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Abstract

Covariate-adjusted sensitivity analyses is proposed for missing time-to-event outcomes. The 

method invokes multiple imputation (MI) for the missing failure times under a variety of 

specifications regarding the post-withdrawal tendency for having the event of interest. With a 

clinical trial example, we compared methods of covariance analyses for time-to-event data, i.e., the 

multivariable Cox proportional hazards model and non-parametric ANCOVA, and then illustrated 

how to incorporate these methods into the proposed sensitivity analysis for covariate adjustment. 

The MI methods considered are Kaplan-Meier Multiple Imputation (KMMI), covariate-adjusted 

and unadjusted proportional hazards multiple imputation (PHMI). The assumptions, statistical 

issues, and features for these methods are discussed.
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1. Introduction

Missing data exist in practically all clinical trials. A major source of missing data is from 

patients discontinuing their assigned treatment and then withdrawing from the study. The 

extent to which missing data impact statistical inferences depends on the process (i.e., 

mechanism) leading to the missingness. Little and Rubin (2002) outlined the following 

missing data framework: (i) data are missing completely at random (MCAR) if the 

missingness does not depend on either the observed or unobserved data; (ii) data are 

considered missing at random (MAR) when the missingness only depends on the observed 

data; (iii) data are missing not at random (MNAR) if the missingness depends on the 

unobserved data. If the measurement process and the missing data process have separate sets 

of parameters under the MAR mechanism, the missing data mechanism is said to be 

ignorable for likelihood-based inference since unbiased (or consistent) parameter estimates 

can be obtained from the observed data (Mallinckrodt et al., 2008).
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In many clinical trials, MAR can be reasonable, and hence it is often chosen as the main 

assumption for the primary analysis (Mallinckrodt et al. 2008; Zhang, 2009). However, the 

missing mechanism can be more complex than the ideal MAR assumption in practice. The 

possibility of MNAR can never be ruled out. Therefore, a prudent analyst should always 

conduct sensitivity analyses to assess the robustness of the treatment effect inferences to 

various alternative missing data assumptions (NRC, 2010). Zhao et al. (2014) recently 

introduced a method for sensitivity analysis for missing outcomes in time-to-event data, for 

which the primary analytical strategy has the MAR-like assumption of non-informative 

independent censoring. Based on the Kaplan-Meier (KM) estimator or its Cox proportional 

hazards (PH) model (Cox, 1972) counterparts, Zhao et al. (2014) employed multiple 

imputation of potential times to event for withdrawal patients to produce the inference if 

they were followed off treatment until the end of the study. The departure from the primary 

MAR-like assumption was addressed by a sensitivity parameter that captures the difference 

between withdrawal patients and continuing patients for the post-discontinuation tendency 

of developing an event. When the treatment effects are evaluated with the standard methods 

without covariate adjustment, application of such a sensitivity analysis is straightforward 

(Zhao et al., 2014).

Although the unadjusted analysis provides valid treatment comparisons in randomized 

studies, covariate-adjusted analysis is often implemented to increase statistical power or to 

offset the influence of random imbalances between treatment groups for the covariates with 

possibly strong relationships with the primary outcome (Tangen and Koch, 2000). One 

concern regarding the appropriateness of covariate adjustment with the Cox regression 

model is whether the proportional hazards assumption holds for each covariate in the model. 

In addition, incorrect model specifications may produce biased estimates for the regression 

coefficients (Tangen and Koch, 2000). One way to avoid those issues is to account for the 

covariates with the randomization based analysis of covariance (ANCOVA). Through 

weighted least squares methodology (Grizzle et al., 1969), non-parametric approaches have 

been proposed to provide covariate adjustment for inferences on incidence density ratios 

(Tangen and Koch, 2000) or hazard ratios (Moodie et al., 2011) for multiple non-overlapping 

time intervals. Recently, Saville and Koch (2013) discussed a randomization based method 

to estimate the covariate-adjusted population average hazard ratio with Cox regression 

models. Using an estimated covariance matrix for the unadjusted log hazard ratio from the 

Cox regression model and the group differences in means of baseline covariates, they 

implemented the weighted least squares methodology to produce a covariate-adjusted log 

hazard ratio by forcing the differences in means for covariables to zero. The central feature 

of this approach is that it incorporates the usual Cox regression model estimates into the 

non-parametric ANCOVA (NPANCOVA) paradigm, and hence it avoids the proportional 

hazards assumption for the adjusted covariates and avoids possibly data driven model 

refinements. Consequently, it could be an appealing strategy for the primary analysis in 

regulatory environments.

