in red and 𝜒3 shown in green. (A) 𝜒-
dependent Dunbrack energy of methionine with an sp3-hybridized terminus (B) 𝜒-dependent energy of glutamine with 
an sp2-hybridized 𝜒3 terminus. 𝜒B, 𝜒C and 𝜒3 of methionine and 𝜒B and 𝜒C of glutamine express rotameric behavior while 
𝜒3 of the latter expresses broad non-rotameric behavior. 
 
Terms for special case torsions 
 
Peptide bond dihedral angles, 𝜔, remain mostly fixed in a cis- or trans- conformation and depend on 
the backbone f and y angles. Since the electron pair on the backbone nitrogen donates electron density to 
the electrophilic carbonyl carbon, the peptide bond has partial double bond character. To model this barrier 
to rotation, Rosetta implements a backbone-dependent harmonic penalty centered near 0° for cis and 180° 
for trans (Fig. 7A). This energy, called omega, is evaluated on all peptide bonds in the biomolecule (Eq. 
30). The means and standard derivations of w, 𝜇¿and 𝜎¿, respectively, are backbone (f,y) dependent, as 
given by kernel regressions of w on f and y.70 
  

𝐸omega = ln B
F C�

	 − ln B
>À ¹¯,º¯ aa¯) C�

+	 ¿¯�·À ¹¯,º¯ aa¯) u

C>Àu ¹¯,º¯ aa¯)
	®  (30) 

 

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/106054doi: bioRxiv preprint first posted online Feb. 7, 2017; 

http://dx.doi.org/10.1101/106054
http://creativecommons.org/licenses/by-nc/4.0/


 18 

 
Figure 7: Special case torsion energies 
Rosetta implements three additional energy terms to model torsional degrees of freedom with acute preferences. 
(A) Omega torsion corresponding to rotation about C-N (B) Proline secondary omega torsion corresponding to 
rotation about C-N related to the C-𝛿 in the ring. (C) Tyrosine terminal 𝜒 torsion. (D) Omega energy (E) Proline 
closure energy (F) Tyrosine planarity energy.  
 
Most Rosetta protocols only search over simple torsions within chains and rigid-body degrees of freedom 
between chains. However, proline’s side chain requires special treatment because its ring cannot be 
represented by a kinematic tree.86 Therefore, Rosetta implements a proline closure term, called 
pro_close (Fig. 7B). There are two components to this energy, shown in Eq. 31. First, there is a 
torsional potential that operates on the dihedral formed by Or-1–Cr-1–Nr–Cδ,r, called 𝜔®¬  given the observed 
mean 𝜇¿­ and standard deviation 𝜎¿¬, where i is the residue index. This term keeps the Cδ atom in the 
peptide plane. Second, to ensure correct geometry for the two hydrogens bound to Cδ, we build a virtual 
atom, Nv, off Cδ whose coordinate is controlled by 𝜒3 (Fig. 7B). The pro_close term seeks to align the 
virtual Nv atom, directly on top of the real backbone nitrogen. The N–Cδ–Cγ  bond angle and the N–Cδ 
bond length are restrained to their ideal values. 
 

𝐸pro_close =

¿¯­�·À­	
u

>À­
u + 𝐍¯�𝐍Ã,¯

u

>N,NÃ
u 𝑟	is	not	N-terminus

𝐍¯�𝐍Ã,¯
u

>N,NÃ
u 𝑟	is	N-terminus

®∈Pro  (31) 

 
Tyrosine also requires special treatment for its 𝝌𝟑 angle because the hydroxyl hydrogen prefers to be in 
the plane of the aromatic ring.87 To enforce this preference, Rosetta implements a sinusoidal penalty to 
model the barrier to a 𝜒3 angle that deviates from planarity. This tyrosine hydroxyl penalty is called 
yhh_planarity (Eq. 32; Fig. 7C). 
 

𝐸yhh_planarity =
B
C
cos 𝜋 − 2𝜒3,' + 1'  (32) 
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Terms for modeling non-ideal bond lengths and angles 
 
Cartesian bonding energy. Recently, modeling Cartesian degrees of freedom during gradient-based 
minimization has been shown to improve Rosetta’s ability to refine low-resolution structures determined 
by X-ray crystallography and cryo-electron microscopy,52 as well as its ability to discriminate near-native 
conformations in the absence of experimental data.88 These data suggest that capturing non-ideal bond 
lengths and angles can be important for accurate modeling of minimum-energy protein conformations. To 
accommodate, Rosetta now allows these “non-ideal” angles and lengths to be included as additional 
degrees of freedom in refinement and includes a Cartesian-minimization mode where atom coordinates 
are explicit degrees of freedom in optimization.  
 
To evaluate the energetics of non-ideal bond lengths, angles and planar groups, an energy term called 
cart_bonded represents the deviation of these degrees of freedom from ideal using harmonic potentials 
(Eq. 32-34). Here, 𝑑' is a bonded-atom-pair distance with 𝑑',o as its ideal distance, 𝜃' is a bond angle with 
𝜃',o as its ideal angle, and 𝜙' is a bond torsion or improper torsion with 𝜙',o as its ideal value and 𝜌' as its 
periodicity. The ideal bond lengths and angles89,90 were selected based on their ability to rebuild side 
chains observed in crystal structures (Kevin Karplus & James J. Havranek, unpublished); they were 
subsequently modified empirically.50  The spring constants for the angle and length terms are from 
CHARMM32.19  Finally, all planar groups and the Cβ “pseudo-torsion” are constrained using empirically 
derived values and spring constants: 
 

𝐸cart_length =
B
C

𝑘',length(𝑑' − 𝑑',o)CÇ
'ÈB 		 (33) 

 
𝐸cart_angle =

B
C

𝑘',angle(𝜃' − 𝜃',o)CÉ
'ÈB   (34) 

 

𝐸cart_torsion =
B
C

𝑘',torsion 𝑓wrap 𝜙' − 𝜙',o,
C�
Ê?

C
Ë
'ÈB   (35) 

 
The function 𝑓wrap(𝑥, 𝑦) wraps 𝑥 to the range [0, 𝑦). To avoid double counting in the case of 𝐸cart_torsion, 
the spring constant 𝑘',torsion is zero when the torsion 𝜙' is being scored by either the rama or fa_dun 
terms. 
 
Terms for Protein Design 
 
Design reference energy. The terms above are sufficient for comparing different protein conformations 
with a fixed sequence. However, protein design simulations compare the relative stability of different 
amino acid sequences given a desired structure to identify models that exhibit a large free energy gap 
between the folded and unfolded states. Explicit calculations of unfolded state free energies are 
computationally expensive and error prone. Rosetta therefore approximates the relative energies of the 
unfolded state ensembles using an unfolded state reference energy, called ref. 
 
Rosetta calculates the reference energy as a sum of individual constant unfolded state reference 
energies,	∆𝐺'ref, for each amino acid, aai (Eq. 36).1  
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𝐸ref = ∆𝐺'ref(aa')'  (36) 
 

The ∆𝐺'ref values are empirically optimized by searching for values that maximize native sequence 
recovery (discussed below) during design simulations on a large set of high-resolution crystal 
structures.49,50 During design, this energy term helps normalize the observed frequencies of the different 
amino acids. When design is turned off, the term contributes a constant offset for a fixed sequence. 
 
