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Abstract

Surface topography broadly influences cellular responses. Adherent cell activities are regulated, in 

part, by RhoA, a member of the Rho-family of GTPases. In this study, we evaluated the influence 

of surface topography on RhoA activity and associated cellular functions. The murine 

mesenchymal stem cell line C3H10T1/2 cells (osteoprogenitor cells) were cultured on titanium 

substrates with smooth topography (S), microtopography (M), and nanotopography (N) to evaluate 

the effect of surface topography on RhoA-mediated functions (cell spreading, adhesion, migration, 

and osteogenic differentiation). The influence of RhoA activity in the context of surface 

topography was also elucidated using RhoA pharmacologic inhibitor. Following adhesion, M and 

N adherent cells developed multiple projections, while S adherent cells had flattened and 

widespread morphology. RhoA inhibitor induced remarkable longer and thinner cytoplasmic 

projections on all surfaces. Cell adhesion and osteogenic differentiation was topography dependent 

with S < M and N surfaces. RhoA inhibition increased adhesion on S and M surfaces, but not N 

surfaces. Cell migration in a wound healing assay was greater on S versus M versus N surfaces 

and RhoA inhibitor increased S adherent cell migration, but not N adherent cell migration. RhoA 

inhibitor enhanced osteogenic differentiation in S adherent cells, but not M or N adherent cells. 

RhoA activity was surface topography roughness dependent (S < M, N). RhoA activity and -

mediated functions are influenced by surface topography. Smooth surface adherent cells appear 

highly sensitive to RhoA function, while nano-scale topography adherent cell may utilize 

alternative cellular signaling pathway(s) to influence adherent cellular functions regardless of 

RhoA activity.
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Dental implant surface topography modulates osteoblast function and influences interfacial 

bone formation supporting osseointegration (Cooper et al., 1999; Mendonça et al., 2008). 

Micron scale topographic surface modification increases cell adhesion, proliferation, and 

differentiation and has been widely adopted for clinical use (Nanci et al., 1998; Cooper et 
al., 2006). Recent studies indicated that nanoscale modification further influences cellular 

differentiation and improve the osseointegration process (Mendonça et al., 2009, 2010; 

Khatiwala et al., 2009; Kulangara et al., 2012; Salou et al., 2015). The mechanisms 

responsible for topography-mediated cell responses, especially involving the nano-structured 

surface, are not fully elucidated.

Cell adhesion influences subsequent cellular functions. The roles of the extracellular matrix, 

cytoskeleton and membrane receptors are well characterized (Huveneers and Danen, 2009). 

Cell attachment involves integrin receptor engagement of adsorbed extracellular matrix 

components. In a cell-type and substrate-specific manner, integrin heterodimers activate 

downstream signaling pathways including the Rho-family of GTPases (McBeath et al., 
2004). RhoA modulates cell adhesion, motility, and morphology (de Curtis and Meldolesi, 

2012; Lessey et al., 2012, Hamamura et al., 2012). RhoA can be activated in response to 

mechanical force (Etienne-Manneville and Hall, 2002) and this process has been implicated 

in the control of osteoblast (Galli et al., 2012) and mesenchymal cell fate (Passeri et al., 
2010). Surface topography also influences cell morphology via cytoskeleton remodeling and 

maintenance of topography-specific adhesion (Seo et al., 2011, 2014; Prowse et al., 2013). 

The present study tests our hypothesis that RhoA activity may be differentially influenced by 

micron and nanoscale topography during cell adhesion and spreading and this further 

influences adherent cellular functions on the modeled implant surface.

Materials and Methods

Disk surface preparation

Commercially pure grade IV titanium disks were prepared as previously described 

(Mendonça et al., 2009, 2010). Briefly, smooth (S) surfaces were polished to 600 grit. 

Micron (M) surfaces were prepared by a second step of 100-μm aluminum oxide (Al2O3) 

particle blasting and 5N HCl treatment. Nano (N) surfaces further treated 50/50 v/v % 

solution of 30% H2O2 and 2N H2SO4 for 2 h (Mendonça et al., 2010).

Surface analysis

Prepared disks were examined by high-resolution scanning electron microscopy (Field 

Emission Scanning Electron Microscope [FEG-SEM; SEM, Hitachi S-4700, Tokyo, Japan]). 