In this article, we discuss how to implement covariate adjustment in the sensitivity analysis 

proposed in Zhao et al. (2014) for time-to-event data. When data are from randomized 

clinical trials, one can regard the patients in each treatment group as comparable to a random 

sample from the study population. As a result, one straightforward way to perform multiple 
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imputation (MI) is through Kaplan-Meier (KM) estimates, i.e., the KMMI method in Zhao et 

al. (2014), mainly because the KM curve is a valid estimator of the survivor profile for a 

randomized treatment. For each imputed dataset, the covariate-adjusted log hazard ratio can 

be obtained with the method of Saville and Koch (2013). The final treatment estimate can be 

obtained from these estimates using Rubin (1987)’s formulas. Alternatively, one can impute 

data via the Breslow estimator from the Cox proportional hazards model that includes 

treatment and the set of covariates, and then proceed with analysis by the same Cox 

regression model.

2. Covariate-Adjusted Hazard Ratio Estimation

Saville and Koch (2013) proposed a non-parametric, randomization-based ANCOVA 

(NPANCOVA) method to obtain covariate-adjusted log hazard ratios. Let h = 1,2 index the 

test and the control group with nh patients in group h; and let rh be the corresponding dfbeta 

residual (nh × 1) vector obtained from the unadjusted Cox proportional hazards model with 

treatments as the only factor. The i-th element of rh is the change in the log hazard ratio 

estimate (β̂) for comparing test treatment versus control when the i-th observation in group h 
is omitted, and it can be approximated by −I−1Shi, where I(β̂) is the observed information, 

and Shi is the i-th score residual. Therefore, for  approximates 

the robust sandwich variance for β̂ (Wei et al., 1989; Lin and Wei, 1989). Let Xh =(xi1, …, 

xiq) be the (nh × q) matrix for the q baseline covariates for group h; and let 

 be the vector of means for the q baseline covariates for 

group h with the corresponding covariance matrix shown in (1),

(1)

where  and 1nh is a (nh × 1) vector of ones. Let d = (β̂, (x̄1 − 

x ̄2)′)′ be the vector of the unadjusted log hazard ratio estimate for treatments β̂ and the 

differences in means for the baseline covariates for the test treatment and the control groups. 

Then the covariance matrix of d is obtained via the sums of cross products rh and Ch as 

shown in (2). The mathematical derivations were discussed by Saville and Koch (2013).

(2)

With the NPANCOVA approach discussed in Koch et al. (1998), the covariate-adjusted 

estimate for the log hazard ratio can be obtained via the weighted least squares regression 

(Grizzle et al., 1969) for the model EA(d) = Zδ, where EA(d) is the asymptotic expected 

value for d,  is the matrix to specify the adjusted analysis, and δ is the regression 

coefficient for the covariate-adjusted log hazard ratio for treatments. With Z to force the 

difference in means for covariates to zero, the covariate-adjusted log hazard ratio estimate 

for treatments is  and the corresponding variance estimator is 
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. When the sample sizes for each group are sufficiently large for d to have 

an approximately multivariate normal distribution, confidence intervals and p-values of 

corresponding statistical tests for the covariate-adjusted log hazard ratio can be based on 

 having an approximately normal distribution. The rationale for randomization 

based covariance adjustment is the expected absence of differences between the test 

treatment and the control groups for means of the covariables. A related criterion for 

evaluating the extent of random imbalances between the test treatment and the control 

groups is Q0 in (3), which approximately has a chi-square distribution with q degrees of 

freedom.