Bringing the energy terms together 
 
The Rosetta energy function combines all the terms using a weighted linear sum to approximate free 
energies (Table 1). Historically, we adjust the weights and parameters to balance the energetic 
contribution from each term. This balance is important because the van der Waals, solvation, and 
electrostatics energies partially capture torsional preferences and overlap can cause errors as a result of 
double counting atomic or residue specific contributions.91 More recently, we fix physics-based terms 
with weights of 1.0 and perturb other weights and atomic-level parameters using a Nelder-Mead92 scheme 
to optimize agreement of Rosetta calculations with small-molecule thermodynamic data and high-
resolutions structural features.49 The energy function parameters have evolved over the years by 
optimizing the performance of multiple scientific benchmarks (Table 2).49,50,93 These benchmarks were 
chosen to test recovery of native-like structural features, ranging from individual hydrogen bond 
geometries to thermodynamic properties and interface conformations.  In addition, and more recently, 
Song et al.,94 Conway et al.95 and O’Meara et al.46 have fit intra-term parameters to recover features of 
the experimentally determined folded conformations. An in-depth review of energy function 
benchmarking can be found in Leaver-Fay et al.96 Table S3 lists the Rosetta database files containing the 
current full set of physical parameters for each score term. 
 
Energy Function Units 
 
Initially, Rosetta energies were expressed in a generic unit, called the Rosetta Energy Unit (REU). This 
choice was made because some original terms of Rosetta energy were not in kcal/mol, and the use of 
statistical potentials convoluted interpretation of the energy. Over time, the physical meaning of Rosetta 
energies has been extensively debated within and outside the community, and several steps have been 
taken to clarify interpretation. The current energy function (beta_nov15) was parameterized on small 
molecule thermodynamic data and high-resolution protein structures in units of kcal/mol.49 The 
optimization data show a strong correlation (R = 0.994) between the experimental data and values 
predicted by Rosetta (ΔΔG upon mutation, small molecule ΔHvap; Fig. S2); therefore, as is standard 
practice for molecular force fields such as OPLS, CHARMM, and AMBER, we now express energies in 
kcal/mol.  
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Table 2: Common energy function benchmarking methods  

Test Description Ref.  

Sequence Recovery Percentage of the native sequence recovered after backbone redesign [1,50] 

Rotamer Recovery Percentage of native rotamers recovered after full repacking [50] 

∆∆G Prediction Prediction of free energy changes upon mutation [97] 

Loop Modeling Prediction of loop conformations [98] 

High-resolution 
refinement 

Discrimination of native-like decoys upon refinement of ab initio 
protein models 

[99] 

Docking Prediction of protein-protein interfaces [100,101] 

Homology Modeling Structure prediction incorporating homologous information from 
templates 

[102] 

Thermodynamic 
properties 

Recapitulation of thermodynamic properties of protein side-chain 
analogues 

[17] 

Recapitulation of Xtal 
structure geometries 

Recapitulation of features (e.g. atom-pair distance distribution) from 
high-resolution protein crystal structures 

[49] 

 
Energies in action: Using individual energy terms to analyze Rosetta models 
 
Rosetta energy terms are mathematical models of the physics that governs protein structure, stability, and 
association. Therefore, the decomposed relative energies of a structure or ensemble of structures can 
expose important details about the biomolecular model. Now that we have presented the details of each 
energy term, we here demonstrate how energies can be applied to detailed interpretations of structural 
models. In this section, we discuss two common structure calculations: (1) estimating the free energy 
change (∆∆G) of mutation97 and (2) modeling the structure of a protein-protein interface.101  
 
∆∆G of mutation. The first example demonstrates how Rosetta can be used to estimate and rationalize 
thermodynamic parameters. Here, we present an example ∆∆G of mutation calculation for the T193V 
mutation in the RT-RH derived peptide bound to HIV-1 protease (PDB 1kjg, Fig. 8A).103 The details of 
this calculation are provided in the Supporting Information.  
 
Rosetta calculates the ∆∆G of the T193V mutation to be -4.95 kcal/mol, and the experiment103 measured 
-1.11 kcal/mol. Both the experiment and calculation reveal that T193V is stabilizing: yet, these numbers 
alone do not reveal which specific interactions are responsible for the stabilization. To investigate, we 
used various analysis tools accessible in PyRosetta104 to identify important energetic contributions to the 
total ∆∆G. First, we decomposed the ∆∆G into individual energy terms and observe the balance of terms, 
both favorable and unfavorable, that sum to the total (Fig. 8B). To decompose the most favorable term, 
∆fa_sol, we used the print_residue_pair_energies function to identify residues that interact 
with the mutation site (in this case, residue 4) to produce a nonzero residue pair solvation energy. With 
the resulting table, we found a hydrophobic pocket around the mutation site formed by residues V27, I45, 
G46, and I80 on HIV peptidase and residue F194 on the peptide made a large (> 0.05 kcal/mol) and 
favorable contribution to the change in solvation energy (Fig. 8C).  
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Figure 8: Structural model of the HIV-1 protease bound to the T4V mutant RT-RH derived peptide 
(A) Structural model of the native HIV-1 peptidase (teal and dark blue), bound to the native peptide (gray) superimposed 
onto the T4V mutant peptide (magenta). (B) Contributions greater than + 0.1 kcal/mol to the ∆∆G of mutation for T4V. 
The remaining contributions are: dslf_fa13 = 0 kcal/mol, hbond_lr_bb = -0.09 kcal/mol, hbond_bb_sc = -0.05, 
hbond_sc = -0.0104, fa_intra_rep = 0.01, fa_intra_sol = -0.07, and yhh_planarity = 0. (C) 
Hydrophobic patch of residues surrounding position four on the RT-RH peptide.  
 
We further investigated this result on the atomic level with the function 
print_atom_pair_energy_table by generating atom-pair energy tables (Supporting Information) 
for residues 5, 27, 45, 46, and 80 against both threonine and valine at residue 193 (Example for residue 
80 in Table 3). Here, we find that the specific substitution of the polar hydroxyl on threonine with nonpolar 
alkyl group on valine stabilizes the peptide in the hydrophobic protease pocket. This result is consistent 
with chemical intuition and demonstrates how breaking down the total energies can provide insight into 
characteristics of the mutated structures.  
 
Table 3: Change in atom pair energies between I80 and T4 versus V4 in kcal/mol 

T193→V193 
Atoms 

I80 Atoms 
 CB   CG1  CG2  CD1 

 N   0.000 0.000 0.000 0.000 
 CA  0.000 0.000 0.000 0.004 
 C   0.000 0.000 0.000 0.008 
 O   0.000 0.000 0.000 -0.010 
 CB  0.000 0.054 0.000 -0.002 
OG1 → CG1 0.008 -0.054 -0.316 -0.398 
CG2 → CG2' 0.000 0.000 0.001 0.020 

 
Protein-protein docking. The second example shows how the Rosetta energies of an ensemble of models 
can be used to discriminate between models and investigate the characteristics of a protein–protein 
interface. Below, we investigate docked models of West Nile Virus envelope protein and a neutralizing 
antibody (PDB 1ztx; Fig. 9A).105 Calculation details can be found in the Supporting Information.  
 
To evaluate the docked models, we examine the variation of energies as a function of the root mean 
squared deviation (RMS) between the residues at the interface in each model and the known structure. For 
our calculation, interface residues are residues with a Cβ atom less than 8.0 Å away from the Cβ of a 
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residue in the other docking partner. The plot of energies against RMS values is called a funnel plot and 
is intended to mimic the funnel-like energy landscape of protein folding and binding.  
 