For measuring roughness, a laser scanning microscope (VK-9710, Keyence, Osaka, Japan) 

was used. Measurements were made at five different points on the disk surfaces and average 

values were calculated.

Cell culture

C3H10T1/2, murine mesenchymal stem cells, were grown in Dulbecco’s Modified Eagle’s 

Medium (DMEM; Lonza, Walkersville, MD) with 10% fetal bovine serum (FBS) and 1% 

antibiotics and antimycotic solution (Sigma, St. Loius, MO) in a 5%CO2 incubator at 37°C. 
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Where indicated, the RhoA inhibitor, cell-permeable C3 transferase (C3; Cytoskeleton, 

Denver, CO) was added during culture.

Assessment of cell morphology by immunofluorescent staining

Cells were seeded onto S, M, and N disks in 12-well culture plates with or without 500 

ng/ml C3 (cell density: 1 × 105 cells/well). At 2 and 6 h post-seeding, the cells were washed 

twice with PBS and fixed for 10 min with 4% paraformaldehyde followed by incubation 

with PBS containing with 1% bovine serum albumin to reduce nonspecific background 

staining. The cells were incubated with monoclonal anti-vinculin FITC (Sigma) followed by 

phalloidin (Texas Red®-X phalloidin, Invitrogen, Grand Island, NY) to detect the actin 

cytoskeleton. The nuclei were stained with ProLong® Gold antifade reagent with DAPI 

(Invitrogen, Grand Island, NY). Images were acquired with Olympus IX51 (Olympus, 

Tokyo, Japan).

Cell adhesion assay

Cells were passaged and seeded onto S, M, or N disks (in 96-well culture plates) at a density 

of 1 × 104 cells/well in DMEM with 3% FBS (control) or with C3 added at a final 

concentration of 50 or 500 ng/ml. After 2 and 6 h of incubation, disks were washed twice 

with PBS to remove non-adherent cells. The number of attached cells was determined using 

CellTiter 96® AQueous One Solution Reagent (MTS; Promega, Madison, WI).

Cell migration assay (scratch assay)

Cells were seeded onto disks in 12-well culture plates at a density of 1 × 105 cells/well and 

cultured with DMEM containing 10% FBS. After 24 h, the culture media was changed to 

DMEM containing 3% FBS (control) and DMEM with 3% FBS and 500 ng/ml C3. Twelve 

hours later, cell layers were scratched with a pipette tip. After 4, 8, 12, and 16 h, the cell 

layers were photographed after immunofluorescent staining with fluorescent phallotoxins 

(described above). The area of cell migration and rate of closure (wound healing rate) was 

calculated with Image J (n = 6 fields; National Institutes of Health, Bethesda, MD).

Osteogenic differentiation assay in the presence or absence of RhoA inhibitor

Cells were seeded onto S, M, or N disks into 12-well culture plates (cell density: 1 × 105 

cells/well) and 24 h later, media was changed to osteogenic media (OST media, 10 mM 

glycerophosphate, 0.2 mM ascorbic acid and 10 nM dexamethasone) with or without C3 

(500 ng/ml) and replaced every 3 days. Adherent cells total RNA was prepared (Trizol®, 

Invitrogen) and osteogenesis-related mRNA (alkaline phosphatase [ALP], Osterix [OSX], 

Collagen I [Col I], and Runx2) expression was measured by quantative real-time reverse 

transcriptional polymerase chain reaction (RT-PCR, Taqman® Universal PCR master Mix, 

Applied Biosystems, Branchburg, NJ). Using primers for ALP (Mm00475831), Col I 

(Mm00801666), OSX (Mm00504574) and Runx2 (Mm00501578) and GAPDH 

(Cat.#4308313, Applied Biosystems, Foster City, CA). RT-PCR was performed in triplicate 

using ABI 7200 real-time thermocycler (Applied Biosystems).
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RhoA activity assays

RhoA activation was measured in cells seeded onto S, M, and N disks in 12-well culture 

plates (cell density: 1 × 105 cells/well) with or without 500 ng/ml C3. At 1, 2, 6, and 24 h 

post-seeding, RhoA activity was measured as GTP-bound RhoA (G-LISA RhoA activation 

assay kit, Cytoskeleton). Cells were cultured for 12 h after the change of medium containing 

3% FBS with or without C3 (500 ng/ml) and 9 scratches/disk were made to stimulate cell 

motility. After 10 and 30 min, and 1, 2, 4, 8, 12, and 16 h of culture, the level of GTP-loaded 

RhoA was measured. The experiments were repeated in cells cultured in OST media after 3 

and 7 days of culture.