(3)

3. Sensitivity Analysis using Multiple Imputation

3.1 Kaplan-Meier Multiple Imputation (KMMI) Strategy

The Kaplan-Meier Multiple Imputation (KMMI) strategy, implemented separately within 

individual treatment groups, was described in Zhao et al. (2014). Briefly, we assume that a 

randomized group has events observed at M distinct times (t1 < t2 < ··· < tM), and it has 

premature discontinuation (i.e., censoring) of patients at K distinct times (c1 < c2 < ··· < cK). 

With k indexing the censoring times, tk,0 denotes the latest failure time prior to ck and tk,j 

denotes the j-th failure time after ck. The imputation scheme is as follows:

i. Obtain the Kaplan-Meier (KM) estimates Ŝ(t) for the survival distribution with 

support of t ∈ (t1 < t2 < ··· < tM). For the end of follow-up time t* or the censored 

times after the latest failure time (i.e., tM < ck < t*), an exponential model is used to 

extrapolate Ŝ(tM) to Ŝ(t*) or the corresponding Ŝ(ck).

ii. With the survivor rate Ŝ(ck) (for the patient discontinuing treatment at the time ck ≤ 

tM) defined by a linear interpolation of Ŝ(tk,0) and Ŝ(tk,1), the probability of having 

an event in the time interval [tk,j, tk,j+1] conditional on not having the event by the 

time ck is given by

(4)

where the sensitivity parameter θ is a specified hazard ratio for calibrating the 

extent to which a patient with premature discontinuation has an event after the 

censoring time ck relative to the patients continuing follow-up (while remaining in 

their randomly assigned treatment group). For alternative sensitivity analyses, 

specifications for θ can vary between 0 and ∞, with θ = 1 corresponding to the 

MAR-like assumption of independent random censoring. Specifications of θ > 1 

make a prematurely discontinuing patient more likely to have an event after their 

censoring time than continuing patients, and specifications of θ < 1 have the 

opposite behavior.
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iii. The discontinued patients have their censoring times replaced by the failure times 

drawn at random from their corresponding conditional distributions with 

cumulative density function

(5)

iv. The imputation procedure is repeated to form L imputed data sets.

The imputed data sets do not have any patient with premature discontinuation, and so 

analysts can apply the conventional analysis methods for time-to-event data with the 

censoring only at the end of follow-up time t*.

A usual way to perform sensitivity analyses with KMMI in each group is to invoke various 

values of the sensitivity parameter that address different post-discontinuation tendencies of 

having events. A principle for specifying the sensitivity parameter θ was discussed 

previously (Zhao et al., 2014). Briefly, analysts could specify θT larger than that for the 

placebo group to penalize the premature discontinuation for the test treatment. With 

specifying θP = 1 for the placebo group to approximate non-informative independent 

censoring (so that placebo patients with premature discontinuation would have comparable 

experience after discontinuation to their counterparts without premature discontinuation), θ 

= (θT/θP) = θT for the test treatment becomes a single parameter for calibrating sensitivity 

analyses.

3.2 Covariate adjusted multiple imputation

Covariate-adjusted proportional hazards multiple imputation (PHMI) can proceed for every 

prematurely discontinued patient by using a patient specific survival distribution estimated 

by the Breslow estimator from the Cox proportional hazards model with treatments and the 

set of covariates for the imputation scheme in (ii) – (iv) in Section 3.1 (or the unadjusted 

model with treatments alone). The covariate-adjusted hazard ratios can then be obtained 

from imputed data sets by fitting the same Cox regression model for the MI process or by 

applying NPANCOVA as described in Section 2.

3.3 Parameter estimation

Following well-established rules (Rubin, 1987; Rubin and Schenker, 1991), the method for 

combining results from L imputed data sets can be applied easily by the SAS procedure 

MIANALYZE. Let β be the log hazard ratio that would be estimated from the complete data. 

Let β(̂l) denote the point estimate for β and let  denote its variance estimate from the l-th 

data set.

The overall multiple imputation (MI) estimate of β is obtained by averaging the estimates 

from the L complete-data analysis, , and its estimated variance is the sum 

of the within-imputation variance  and the product of the between-
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imputation variance  and a finite sample correction shown in 

(6).