Like the previous example, we decompose the energies to yield information about the nature of 
interactions at the interface. Here, we observed significant changes in the following energy terms upon 
interface formation relative to the unbound state: fa_atr, fa_rep, fa_sol, lk_ball_wtd, fa_elec, 
hbond_lr_bb, hbond_bb_sc, and hbond_sc (Fig. 9B). Change in the Lennard-Jones energy upon 
interface formation is due to the introduction of atom-atom contacts at the interface. As more atoms come 
into contact near the native conformation (RMS→0), the favorable, attractive energy (fa_atr) decreases 
whereas the unfavorable, repulsive energy (Δfa_rep) increases. Change in the isotropic solvation energy 
(fa_sol) is positive (unfavorable), indicating that upon interface formation, polar residues are buried. 
Balancing the desolvation penalty, the change in polar solvation energy (lk_ball_wtd) and electrostatics 
(fa_elec) is negative due to polar contacts forming at the interface. Finally, the three hydrogen bonding 
energies (hbond_lr_bb, hbond_bb_sc, and hbond_sc) reflect the formation of backbone–backbone, 
backbone–side-chain, and side-chain–side-chain hydrogen bonds at the interface. 
 

 
Figure 9: Using energies to discriminate docked models of West Nile Virus and the E16 neutralizing 
antibody 
(A) Comparison of the native E16 antibody (purple) docked to the lowest RMS model of the West Nile Virus envelope 
protein and several other random models of varying energy to show sampling diversity (gray, semi transparent). (B) 
Change in the interface energy relative to the unbound state versus RMS to native. Models at low RMS to the native 
interface have a low overall interface energy due to favorable van der Waals contacts, electrostatic interactions, and side-
chain hydrogen bonds, as reflected by the Δfa_atr, Δfa_elec, and Δhbond_sc energy terms. 
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Discussion 
 
The Rosetta energy function represents our collaboration’s ongoing pursuit to model the rules in nature 
that govern biomolecular structure, stability, and association. This paper summarizes the latest version 
which brings together fundamental physical theories, statistical mechanical models, and observations of 
protein structures. This work represents almost 20 years of interdisciplinary collaboration in the Rosetta 
community, which in turn builds on and incorporates decades of work outside the community. 
 
After 20 years, we have improved physical theories, structural data, representations, experiments, and 
computational tools; yet, energy functions are far from perfect. Compared to the first torsional potentials, 
energy functions are also now vastly more complex. There are countless ways to arrive at more accurate 
energy functions. Here, we discuss grand challenges specific to development of the Rosetta energy 
function in the coming decade.  
 
Modeling biomolecules other than proteins 
 
The Rosetta energy function was originally developed to predict and design protein structures.  A clear 
artifact of this goal is the energy function’s dependence on statistical potentials derived from protein X-
ray crystal structures. Today, the Rosetta community also pursues goals ranging from design of synthetic 
macromolecules to predicting interactions and structures of other biomolecules such as glycoproteins and 
RNA. Accordingly, an active research thrust is to generalize the all-atom energy function for all 
biomolecules.  
 
Many of the physically-derived terms (e.g. van der Waals) have already been made compatible with non-
canonical amino acids and non-protein biomolecules (Table S5). Recently, Bhardwaj, Mulligan & Bahl 
et al.67 adapted the rama_prepro, p_aa_pp, fa_dun, pro_close, omega, dslf_fa13, 
yhh_planarity and ref terms to be compatible with mixed-chirality peptides. Several of Rosetta’s 
statistical potentials are validated against quantum mechanical calculations for evaluating for non-protein 
models (Table 4). The first non-protein terms were added by Havranek et al.106 and Yu et al.107 who 
modified the hydrogen bonding potential to capture planar hydrogen bonds between protein side chains 
and nucleic acid bases. Renfrew et al.65,108 added molecular mechanics torsions and Lennard-Jones terms 
to model proteins with non-canonical amino acids, oligosaccharides, 𝛽-peptides, and oligo-peptoids.66 
Labonte et al 68 implemented Woods’ CarboHydrate-Intrinsic (CHI) function109,110  which evaluates 
glycan geometries given the axial-equatorial character of the bonds.  In addition, Das et al. added a set of 
terms to model Watson-Crick base pairing, 𝜋-	𝜋 interactions in base stacking, and torsional potentials 
important for predicting and designing RNA structures.61,111–113 These terms are presented in detail in the 
Supporting Information.  
 
Expanding Rosetta’s chemical library brings new challenges. Currently, there are separate energy 
functions for various types of biomolecules. Typically, these functions mix physically-derived terms from 
the protein energy function with molecule-specific statistical potentials, custom weights, and possibly 
custom atomic parameters. If nature only uses one energy function, why do we need so many? Some 
discrepancies may result from features that we do not model explicitly, such as 𝜋-𝜋, n-𝜋∗ and cation-𝜋 
interactions. Efforts to converge on a single energy function will therefore pose interesting questions about 
the set of universal physical determinants of biomolecular structure.  
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Table 4: New energy terms for biomolecules other than proteins 
Biomolecule Term Description Unit Ref.  

Non-Canonical 
Amino Acids 

mm_lj_intra_rep 
 

Repulsive van der Waals energy 
between two atoms from the same 
residue 

kcal/mol [65] 

mm_lj_intra_atr 
Attractive van der Waals energy 
between two atoms from the same 
residue 

kcal/mol [65] 

mm_twist 
Molecular mechanics derived torsion 
term for all proper torsions 

kcal/mole [65] 

unfolded 
Energy of the unfolded state based on 
explicit unfolded state model 

AU* [65] 

split_unfolded_1b 

One-body component of the two-
component reference energy, lowest 
energy of a side chain in a dipeptide 
model system 

AU In SI 

split_unfolded_2b 

Two-body component of the two-
component reference energy, median 
two-body interaction energy based on 
atom type composition 

AU In SI 

Carbohydrates sugar_bb Energy for carbohydrate torsions kcal/mol [68] 

DNA gb_elec Generalized Born model of the 
electrostatics energy 

kcal/mol [106] 

RNA 

fa_stack π-π stacking energy for RNA bases kT [112] 

stack_elec Electrostatic energy for stacked RNA 
bases 

kT [113] 

fa_elec_rna_phos 
Electrostatic energy (fa_elec) between 
RNA phosphate atoms 

kT [61] 

rna_torsion Knowledge-based torsional potential 
for RNA 

kT [61] 

rna_sugar_close Penalty for opening an RNA sugar kT [61] 
* AU, arbitrary units 
 
Capturing the intra- and extra-cellular environment 
 
Rosetta traditionally models the solvent surrounding the protein using the Lazaridis-Karplus (LK) model, 
which assumes a solvent environment made of pure water. In contrast, biology operates under various 
conditions influenced by pH, redox potential, temperature, solvent viscosity, chaotropes, kosmotropes, 
and polarizability. Therefore, modeling more details of the intra- and extra-cellular environment would 
enable Rosetta to identify structures important in different biological contexts. 
 
Currently, Rosetta includes two groups of energy terms to model alternate environments (Table 5). 
Kilambi et al.59,114 implemented a method to account for alternate protonation states due to pH changes. 
In addition, Rosetta implements Lazaridis’ Implicit Membrane Model for modeling proteins in a lipid 
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bilayer environment.36,60,115,116 While these improve structure prediction accuracy, both models require 
more computation time. This trade-off between the need for detail and computational complexity will be 
evaluated as Rosetta aims to model more complicated biological systems and contexts.   
 
Table 5: Energy terms for structure prediction in different contexts 
Context Term Description Unit Ref.  