Statistical analysis

All data are presented as the mean ± standard deviation. The statistical analyses for 

comparing the difference between every surface without C3 treatment were performed with 

one way ANOVA followed by Scheffe post-test and differences were considered significant 

at P < 0.05. To analyze the effect of RhoA inhibitor on cellular responses statistically, t test 

was used to compare between non-treated and C3-treated cells on each surface and 

differences were also considered significant at P < 0.05.

Results

Surface analysis

SEM images revealed distinct topographies for the S, M, and N disks. S surfaces showed a 

linear roughness pattern related to the polishing process (Fig. 1A). M surfaces displayed 

anisotropic pit-like roughness of micron scale (Fig. 1B). N surfaces revealed sharper ridges 

and superimposed densely arrayed, nanofeatures (<100 nm) not observed on S and M 

surfaces (Fig. 1C). The measurement of roughness parameters Ra (arithmetic roughness, 

Fig. 1D) demonstrated that the highest roughness values were observed with M surfaces, 

followed by N and S surfaces. Significant differences were detected between each surface.

Cell morphology and RhoA activity during spreading

Cell morphology was influenced by topography and RhoA inhibition. S adherent cells were 

round, with peripheral vinculin staining at 2 h (Fig. 2A). At 6 h, well-spread cells exhibited 

stress fibers and vinculin positive focal contacts prominently at the cell periphery (Fig. 2B). 

C3-treated S adherent cells demonstrated long and thin protrusions with vinculin localized to 

the extensions (Fig. 2C and D). On M and N surfaces, polygonal cells were observed at 2 h. 

Cells formed cytoplasmic projections at 2 h (Fig. 2E and I). Vinculin labeling was found at 

the periphery of the cell and around nuclei. At 6 h, more cellular extensions were observed 

on both surfaces (Fig. 2F and J). Although RhoA inhibitor treated -M and -N adherent cells 

did not show remarkable changes in their morphology at 2 h (Fig. 2G and K), they displayed 

multiple longer and thinner projections at 6 h (Fig. 2H and L). RhoA activities during 

adhesion were surface roughness dependent. The highest activity was observed in M 

adherent cells at 1 h and was sensitive to C3 treatment (Fig. 2M). S adherent cells 

demonstrated increased RhoA activity over 24 h that was C3 inhibited. RhoA activity in N 

adherent cells increased at 2 and 6 h but showed little sensitivity to C3 treatment until 24 h 

Ogino et al. Page 4

J Cell Physiol. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(P < 0.01; Fig. 2M). RhoA activity at 24 h was statistically different between non-treated 

and C3-treated cells for all surfaces (P < 0.01; Fig. 2M).

Cell adhesion assay

After 2 h, the number of cells seeded on M surfaces was significantly increased compared to 

S surfaces (P < 0.05; Fig. 3A). At 6 h, higher numbers of attached cells were similarly 

observed on all surfaces. Six hour C3 treatment increased adhesion for S (P < 0.01) and M 

(P < 0.01) surface adherent cells compared to non-treated cells, whereas increased adhesion 

was not detected in N adherent cells treated with C3 (Fig. 3B), although C3 treatment did 

not influence cell adhesion at 2 h (not shown).

Cell migration assay (scratch assay) and RhoA activity during migration

Figure 4A showed the location of cells immediately following wounding (0 h) on S, M, and 

N surfaces. Topography-specific migration was observed with S > M > N (Fig. 4B and D). 

RhoA inhibition increased migration of S adherent cells at 8, 12, and 16 h. On M surfaces, 

C3 treatment significantly increased cell migration only after 16 h. N adherent cell migration 

was not influenced by C3 treatment. (Fig. 4C and E) The measurement of migration-related 

activation of RhoA in wounded cell layers demonstrated temporal changes at 4 h for all 

surfaces. Modest topography-specific differences were measured only at 10 min and 4 h 

following wounding (Fig. 4F). Treatment with C3 resulted in significant reductions of 

similar magnitude for RhoA activity following wounding for all groups (Fig. 4G). 

Reductions were immediate for S adherent cells (P < 0.01), while reductions were not 

observed until 30 min after wounding for M and N adherent cells (P < 001).