(6)

Given sufficiently large sample size for the complete data to support an approximately 

standard normal N(0,1) distribution for its hypothetical version of  when there 

were no missing data, confidence intervals for β (and p-values for corresponding statistical 

tests) can be based on  having a t-distribution with approximate degrees of 

freedom (d.f.) as shown in (7).

(7)

Here, R expresses the relative increase in variance due to missing information.

4. Application

We illustrate the proposed methods with a clinical trial for maintenance treatment for bipolar 

disorder (Calabrese et al., 2003). For reasons related to confidentiality of the data from this 

clinical trial, the application uses a data set of 300 patients (150 patients with the test 

treatment and 150 patients with the placebo) from a random sample (with replacement) from 

the true study population. The same data set was also used previously in Zhao et al. (2014). 

After an 8 to 16 weeks run-in period within which all patients received test treatment, 

eligible patients who tolerated and adhered to the therapy were randomized to the test 

treatment or to the placebo for a planned follow-up period of 76 weeks. Accordingly, this 

study had a randomized withdrawal design, and the primary efficacy endpoint was the time-

to-intervention for any mood episode. Of the 300 patients, 75 patients (50%) on the test 

treatment and 82 patients (54.7%) on the placebo had the event of intervention for any mood 

episode. A total of 97 (32.33%) patients discontinued the study prematurely (35% of the 

placebo group and 29% on the test treatment).

Seven covariables had a priori specification as being of interest in the analysis plan and in 

the protocol for this clinical trial. Two of them are patients’ demographics, and the rest of 

them are baseline psychiatric assessments related to disease progression in previous studies. 

The distributions of these covariables are presented in Table 1. The extent of random 

imbalance between treatments is summarized for each covariate with the standardized 

difference (i.e., the difference between means divided by the square root of the average of 

the two sample variances) and the two-sided p-value from the Wilcoxon rank sum test for 

the association between the covariate and the treatment assignment. The standardized 

difference (Std. Diff.) represents the difference in means between two groups in units of the 

standard deviation (STD), and some authors suggest that Std. Diff. < 10% likely expresses a 
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negligible imbalance (Austin et al., 2010). Table 2 describes the associations between the 

covariates and the primary endpoint, as assessed by the corresponding Cox regression 

models stratified on the treatment. Under the assumption of non-informative independent 

censoring, the univariate analyses for each individual covariate and the multivariate 

regression analysis were used to evaluate associations for the covariates. Of the five 

covariates with Std. Diff. ≥ 10%, the pre-randomized (pre-rand) MRS 11 item total score has 

strong association with the primary endpoint (p-value of 0.004 in the univariate analysis and 

p-value of 0.003 in the multivariate analysis), whereas the pre-rand CGI-I score, the pre-rand 

CGI-S score, and the pre-rand GAS score have weak associations with the outcome (0.05 ≤ 

p-values ≤ 0.15). The pre-rand CGI-I score has the largest Std. Diff. of 23.6% with p-value < 

0.05 for the Wilcoxon assessment of imbalance. Although the random imbalance criterion in 

(3) does not contradict the expected balance of covariables from randomization (p-

value=0.257), the possibility of random imbalance is suggested. The distribution for the pre-

rand CGI-I score favors the placebo group, but the random imbalance of the pre-rand CGI-S 

score, the pre-rand GAS score, and the pre-rand MRS 11 item total score favor the test 

treatment group for better outcome.