Membrane 
Environment 

fa_mpsolv 
 

Solvation energy dependent on the 
protein orientation relative to the 
membrane 

kcal/mol [115,1
17] 

fa_mpenv 
One-body membrane environment 
energy dependent on the protein 
orientation relative to the membrane 

kcal/mol [115,1
17] 

pH e_pH 
Likelihood of side chain protonation 
given a user-specified pH 

kcal/mol [114] 

 
The origin of energy models: top-down versus bottom-up development 
 
Traditionally, energy functions are developed using a bottom-up approach: experimental observables 
serve as building blocks to parameterize physics-based formulas. The advent of powerful optimization 
techniques and artificial intelligence recently empowered the top-down category where numerical 
methods are used to derive models and/or parameters. Top-down approaches have been used to solve 
problems in various fields including structural biology and bioinformatics. Recently, top-down 
development was also applied to optimizing the Lennard-Jones, Lazaridis-Karplus, and Coulomb 
parameters in the Rosetta energy function (parameters in Table S4-S6).49,92  
 
Top-down approaches have enormous potential to improve the accuracy of biomolecular modeling 
because more parameters can vary and the objective function can be minimized with more benchmarks. 
These approaches also introduce new challenges. With any computer-derived models, there is a risk of 
over-fitting as validation via structure prediction datasets reflect observable states, whereas simulations 
are intended to predict features of states that experiments cannot yet observe. Computer-derived 
parameters also introduce a unique kind of uncertainty. Consider the following scenario: the performance 
of scientific benchmarks improves as physical atomic parameters are perturbed away from the measured 
experimental values. As there is less physical-basis for parameters, are the predictions and interpretations 
still meaningful?  
 
Top-down development will also provide power to develop more complicated energy functions. Currently, 
the Rosetta energy function advances by incrementally addressing weaknesses: with each new paper, we 
modify analytic formulas, add corrective terms, and adjust weights. As this paper demonstrates, the energy 
function is significantly more complicated than the initial theoretical forms. Given this complexity 
increase, an interesting approach to leverage the power of top-down development would be to simplify 
and subtract terms to evaluate individual benefits.  
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A highly interdisciplinary endeavor 
 
The Rosetta energy function has advanced rapidly due to the Rosetta Community: a highly-
interdisciplinary collaboration between scientists with diverse backgrounds located in over 50 labs around 
the world. The many facets of our team enable us to probe different aspects of the energy function. For 
example, expert computer scientists and applied mathematicians have implemented algorithms to speed 
up calculations. Dedicated software engineers maintain the code and maintain a platform for scientific 
benchmark testing. Physicists and chemists develop new energy terms that better model the physical rules 
found in nature. Structural biologists maintain a focus on created biological features and functions. We 
look forward to leveraging this powerful interdisciplinary scientific team as we head into the next decade 
of energy function advances.   
 
Conclusion: A living energy function 
 
For the first time since 2004,47 we have documented all of the mathematical and physical details of the 
Rosetta all-atom energy function highlighting the latest upgrades to both the underlying science and the 
speed of calculations. In addition, we illustrated how the energies can be used to analyze output models 
from Rosetta simulations. These advances have enabled Rosetta’s achievements in biomolecular structure 
prediction and design over the past fifteen years. Still, the energy function is far from complete and will 
continue to evolve long after this publication. Thus, we hope this document will serve as an important 
resource for understanding the foundational physical and mathematical concepts in the energy function. 
Furthermore, we hope to encourage both current and future Rosetta developers and users to understand 
the strengths and shortcomings of the energy function as it applies to the scientific questions they are 
trying to answer.  
 
Supporting Information 
 
Supporting Information File: RosettaEnergyFunctionReview_Alford_etal_SupportingInfo.pdf  
 
Author Information 
 
Corresponding Author 
 
Jeffrey J. Gray 
Email: jgray@jhu.edu 
Department of Chemical and Biomolecular Engineering 
3400 N Charles Street 
Baltimore, Maryland 21218 United States 
 
Author Contributions 
 
Wrote the manuscript: RFA, JRJ, ALF, JJG 
Analysis Scripts and Examples: RFA, JRJ, MSP, JJG 
Expertise on protein energy terms and editing: ALF, FPD, MJO, HP, PB, MVS, RLD, BK, JJG 
Expertise and description of non-protein energy terms and editing: PDR, KK, VKM, JWL, RB 
 

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/106054doi: bioRxiv preprint first posted online Feb. 7, 2017; 

http://dx.doi.org/10.1101/106054
http://creativecommons.org/licenses/by-nc/4.0/


 28 

Funding Sources 
 
RFA is funded by a Hertz Foundation Fellowship and an NSF Graduate Research Fellowship. JRJ and 
JJG are funded by NIH GM-078221. ALF, JJG and BK are funded by NIH GM-73151. MJO is funded by 
NSF GM-114961. PDR and RB are funded by the Simons Foundation. MVS and RLD are funded by NIH 
GM-084453 and NIH GM-111819. MSP is funded by NSF BMAT 1507736. JWL is funded by NIH F32-
CA189246. KK is funded by an NSF Graduate Research Fellowship and an SGF Galiban Fellowship. DB, 
HP and VKM are funded by NIH GM-092802. TK is funded by NIH GM-110089 and GM-117189.  
 
Acknowledgements 
 
While our author list reflects main contributors to this paper, the Rosetta energy function work would not 
be possible without the collaboration of the entire Rosetta Commons: a community of scientists, engineers, 
and software developers that have worked together for almost 20 years. We thank the community for their 
continued dedication to empowering users to ask and answer interesting biological questions with Rosetta. 
We thank Sergey Lyskov for development of the benchmark server that enables continuous and 
transparent energy function testing. We also thank Morgan Nance and Henry Lessen for helpful comments 
on the manuscript.  
  

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/106054doi: bioRxiv preprint first posted online Feb. 7, 2017; 

http://dx.doi.org/10.1101/106054
http://creativecommons.org/licenses/by-nc/4.0/


 29 

References 
 
(1)  Kuhlman, B.; Baker, D. Native Protein Sequences Are close to Optimal for Their Structures. Proc. 

Natl. Acad. Sci. 2000, 97 (19), 10383–10388. 
(2)  Richardson, J. S. The Anatomy and Taxonomy of Protein Structure. Adv. Protein Chem. 1981, 34, 

167–339. 
(3)  Leaver-Fay, A.; Tyka, M.; Lewis, S. M.; Lange, O. F.; Thompson, J.; Jacak, R.; Kaufman, K. W.; 

Renfrew, P. D.; Smith, C. A.; Sheffler, W.; Davis, I. W.; Cooper, S.; Treuille, A.; Mandell, D. J.; 
Richter, F.; Ban, Y.-E. A.; Fleishman, S. J.; Corn, J. E.; Kim, D. E.; Lyskov, S.; Berrondo, M.; 
Mentzer, S.; Popović, Z.; Havranek, J. J.; Karanicolas, J.; Das, R.; Meiler, J.; Kortemme, T.; Gray, 
J. J.; Kuhlman, B.; Baker, D.; Bradley, P. Rosetta3: An Object-Oriented Software Suite for the 
Simulation and Design of Macromolecules. Methods Enzymol. 2011, Volume 487, 545–574. 

(4)  Anfinsen, C. B. Principles That Govern the Folding of Protein Chains. Science 1973, 181 (4096), 
223–230. 

(5)  Lennard-Jones, J. On the Determination of Molecular Fields I: From the Variation of Viscosity of 
a Gas with Temperature. R. Soc. London, Ser. A, Contain. Pap. a Math. Phys. Character 1924, 106, 
441–462. 

(6)  Lennard-Jones, J. On the Determination of Molecular Fields II: From the Variation of Viscosity of 
a Gas with Temperature. R. Soc. London, Ser. A, Contain. Pap. a Math. Phys. Character 1924, 106, 
464–477. 

(7)  Levitt, M.; Lifson, S. Refinement of Protein Conformations Using a Macromolecular Energy 
Minimization Procedure. J. Mol. Biol. 1969, 46 (2), 269–279. 

(8)  Urey, H. C.; Bradley, C. A. The Vibrations of Pentatonic Tetrahedral Molecules. Phys. Rev. 1931, 
38 (11), 1969–1978. 