Effect of RhoA inhibitor on osteogenic gene expression and RhoA activation during 
osteogenic differentiation

The differentiation assay at the level of APL, Col I Osx, and RunX2 revealed a topography 

dependent differentiation with ALP, OSX, and RUNX2 expressions elevated on M and N 

surfaces (Fig. 5A). RhoA inhibition significantly enhanced ALP and OSX expression in S 

adherent cells (Fig. 5B). RhoA inhibition significantly down-regulated Runx2 expression on 

N surfaces. The measurement of RhoA activity in C3-treated cells under the influence of 

osteogenic differentiation revealed significant reduction on all surfaces after 3 and 7 days of 

culture (Fig. 5C and D).

Discussion

Cell morphology and cytoskeletal integrity influence both cell fate and functions (McBeath 

et al., 2004). Surface topography is one determinant of cell morphology and influences 

morphology-dependent cellular functions including differentiation (Passeri et al., 2010; Seo 

et al., 2011, 2014; Galli et al., 2012; Prowse et al., 2013). Recent surface topography 

developments of endosseous dental implants include both micron-scale and nanometer-scale 

topographic embellishments that result in increased adherent osteoprogenitor cell 

differentiation and increased interfacial bone formation (Nanci et al., 1998; Cooper et al., 
2006; Mendonça et al., 2009, 2010; Khatiwala et al., 2009; Kulangara et al., 2012; Salou et 
al., 2015). In cell biology, it is well known that cell morphology and the cytoskeleton 
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organization are regulated by the Rho-family of GTPases (McBeath et al., 2004; Huveneers 

and Danen, 2009; Khatiwala et al., 2009; Lessey et al., 2012). Given the emergent role of 

RhoA GTPase in the determination of cell functions, the present study was designed to 

explore possible correlations between surface topography, RhoA activity and their effects on 

cellular functions. Here, different substrate specific adhesion and cell morphology were 

associated with different levels of RhoA activity. On S surfaces, adherent cells appear highly 

sensitive to RhoA function for spreading, motility and differentiation. C3H10T1/2 RhoA 

activity and -mediated functions were substrate specific such that M and N adherent cells 

were less sensitive to C3 inhibition of RhoA.

Other investigations have explored osteoblast/osteoprogenitor cell interactions on the 

substrates of different topography with respect to RhoA activity. Both ROCK (a well-known 

effector of RhoA) inhibition of Wnt/β-catenin signaling and the expression of osteogenic 

markers are modulated by surface topography (Galli et al., 2012). Seo et al. (2011) examined 

cell adhesion on lattice like micropatterned substrates and demonstrated that the RhoA 

pathway is critical in topography-induced focal adhesion (FA) formation, actin organization 

and FA kinase (FAK) phosphorylation. Further, they also demonstrated that the enhancement 

of FA by a tailor-made micropit surface could upregulate osteogenic differentiation (Seo et 
al., 2014). In an investigation of osteoblast adhesion on pre-treated and grit blasted/acid 

etched titanium substrates (SLA), inhibition of ROCK also reduced FA formation and 

altered downstream signaling resulting in increased Runx-2 activity and osteoblast 

differentiation (Prowse et al., 2013). The topography dependent reduction of RhoA activity 

and its influence on adherent cell osteoblastic differentiation was suggested to be a result of 

changes in the cytoskeleton. They suggest a complex regulatory scenario exists that involves 

GTPase and ROCK signaling for MSC commitment and differentiation to osteoblasts, but its 

suppression for the terminal differentiation of osteoblasts (Prowse et al., 2013). The present 

results suggest that surface topography may modulate RhoA activity directly to influence 

events beyond adhesion and motility that include differentiation.

The present demonstration that RhoA inhibition altered spreading on S and M surfaces 

affirms previous findings that cell spreading and morphology are surface topography 

dependent (Passeri et al., 2010; Galli et al., 2012; Prowse et al., 2013). The greater initial 

spreading of S adherent cells versus M and N adherent cells was associated with relatively 

low RhoA activity in S adherent cells compared with M and N adherent cells. Further, the 

pharmacological inhibiton of RhoA increased the cell adhesion to S and M surfaces, but not 

N surfaces. This was accompanied by a relative insensitivity of N adherent cells’ RhoA 

activity to C3 treatment (Fig. 2M) at early time points.