4.1 Covariate-adjusted analyses under the MAR-like assumption

Analyses first proceed with the censoring of follow-up times for patients with premature 

discontinuation of their assigned treatment, and so they have the MAR-like assumption of 

non-informative independent censoring. The model-based variance estimator is used for 

hypothesis testing and to obtain confidence intervals throughout the application. The 

analysis results are shown in Table 3. With a Cox PH model with one explanatory variable 

for treatments (i.e., univariate Cox model), the unadjusted log hazard ratio (HR) for 

comparing test treatment versus placebo, is estimated by −0.393 with standard error (SE) of 

0.161 and p-value of 0.014, indicating superiority of the test treatment. The multivariable 

Cox model, with the assumption of proportional hazards for treatment and all seven 

covariates, produces a larger estimate for the treatment effect (covariate-adjusted log HR of 

−0.410), a larger SE (0.164) and a slightly smaller p-value of 0.012 than the unadjusted Cox 

regression counterpart. When adjusting for the covariates via the NPANCOVA method, the 

estimated covariate-adjusted log HR is somewhat closer to the null (−0.374) than the 

unadjusted Cox estimates. With a slightly reduced SE (0.156), NPANCOVA produces a 

somewhat larger p-value (0.017). The decreased treatment effect after covariate adjustment 

with NPANCOVA is probably due to the random covariate imbalance favoring the test 

treatment group in the unadjusted analysis. Conversely, the Cox model with covariate 

adjustment often produces a point estimate for the treatment effect that is further from the 

null, mainly because it pertains to patients with the same profile of covariates in contrast to 

the population average nature of the unadjusted estimate or the adjusted estimate produced 

by the NPANCOVA method (Tangen and Koch, 2000; Jiang et al., 2008; Saville and Koch, 

2013).

4.2 Sensitivity analyses with covariate adjustment

We first implement the sensitivity analysis with and without the covariate adjustment under 

θ = 1. With this specification, the imputed data are produced from the conditional failure 

time distributions estimated with the censoring of the follow-up times of patients with 
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premature discontinuation, and they thereby have the MAR-like assumption of non-

informative independent censoring. We perform the multiple imputations (MI) with L = 50 

for the amount of missing information in this example on the basis of assessments for it in 

Section 4.1 of Zhao et al. (2014). Table 4 presents the covariate-adjusted (log) hazard ratios 

obtained from the combinations of the MI strategies and the covariate adjustment methods 

for the imputed data sets. An important component that differentiates various MI procedures 

is the survival distribution estimates, from which the conditional failure time distribution for 

imputation is constructed. Table 5 summarizes the methods for estimating the survival 

distributions, along with the other key steps and assumptions for the corresponding 

sensitivity analyses presented in Table 4. For the ease of comparisons, the unadjusted (log) 

hazard ratios were also estimated using the KMMI and the PHMI methods without covariate 

adjustment.

When the imputed data sets are produced by the unadjusted PHMI method under θ = 1, the 

unadjusted (log) hazard ratio (row 4) is very similar to that obtained via the conventional 

unadjusted Cox model with the censoring of follow-up times for discontinued patients, 

mainly because both are under the MAR-like assumption of non-informative independent 

censoring and both have the proportional hazards assumption. With the data sets imputed by 

the unadjusted PHMI method, the multivariable (i.e., covariate-adjusted) Cox regression 

model produces a smaller treatment effect estimate and a larger SE (row 5b) than the 

unadjusted counterparts. Interestingly, the covariate-adjusted PHMI method (row 6b) 

produces a Cox model covariate-adjusted (log) hazard ratio of −0.389 that is comparable in 

value to the unadjusted (log) hazard ratio estimate of −0.389 from the unadjusted PHMI 

method (row 4). Additionally, its corresponding SE estimate is in between the SE estimates 

from the unadjusted and adjusted Cox regression analyses for the data imputed by the 

unadjusted PHMI method (row 4 and 5b). For both the unadjusted PHMI method and the 

covariate adjusted PHMI method, the covariate adjusted log hazard ratio estimates from 

NPANCOVA have somewhat smaller SE estimates than their counterparts from both the 

unadjusted Cox model and the corresponding multivariable Cox model.