(9)  Westheimer, F. . Calculation of the Magnitude of Steric Effects. Steric Eff. Org. Chem. 1956, 523–
555. 

(10)  Lifson, S.; Warshel, A. Consistent Force Field for Calculations of Conformations, Vibrational 
Spectra, and Enthalpies of Cycloalkane and N-Alkane Molecules. J. Chem. Phys. 1968, 49 (11), 
5116. 

(11)  Warshel, A.; Lifson, S. Consistent Force Field Calculations. II. Crystal Structures, Sublimation 
Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes. 
J. Chem. Phys. 1970, 53 (2), 582. 

(12)  Levitt, M. Energy Refinement of Hen Egg-White Lysozyme. J. Mol. Biol. 1974, 82 (3), 393–420. 
(13)  Gelin, B. R.; Karplus, M. Sidechain Torsional Potentials and Motion of Amino Acids in Porteins: 

Bovine Pancreatic Trypsin Inhibitor. Proc. Natl. Acad. Sci. U. S. A. 1975, 72 (6), 2002–2006. 
(14)  Levinthal, C.; Wodak, S. J.; Kahn, P.; Dadivanian, A. K. Hemoglobin Interaction in Sickle Cell 

Fibers. I: Theoretical Approaches to the Molecular Contacts. Proc. Natl. Acad. Sci. U. S. A. 1975, 
72 (4), 1330–1334. 

(15)  Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, 
D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field for the Simulation 
of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1996, 118 (9), 2309–2309. 

(16)  Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: A Generic Force Field for Molecular 
Simulations. J. Phys. Chem. 1990, 94 (26), 8897–8909. 

(17)  Jorgensen, W. L.; Tirado-Rives, J. The OPLS [Optimized Potentials for Liquid Simulations] 
Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and 
Crambin. J. Am. Chem. Soc. 1988, 110 (6), 1657–1666. 

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/106054doi: bioRxiv preprint first posted online Feb. 7, 2017; 

http://dx.doi.org/10.1101/106054
http://creativecommons.org/licenses/by-nc/4.0/


 30 

(18)  Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. 
CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. 
Comput. Chem. 1983, 4 (2), 187–217. 

(19)  Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.; Nilsson, L.; Petrella, R. J.; Roux, B.; Won, Y.; 
Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; 
Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; 
Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, 
H. L.; Wu, X.; Yang, W.; York, D. M.; Karplus, M. CHARMM: The Biomolecular Simulation 
Program. J. Comput. Chem. 2009, 30 (10), 1545–1614. 

(20)  Sun, H. COMPASS:  An Ab Initio Force-Field Optimized for Condensed-Phase 
ApplicationsOverview with Details on Alkane and Benzene Compounds. 1998. 

(21)  Tanaka, S.; Scheraga, H. A. Model of Protein Folding: Inclusion of Short-, Medium-, and Long-
Range Interactions. Proc. Natl. Acad. Sci. U. S. A. 1975, 72 (10), 3802–3806. 

(22)  Tanaka, S.; Scheraga, H. A. Model of Protein Folding: Incorporation of a One-Dimensional Short-
Range (Ising) Model into a Three-Dimensional Model. Proc. Natl. Acad. Sci. U. S. A. 1977, 74 (4), 
1320–1323. 

(23)  Miyazawa, S.; Jernigan, R. L. Residue-Residue Potentials with a Favorable Contact Pair Term and 
an Unfavorable High Packing Density Term, for Simulation and Threading. J. Mol. Biol. 1996, 256 
(3), 623–644. 

(24)  Wilmanns, M.; Eisenberg, D. Three-Dimensional Profiles from Residue-Pair Preferences: 
Identification of Sequences with Beta/alpha-Barrel Fold. Proc. Natl. Acad. Sci. U. S. A. 1993, 90 
(4), 1379–1383. 

(25)  Jones, D. T.; Taylor, W. R.; Thornton, J. M. A New Approach to Protein Fold Recognition. Nature 
1992, 358 (6381), 86–89. 

(26)  Bowie, J. U.; Lüthy, R.; Eisenberg, D. A Method to Identify Protein Sequences That Fold into a 
Known Three-Dimensional Structure. Science (80-. ). 1991, 253 (5016), 164–170. 

(27)  Sippl, M. J. Calculation of Conformational Ensembles from Potentials of Mean Force. An 
Approach to the Knowledge-Based Prediction of Local Structures in Globular Proteins. J. Mol. 
Biol. 1990, 213 (4), 859–883. 

(28)  Skolnick, J.; Kolinski, A. Simulations of the Folding of a Globular Protein. Science (80-. ). 1990, 
250 (4984), 1121–1125. 

(29)  Bashford, D.; Case, D. A. Generalized Born Models of Macromolecular Solvation Effects. Annu. 
Rev. Phys. Chem. 2000, 51 (1), 129–152. 

(30)  Arieh Warshel, *; Mitsunori Kato,  and; Pisliakov, A. V. Polarizable Force Fields:  History, Test 
Cases, and Prospects. 2007. 

(31)  Simons, K. T.; Kooperberg, C.; Huang, E.; Baker, D. Assembly of Protein Tertiary Structures from 
Fragments with Similar Local Sequences Using Simulated Annealing and Bayesian Scoring 
Functions. J. Mol. Biol. 1997, 268 (1), 209–225. 

(32)  Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; 
Bourne, P. E. The Protein Data Bank. Nucleic Acids Res. 2000, 28 (1), 235–242. 

(33)  Simons, K. T.; Ruczinski, I.; Kooperberg, C.; Fox, B. A.; Bystroff, C.; Baker, D. Improved 
Recognition of Native-like Protein Structures Using a Combination of Sequence-Dependent and 
Sequence-Independent Features of Proteins. Proteins 1999, 34 (1), 82–95. 

(34)  Kuhlman, B.; Baker, D. Native Protein Sequences Are close to Optimal for Their Structures. Proc. 
Natl. Acad. Sci. U. S. A. 2000, 97 (19), 10383–10388. 

(35)  Neria, E.; Fischer, S.; Karplus, M. Simulation of Activation Free Energies in Molecular Systems. 

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/106054doi: bioRxiv preprint first posted online Feb. 7, 2017; 

http://dx.doi.org/10.1101/106054
http://creativecommons.org/licenses/by-nc/4.0/


 31 

J. Chem. Phys. 1996, 105 (5), 1902. 
(36)  Lazaridis, T.; Karplus, M. Effective Energy Function for Proteins in Solution. Proteins 1999, 35 

(2), 133–152. 
(37)  Dunbrack, R. L.; Cohen, F. E.; Cohen, F. E. Bayesian Statistical Analysis of Protein Side-Chain 

Rotamer Preferences. Protein Sci. 1997, 6 (8), 1661–1681. 
(38)  Kortemme, T.; Morozov, A. V; Baker, D. An Orientation-Dependent Hydrogen Bonding Potential 

Improves Prediction of Specificity and Structure for Proteins and Protein-Protein Complexes. J. 
Mol. Biol. 2003, 326 (4), 1239–1259. 

(39)  Morozov, A. V; Kortemme, T.; Tsemekhman, K.; Baker, D. Close Agreement between the 
Orientation Dependence of Hydrogen Bonds Observed in Protein Structures and Quantum 
Mechanical Calculations. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (18), 6946–6951. 

(40)  Bradley, P.; Misura, K. M. S.; Baker, D. Toward High-Resolution de Novo Structure Prediction for 
Small Proteins. Science (80-. ). 2005, 309 (5742). 

(41)  Kortemme, T.; Baker, D. A Simple Physical Model for Binding Energy Hot Spots in Protein-
Protein Complexes. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (22), 14116–14121. 

(42)  Kortemme, T.; Kim, D. E.; Baker, D. Computational Alanine Scanning of Protein-Protein 
Interfaces. Sci. STKE 2004, 2004 (219), pl2. 