A functional consequence of this different signaling pathway may be expressed in cell 

migration observed in the in vitro wounding assays. That the migration rates were greatest 

for S adherent cells and increased statistically when S adherent cells were treated with C3 

(Fig. 4E) suggests that RhoA function may be central to the motility in S and M adherent 

cells, but not N adherent cells.

It is widely recognized that cell adhesion influence stem cell fate through changes in cell 

shape and RhoA activity (McBeath et al., 2004). These experiments confirmed that 
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osteoprogenitor cell differentiation was increased in cells adherent to M and N surfaces 

when compared to S adherent cells. C3 treatment (RhoA inhibition) increased differentiation 

only in S adherent cells. Previous studies using knockdown of RhoA gene and ARHGEF3 

(the Rho guanine nucleotide exchange factor activating RhoGTPase) in Saos-2 osteoblast-

like cells demonstrated the upregulation of osterix and alkaline phosphatase suggesting 

upregulation of osteogenesis (Mullin et al., 2014). N surface adherent cell responses 

(including increased differentiation) differ in the responses mediated by RhoA and its 

inhibition by C3. This is suggested by the differential responses observed in adhesion and 

migration in cells adherent to different topography.

These experiments demonstrated topography-specific modulation of RhoA activity and 

related function. While RhoA appears to be involved in cuing of substrate signals that are 

known to affect osteogenic differentiation through the cytoskeleton, additional topography-

related changes in cytoskeletal organization may influence subsequent signaling pathways 

utilized in control of cell physiology. Further investigations are needed to elucidate the 

discrete selection of signaling pathways active in micro- versus nano-scale adherent cells 

that promote osteoblastic differentiation.
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Figure 1. 
SEM evaluation of (A) smooth surface (S), (B) microtopography (M), and (C) 

nanotopography. (D) Surface roughness; Ra: arithmetic roughness (**P < 0.01; ANOVA, 

Post hoc Scheffe).
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Figure 2. 
Fluorescence images showing vinculin (green), actin (red), and nucleus (blue) of the non-

treated cells on S (A) at 2 h and (B) at 6 h and C3-treated treated cells on S (C) at 2 h and 

(D) at 6 h. Non-treated cells on M (E) at 2 h and (F) at 6 h and C3-treated treated cells on M 

(G) at 2 h and (H) at 6 h. Non-treated cells on N (I) at 2 h and (J) at 6 h and C3-treated 

treated cells on N (K) at 2 h and (L) at 6 h. (M) RhoA activity during cell adhesion. To 

evaluate the effect of C3 on RhoA activation on each surface, comparisons between non-

treated cells and treated cells on each surface were performed with t test (*P < 0.05; **P < 

0.01).
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Figure 3. 
Cell adhesion assay on each surface. (A) Non-treated cells were seeded on each surface and 

cultured for 2 and 6 h to quantify the number of the attached cells by MTS assay (*P < 0.05; 

ANOVA, Scheffe). (B) The number of the attached cell was also demonstrated in the 

presence of RhoA inhibitor, C3, after 6 h of culture (*P < 0.05; **P < 0.01; T test).
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Figure 4. 
(A) Fluorescence images after 0 h of scratches. The width of wound area was 1.0 mm and 

Fluorescence images after 12 h of scratch (B) in the absence of C3 and (C) in the presence 

of C3. (D) Quantitative analyses of wound healing rate on each surface (n = 6/each group, 

(**P < 0.01; ANOVA, Scheffe). (E) Quantitative analyses of wound healing rate on each 

surface in the presence of C3 (**P < 0.01; T test). RhoA activity was determined after 

scratches for cell migration. Statistical analyses were performed to evaluate (F) the effect of 

surface topography (**P < 0.01; ANOVA, Scheffe) and (G) the effect of C3 in each surface 

adherent cells on RhoA activity for 18 h (**P < 0.01, #P < 0.01 on all surfaces; T test).
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Figure 5. 
(A) The effect of surface topography on osteogenic markers expression (*P < 0.05; ANOVA, 

Scheffe). (B) The effect of C3 on osteogenic markers expression on each surface (*P < 0.05; 

**P < 0.01; t test). To evaluate the effect of C3 on RhoA activation on each surface, 

comparisons between non-treated cells and treated cells on each surface (C) in 3 and 7 days 

were performed with t test (*P < 0.05; **P < 0.01).
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