When the data are from randomized clinical trials, one could regard the patients of each 

treatment group as comparable to a random sample from the study population. Therefore, it 

is appropriate to apply either unadjusted or covariate-adjusted analysis to the data sets 

imputed by the KMMI method without covariate adjustment. The unadjusted log hazard 

ratio from the unadjusted KMMI method (row 1) under θ = 1 is closer to the null and has a 

somewhat larger p-value than its conventional counterpart with the use of censoring (log HR 

= −0.323 with p=0.044 for unadjusted KMMI versus log HR= −0.393 with p=0.014 for the 

conventional method), due to the tendency for non-proportional hazards for the follow-up 

period (i.e., much stronger effect size for the test treatment during the early part than the 

later part in the example). With the same set of imputed data, the estimators for a covariate-

adjusted (log) hazard ratio from the multivariable Cox regression (row 3) and the 

NPANCOVA (row 2), produce smaller (i.e., closer to the null) treatment effects than the 

unadjusted Cox model estimator (row 1), which leads to larger p-values (>0.05) for both 

covariate-adjusted methods. Among those covariate adjustment analyses, only the 

NPANCOVA method generates an SE estimate smaller than that of the unadjusted Cox 

regression, whereas the multivariable Cox regression produces the largest SE estimates, and 
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hence has the largest p-value. Although the unadjusted and adjusted PHMI methods support 

superiority of the test treatment, the KMMI sensitivity analyses with covariate adjustment 

only show marginal benefits for the test treatment under θ = 1.

We then conduct the covariate-adjusted sensitivity analyses, i.e., the unadjusted KMMI/

unadjusted PHMI with NPANCOVA (Tables 4 and 5, row 2 and 5a), and the covariate-

adjusted PHMI (Tables 4 and 5, row 6b), by varying the sensitivity parameter θ (=θT/θP) for 

the test treatment group. For sensitivity analyses in the regulatory setting, one would usually 

have θP = 1 and θT > θP > 1 to penalize premature discontinuations for the test treatment. 

The choice of θ can be values in a range of (L, U), where (1/U, 1/L) is a range of hazard 

ratios from previous related studies or clinical judgment for the comparison of effective 

medicines with placebo. Here, we set a lower bound <1 and vary the value of θ by an 0.01 

increment in a range from 0.5 to 2.5, mainly because one of the three sensitivity analysis 

methods fails to show the superiority of the test treatment under θ = 1 for this example; see 

Zhao et al. (2014) for additional discussion concerning the specification of the sensitivity 

parameter θ.

The p-values for the covariate-adjusted (log) hazard ratios from the unadjusted KMMI with 

NPANCOVA, the unadjusted PHMI with NPANCOVA, and the covariate-adjusted PHMI 

with the multivariable Cox model are plotted as functions of the sensitivity parameter θ in 

Figure 1. In order to have p<0.05 via the unadjusted KMMI with NPANCOVA, θ < 1 is 

needed. This pattern of results suggests some limitation to robustness with respect to the 

post-discontinuation behavior of patients with the test treatment. This limitation could be 

due to a departure from the proportional hazards assumption for treatments as discussed in 

Zhao et al. (2014) in terms of the hazard ratio being further from the null in the earlier part 

of the follow-up period than the later part; and it could also be possibly due to covariate 

adjustment for random imbalances favoring the test treatment. For p<0.05 with the 

unadjusted PHMI with NPANCOVA and the covariate-adjusted PHMI with the multivariable 

Cox model, θ < 1.52 is needed, suggesting better robustness to assumptions about patients 

with premature discontinuation of treatment for this example. Compared with the unadjusted 

hazard ratio estimates obtained from the unadjusted PHMI method with the specification of 

θ > 1 (presented in Zhao et al. (2014)), the covariate-adjusted PHMI method with the 

multivariable Cox model produces slightly weaker results, i.e., treatment effect estimates 

that are closer to the null and have larger SE estimates and larger p-values.

5. Summary

Covariate adjustment can play an important role in the analysis of randomized clinical trials. 