(43)  Gray, J. J.; Moughon, S.; Wang, C.; Schueler-Furman, O.; Kuhlman, B.; Rohl, C. A.; Baker, D. 
Protein-Protein Docking with Simultaneous Optimization of Rigid-Body Displacement and Side-
Chain Conformations. J. Mol. Biol. 2003, 331 (1), 281–299. 

(44)  Kortemme, T.; Joachimiak, L. A.; Bullock, A. N.; Schuler, A. D.; Stoddard, B. L.; Baker, D. 
Computational Redesign of Protein-Protein Interaction Specificity. Nat. Struct. Mol. Biol. 2004, 11 
(4), 371–379. 

(45)  Kuhlman, B.; Dantas, G.; Ireton, G. C.; Varani, G.; Stoddard, B. L.; Baker, D. Design of a Novel 
Globular Protein Fold with Atomic-Level Accuracy. Science (80-. ). 2003, 302 (5649). 

(46)  Chevalier, B. S.; Kortemme, T.; Chadsey, M. S.; Baker, D.; Monnat, R. J.; Stoddard, B. L. Design, 
Activity, and Structure of a Highly Specific Artificial Endonuclease. Mol. Cell 2002, 10 (4), 895–
905. 

(47)  Rohl, C. A.; Strauss, C. E. M.; Misura, K. M. S.; Baker, D. Protein Structure Prediction Using 
Rosetta. Methods Enzymol. 2004, 383, 66–93. 

(48)  O’Meara, M. J.; Leaver-Fay, A.; Tyka, M. D.; Stein, A.; Houlihan, K.; DiMaio, F.; Bradley, P.; 
Kortemme, T.; Baker, D.; Snoeyink, J.; Kuhlman, B. Combined Covalent-Electrostatic Model of 
Hydrogen Bonding Improves Structure Prediction with Rosetta. J. Chem. Theory Comput. 2015, 
11 (2), 609–622. 

(49)  Park, H.; Bradley, P.; Greisen, P.; Liu, Y.; Kim, D. E.; Baker, D.; DiMaio, F. Simultaneous 
Optimization of Biomolecular Energy Function on Features from Small Molecules and 
Macromolecules. J. Chem. Theory Comput. 2016. 

(50)  Leaver-Fay, A.; O’Meara, M. J.; Tyka, M.; Jacak, R.; Song, Y.; Kellogg, E. H.; Thompson, J.; 
Davis, I. W.; Pache, R. A.; Lyskov, S.; Gray, J. J.; Kortemme, T.; Richardson, J. S.; Havranek, J. 
J.; Snoeyink, J.; Baker, D.; Kuhlman, B. Scientific Benchmarks for Guiding Macromolecular 
Energy Function Improvement. Methods Enzymol. 2013, 523, 109–143. 

(51)  Shapovalov, M. V; Dunbrack, R. L. A Smoothed Backbone-Dependent Rotamer Library for 
Proteins Derived from Adaptive Kernel Density Estimates and Regressions. Structure 2011, 19 (6), 
844–858. 

(52)  DiMaio, F.; Song, Y.; Li, X.; Brunner, M. J.; Xu, C.; Conticello, V.; Egelman, E.; Marlovits, T. C.; 
Cheng, Y.; Baker, D. Atomic-Accuracy Models from 4.5-Å Cryo-Electron Microscopy Data with 

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/106054doi: bioRxiv preprint first posted online Feb. 7, 2017; 

http://dx.doi.org/10.1101/106054
http://creativecommons.org/licenses/by-nc/4.0/


 32 

Density-Guided Iterative Local Refinement. Nat. Methods 2015, 12 (4), 361–365. 
(53)  Fleishman, S. J.; Whitehead, T. A.; Ekiert, D. C.; Dreyfus, C.; Corn, J. E.; Strauch, E.-M.; Wilson, 

I. A.; Baker, D. Computational Design of Proteins Targeting the Conserved Stem Region of 
Influenza Hemagglutinin. Science (80-. ). 2011, 332 (6031), 816–821. 

(54)  Correia, B. E.; Bates, J. T.; Loomis, R. J.; Baneyx, G.; Carrico, C.; Jardine, J. G.; Rupert, P.; 
Correnti, C.; Kalyuzhniy, O.; Vittal, V.; Connell, M. J.; Stevens, E.; Schroeter, A.; Chen, M.; 
Macpherson, S.; Serra, A. M.; Adachi, Y.; Holmes, M. A.; Li, Y.; Klevit, R. E.; Graham, B. S.; 
Wyatt, R. T.; Baker, D.; Strong, R. K.; Crowe, J. E.; Johnson, P. R.; Schief, W. R. Proof of Principle 
for Epitope-Focused Vaccine Design. Nature 2014, 507 (7491), 201–206. 

(55)  Masica, D. L.; Schrier, S. B.; Specht, E. A.; Gray, J. J. De Novo Design of Peptide−Calcite 
Biomineralization Systems. J. Am. Chem. Soc. 2010, 132 (35), 12252–12262. 

(56)  King, N. P.; Bale, J. B.; Sheffler, W.; McNamara, D. E.; Gonen, S.; Gonen, T.; Yeates, T. O.; Baker, 
D. Accurate Design of Co-Assembling Multi-Component Protein Nanomaterials. Nature 2014, 510 
(7503), 103–108. 

(57)  Siegel, J. B.; Zanghellini, A.; Lovick, H. M.; Kiss, G.; Lambert, A. R.; St Clair, J. L.; Gallaher, J. 
L.; Hilvert, D.; Gelb, M. H.; Stoddard, B. L.; Houk, K. N.; Michael, F. E.; Baker, D. Computational 
Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction. Science 
2010, 329 (5989), 309–313. 

(58)  Wolf, C.; Siegel, J. B.; Tinberg, C.; Camarca, A.; Gianfrani, C.; Paski, S.; Guan, R.; Montelione, 
G.; Baker, D.; Pultz, I. S. Engineering of Kuma030: A Gliadin Peptidase That Rapidly Degrades 
Immunogenic Gliadin Peptides in Gastric Conditions. J. Am. Chem. Soc. 2015, 137 (40), 13106–
13113. 

(59)  Kilambi, K. P.; Reddy, K.; Gray, J. J. Protein-Protein Docking with Dynamic Residue Protonation 
States. PLoS Comput. Biol. 2014, 10 (12), e1004018. 

(60)  Alford, R. F.; Koehler Leman, J.; Weitzner, B. D.; Duran, A. M.; Tilley, D. C.; Elazar, A.; Gray, J. 
J. An Integrated Framework Advancing Membrane Protein Modeling and Design. PLoS Comput. 
Biol. 2015, 11 (9), e1004398. 

(61)  Das, R.; Karanicolas, J.; Baker, D. Atomic Accuracy in Predicting and Designing Noncanonical 
RNA Structure. Nat. Methods 2010, 7 (4), 291–294. 

(62)  Thyme, S. B.; Baker, D.; Bradley, P. Improved Modeling of Side-Chain--Base Interactions and 
Plasticity in Protein--DNA Interface Design. J. Mol. Biol. 2012, 419 (3–4), 255–274. 

(63)  Joyce, A. P.; Zhang, C.; Bradley, P.; Havranek, J. J. Structure-Based Modeling of Protein: DNA 
Specificity. Brief. Funct. Genomics 2015, 14 (1), 39–49. 

(64)  Lemmon, G.; Meiler, J. Rosetta Ligand Docking with Flexible XML Protocols. Methods Mol. Biol. 
2012, 819, 143–155. 

(65)  Renfrew, P. D.; Choi, E. J.; Bonneau, R.; Kuhlman, B. Incorporation of Noncanonical Amino Acids 
into Rosetta and Use in Computational Protein-Peptide Interface Design. PLoS One 2012, 7 (3), 
e32637. 

(66)  Drew, K.; Renfrew, P. D.; Craven, T. W.; Butterfoss, G. L.; Chou, F.-C.; Lyskov, S.; Bullock, B. 
N.; Watkins, A.; Labonte, J. W.; Pacella, M.; Kilambi, K. P.; Leaver-Fay, A.; Kuhlman, B.; Gray, 
J. J.; Bradley, P.; Kirshenbaum, K.; Arora, P. S.; Das, R.; Bonneau, R. Adding Diverse 
Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design. PLoS One 2013, 8 (7), 
e67051. 

(67)  Bhardwaj, G.; Mulligan, V. K.; Bahl, C. D.; Gilmore, J. M.; Harvey, P. J.; Cheneval, O.; Buchko, 
G. W.; Pulavarti, S. V. S. R. K.; Kaas, Q.; Eletsky, A.; Huang, P.-S.; Johnsen, W. A.; Greisen, P. 
J.; Rocklin, G. J.; Song, Y.; Linsky, T. W.; Watkins, A.; Rettie, S. A.; Xu, X.; Carter, L. P.; 

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/106054doi: bioRxiv preprint first posted online Feb. 7, 2017; 

http://dx.doi.org/10.1101/106054
http://creativecommons.org/licenses/by-nc/4.0/


 33 

Bonneau, R.; Olson, J. M.; Coutsias, E.; Correnti, C. E.; Szyperski, T.; Craik, D. J.; Baker, D. 
Accurate de Novo Design of Hyperstable Constrained Peptides. Nature 2016, 538 (7625), 329–
335. 

(68)  Labonte, J. W.; Aldof-Bryfogle, J.; Schief, W. R.; Gray, J. J. Residue-Centric Modeling and Design 
of Saccharide and Glycoconjugate Structures. J Comput Chem 2017, 38 (5), 276–287. 

(69)  Yanover, C.; Bradley, P. Extensive Protein and DNA Backbone Sampling Improves Structure-
Based Specificity Prediction for C2H2 Zinc Fingers. Nucleic Acids Res. 2011, 39 (11), 4564–4576. 

(70)  Berkholz, D. S.; Driggers, C. M.; Shapovalov, M. V; Dunbrack, R. L.; Karplus, P. A.; Karplus, P. 
A. Nonplanar Peptide Bonds in Proteins Are Common and Conserved but Not Biased toward Active 
Sites. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (2), 449–453. 

(71)  Khatib, F.; Cooper, S.; Tyka, M. D.; Xu, K.; Makedon, I.; Popovic, Z.; Baker, D.; Players, F. 
Algorithm Discovery by Protein Folding Game Players. Proc. Natl. Acad. Sci. 2011, 108 (47), 
18949–18953. 

(72)  Grigoryan, G.; Ochoa, A.; Keating, A. E. Computing van Der Waals Energies in the Context of the 
Rotamer Approximation. Proteins Struct. Funct. Bioinforma. 2007, 68 (4), 863–878. 

(73)  Dahiyat, B. I.; Mayo, S. L. Probing the Role of Packing Specificity in Protein Design. Proc. Natl. 
Acad. Sci. U. S. A. 1997, 94 (19), 10172–10177. 

(74)  Warshel, A.; Russell, S. T. Calculations of Electrostatic Interactions in Biological Systems and in 
Solutions. Q. Rev. Biophys. 2009, 17 (3), 283. 

(75)  Hubbard, R. E.; Kamran Haider, M.; Hubbard, R. E.; Kamran Haider, M. Hydrogen Bonds in 
Proteins: Role and Strength. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd: Chichester, 
UK, 2010. 

(76)  Li, X.-Z.; Walker, B.; Michaelides, A. Quantum Nature of the Hydrogen Bond. Proc. Natl. Acad. 
Sci. 2011, 108 (16), 6369–6373. 

(77)  Richardson, J. S.; Keedy, D. A.; Richardson, D. C. In Biomolecular Forms and Functions: A 
Celebration of 50 Years of the Ramachandran Map. World Sci. Publ. Co. Pte. Ltd Singapore 2013, 
46–61. 

(78)  Wang, C.; Bradley, P.; Baker, D. Protein–Protein Docking with Backbone Flexibility. J. Mol. Biol. 
2007, 373 (2), 503–519. 

(79)  Leaver-Fay, A.; Tyka, M.; Lewis, S. M.; Lange, O. F.; Thompson, J.; Jacak, R.; Kaufman, K. W.; 
Renfrew, P. D.; Smith, C. A.; Sheffler, W.; Davis, I. W.; Cooper, S.; Treuille, A.; Mandell, D. J.; 
Richter, F.; Ban, Y.-E. A.; Fleishman, S. J.; Corn, J. E.; Kim, D. E.; Lyskov, S.; Berrondo, M.; 
Mentzer, S.; Popović, Z.; Havranek, J. J.; Karanicolas, J.; Das, R.; Meiler, J.; Kortemme, T.; Gray, 
J. J.; Kuhlman, B.; Baker, D.; Bradley, P. Rosetta3: An Object-Oriented Software Suite for the 
Simulation and Design of Macromolecules. In Methods in enzymology; 2011; Vol. 487, pp 545–
574. 

(80)  Ho, B. K.; Thomas, A.; Brasseur, R. Revisiting the Ramachandran Plot: Hard-Sphere Repulsion, 
Electrostatics, and H-Bonding in the Alpha-Helix. Protein Sci. 2003, 12 (11), 2508–2522. 

(81)  Wang, G.; Dunbrack, R. L. PISCES: A Protein Sequence Culling Server. Bioinformatics 2003, 19 
(12), 1589–1591. 

(82)  Ting, D.; Wang, G.; Shapovalov, M.; Mitra, R.; Jordan, M. I.; Dunbrack, R. L. Neighbor-Dependent 
Ramachandran Probability Distributions of Amino Acids Developed from a Hierarchical Dirichlet 
Process Model. PLoS Comput. Biol. 2010, 6 (4), e1000763. 

(83)  Finkelstein, A. V.; Badretdinov, A. Y.; Gutin, A. M. Why Do Protein Architectures Have 
Boltzmann-like Statistics? Proteins Struct. Funct. Genet. 1995, 23 (2), 142–150. 

(84)  Shortle, D. Propensities, Probabilities, and the Boltzmann Hypothesis. Protein Sci. 2003, 12 (6), 

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/106054doi: bioRxiv preprint first posted online Feb. 7, 2017; 

http://dx.doi.org/10.1101/106054
http://creativecommons.org/licenses/by-nc/4.0/


 34 

1298–1302. 
(85)  Lovell, S. C.; Word, J. M.; Richardson, J. S.; Richardson, D. C. The Penultimate Rotamer Library. 

Proteins 2000, 40 (3), 389–408. 
(86)  MacArthur, M. W.; Thornton, J. M. Influence of Proline Residues on Protein Conformation. J. Mol. 

Biol. 1991, 218 (2), 397–412. 
(87)  McDonald, I. K.; Thornton, J. M. Satisfying Hydrogen Bonding Potential in Proteins. J. Mol. Biol. 

1994, 238 (5), 777–793. 
(88)  Conway, P.; Tyka, M. D.; DiMaio, F.; Konerding, D. E.; Baker, D. Relaxation of Backbone Bond 

Geometry Improves Protein Energy Landscape Modeling. Protein Sci. A Publ. Protein Soc. 2014, 
23 (1), 47–55. 

(89)  Inc, A. Insight II. San Diego 2000. 
(90)  Engh, R. A.; Huber, R.; IUCr. Accurate Bond and Angle Parameters for X-Ray Protein Structure 

Refinement. Acta Crystallogr. Sect. A Found. Crystallogr. 1991, 47 (4), 392–400. 
(91)  Renfrew, P. D.; Butterfoss, G. L.; Kuhlman, B. Using Quantum Mechanics to Improve Estimates 

of Amino Acid Side Chain Rotamer Energies. Proteins Struct. Funct. Bioinforma. 2007, 71 (4), 
1637–1646. 

(92)  Barton, R. R.; Ivey, J. S. Nelder-Mead Simplex Modifications for Simulation Optimization. 
Manage. Sci. 1996, 42 (7), 954–973. 

(93)  Ó Conchúir, S.; Barlow, K. A.; Pache, R. A.; Ollikainen, N.; Kundert, K.; O’Meara, M. J.; Smith, 
C. A.; Kortemme, T. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta 
Protocols for Macromolecular Modeling and Design. PLoS One 2015, 10 (9), e0130433. 

(94)  Song, Y.; Tyka, M.; Leaver-Fay, A.; Thompson, J.; Baker, D. Structure-Guided Forcefield 
Optimization. Proteins 2011, 79 (6), 1898–1909. 

(95)  Conway, P.; DiMaio, F. Improving Hybrid Statistical and Physical Forcefields through Local 
Structure Enumeration. Protein Sci. 2016, 25 (8), 1525–1534. 

(96)  Leaver-Fay, A.; O’Meara, M. J.; Tyka, M.; Jacak, R.; Song, Y.; Kellogg, E. H.; Thompson, J.; 
Davis, I. W.; Pache, R. A.; Lyskov, S.; Gray, J. J.; Kortemme, T.; Richardson, J. S.; Havranek, J. 
J.; Snoeyink, J.; Baker, D.; Kuhlman, B. Scientific Benchmarks for Guiding Macromolecular 
Energy Function Improvement. Methods Enzymol. 2013, 523, 109–143. 

(97)  Kellogg, E. H.; Leaver-Fay, A.; Baker, D. Role of Conformational Sampling in Computing 
Mutation-Induced Changes in Protein Structure and Stability. Proteins 2011, 79 (3), 830–838. 

(98)  Mandell, D. J.; Coutsias, E. A.; Kortemme, T. Sub-Angstrom Accuracy in Protein Loop 
Reconstruction by Robotics-Inspired Conformational Sampling. Nat. Methods 2009, 6 (8), 551–
552. 

(99)  Tyka, M. D.; Keedy, D. A.; André, I.; DiMaio, F.; Song, Y.; Richardson, D. C.; Richardson, J. S.; 
Baker, D. Alternate States of Proteins Revealed by Detailed Energy Landscape Mapping. J. Mol. 
Biol. 2011, 405 (2), 607–618. 

(100)  Hwang, H.; Vreven, T.; Janin, J.; Weng, Z. Protein-Protein Docking Benchmark Version 4.0. 
Proteins Struct. Funct. Bioinforma. 2010, 78 (15), 3111–3114. 

(101)  Chaudhury, S.; Berrondo, M.; Weitzner, B. D.; Muthu, P.; Bergman, H.; Gray, J. J. Benchmarking 
and Analysis of Protein Docking Performance in Rosetta v3.2. PLoS One 2011, 6 (8), e22477. 

(102)  Song, Y.; DiMaio, F.; Wang, R. Y.-R.; Kim, D.; Miles, C.; Brunette, T.; Thompson, J.; Baker, D. 
High-Resolution Comparative Modeling with RosettaCM; 2013; Vol. 21. 

(103)  Altman, M. D.; Nalivaika, E. A.; Prabu-Jeyabalan, M.; Schiffer, C. A.; Tidor, B. Computational 
Design and Experimental Study of Tighter Binding Peptides to an Inactivated Mutant of HIV-1 
Protease. Proteins Struct. Funct. Bioinforma. 2007, 70 (3), 678–694. 

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/106054doi: bioRxiv preprint first posted online Feb. 7, 2017; 

http://dx.doi.org/10.1101/106054
http://creativecommons.org/licenses/by-nc/4.0/


 35 

(104)  Chaudhury, S.; Lyskov, S.; Gray, J. J. PyRosetta: A Script-Based Interface for Implementing 
Molecular Modeling Algorithms Using Rosetta. Bioinformatics 2010, 26 (5), 689–691. 

(105)  Nybakken, G. E.; Oliphant, T.; Johnson, S.; Burke, S.; Diamond, M. S.; Fremont, D. H. Structural 
Basis of West Nile Virus Neutralization by a Therapeutic Antibody. Nature 2005, 437 (7059), 764–
769. 

(106)  Havranek, J. J.; Duarte, C. M.; Baker, D. A Simple Physical Model for the Prediction and Design 
of Protein–DNA Interactions. J. Mol. Biol. 2004, 344 (1), 59–70. 

(107)  Chen, Y.; Kortemme, T.; Robertson, T.; Baker, D.; Varani, G. A New Hydrogen-Bonding Potential 
for the Design of Protein-RNA Interactions Predicts Specific Contacts and Discriminates Decoys. 
Nucleic Acids Res. 2004, 32 (17), 5147–5162. 

(108)  Renfrew, P. D.; Craven, T. W.; Butterfoss, G. L.; Kirshenbaum, K.; Bonneau, R. A Rotamer Library 
to Enable Modeling and Design of Peptoid Foldamers. J. Am. Chem. Soc. 2014, 136 (24), 8772–
8782. 

(109)  Nivedha, A. K.; Thieker, D. F.; Makeneni, S.; Hu, H.; Woods, R. J. Vina-Carb: Improving 
Glycosidic Angles during Carbohydrate Docking. J. Chem. Theory Comput. 2016, 12 (2), 892–901. 

(110)  Nivedha, A. K.; Makeneni, S.; Foley, B. L.; Tessier, M. B.; Woods, R. J. Importance of Ligand 
Conformational Energies in Carbohydrate Docking: Sorting the Wheat from the Chaff. J. Comput. 
Chem. 2014, 35 (7), 526–539. 

(111)  Das, R.; Baker, D. Automated de Novo Prediction of Native-like RNA Tertiary Structures. Proc. 
Natl. Acad. Sci. U. S. A. 2007, 104 (37), 14664–14669. 

(112)  Sripakdeevong, P.; Kladwang, W.; Das, R. An Enumerative Stepwise Ansatz Enables Atomic-
Accuracy RNA Loop Modeling. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (51), 20573–20578. 

(113)  Chou, F.-C.; Kladwang, W.; Kappel, K.; Das, R. Blind Tests of RNA Nearest-Neighbor Energy 
Prediction. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (30), 8430–8435. 

(114)  Kilambi, K. P.; Gray, J. J. Rapid Calculation of Protein pKa Values Using Rosetta. Biophys. J. 
2012, 103 (3), 587–595. 

(115)  Barth, P.; Schonbrun, J.; Baker, D. Toward High-Resolution Prediction and Design of 
Transmembrane Helical Protein Structures. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (40), 15682–
15687. 

(116)  Yarov-Yarovoy, V.; Schonbrun, J.; Baker, D. Multipass Membrane Protein Structure Prediction 
Using Rosetta. Proteins 2006, 62 (4), 1010–1025. 

(117)  Lazaridis, T. Effective Energy Function for Proteins in Lipid Membranes. Proteins Struct. Funct. 
Genet. 2003, 52 (2), 176–192. 

 

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/106054doi: bioRxiv preprint first posted online Feb. 7, 2017; 

http://dx.doi.org/10.1101/106054
http://creativecommons.org/licenses/by-nc/4.0/