In this regard, covariate adjustment may provide more powerful statistical tests (relative to 

their unadjusted counterparts) for the comparison between treatment groups (Koch et al., 

1982, 1998). In this paper, we discussed some covariance analysis methods for time-to-event 

data through an example from a clinical trial for a maintenance treatment of bipolar disorder, 

in which substantial premature discontinuations of treatment occurred. The goal of this 

paper is to illustrate how to adapt the methods for covariate adjustment to the sensitivity 

analysis for assessing the robustness of conclusions to the management of missing 

information.
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The multivariable Cox proportional hazards model is commonly employed for covariate 

adjustment in randomized studies. However, the appropriate application depends on several 

assumptions, such as correct model specification and proportional hazards for each variable 

in the model. When the proportional hazards assumption is not satisfied, the type 1 error can 

be inflated for the Cox model with adjustment for covariables that are related to the outcome 

(Jiang et al., 2008). With adjustment for covariates, the treatment parameter estimates from 

the Cox model are often further from the null, and the corresponding SE estimates tend to be 

larger than the unadjusted counterparts. Therefore, the efficiency of the null hypothesis test 

of no treatment effect may not be clear for covariate adjustment (Hauck et al., 1998). To 

implement the covariate adjustment with multivariable Cox models in the sensitivity analysis 

for missing data, the imputed data sets are generated and analyzed by the Cox proportional 

hazards model with treatment and the set of covariates to be adjusted; and this could lead to 

the same issues as previously noted and cause concerns for interpreting the adjusted results, 

especially in the regulatory setting.

The NPANCOVA method proposed by Saville and Koch (2012) has random assignment of 

treatments as the principal assumption and avoids the major issues associated with the 

multivariable Cox proportional hazards model. Unlike the multivariable Cox model, the 

NPANCOVA method is more likely to preserve the type 1 error under non-proportional 

hazards and is more robust for different model assumptions (Jiang et al., 2008; Saville and 

Koch, 2013). The covariate-adjusted hazard ratio produced by NPANCOVA has the 

interpretation of a population average treatment effect, in contrast to the subpopulation 

(defined by adjusted covariates) specific estimates provided by the multivariable Cox model. 

If adjusted covariates explain some of the variation in the response variable, the 

NPANCOVA method could generate more powerful statistical tests through variance 

reduction (Koch et al., 1982, 1998). In addition, the covariate adjustment with NPANCOVA 

induces equivalent comparison groups by offsetting random imbalances between treatment 

groups for covariables with noteworthy associations with the outcome of interest, and 

thereby it provides clarification of the degree to which the detected difference between 

randomized groups for the response variable is due to treatment rather than random 

imbalances for covariates. The main limitation of the NPANCOVA method is that its scope 

does not provide estimation for the effect of the covariates with adjustment or for the 

interactions of these covariates with the treatment.

For the application data set with random covariate imbalances suggestively favoring the test 

treatment group to have better response, the NPANCOVA covariate-adjusted sensitivity 

analysis with unadjusted PHMI or covariate adjusted PHMI support robustness for their 

unadjusted and covariate adjusted conventional counterparts with the use of censoring for 

this particular example. On the other hand, the NPANCOVA method with KMMI produces a 

covariate-adjusted log hazard ratio closer to the null with SE reduction, but a larger p-value 

than the counterpart produced by the unadjusted Cox regression. This limitation in 

robustness, as noticed with KMMI in Zhao et al. (2014), mainly seems due to a departure 

from the proportional hazards assumption with the hazard ratio for treatments tending to be 

further from the null in the earlier part of the follow-up period than the later part.
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Figure 1. 
Sensitivity analyses with covariate adjustment
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Table 2

Associations of patients’ baseline characteristics and the primary outcome (assessed with Cox model)

Covariables
Univariate analysis Multivariate Analysis

Coefficient (SE) p-value Coefficient (SE) p-value

Age −0.001 (0.007) 0.932 0.001 (0.007) 0.890

Female (proportion) 0.046 (0.162) 0.776 −0.004 (0.164) 0.982

Pre-rand CGI-I score 0.055 (0.128) 0.669 −0.380 (0.219) 0.082

Pre-rand CGI-S score 0.149 (0.104) 0.153 0.260 (0.165) 0.115

Pre-rand GAS score −0.013 (0.008) 0.093 −0.015 (0.011) 0.151

Pre-rand MRS 11 item total score 0.073 (0.025) 0.004 0.077 (0.026) 0.003

Pre-rand HAMD 17 item total score 0.023 (0.019) 0.239 0.003 (0.025) 0.901
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Table 3

Covariate-adjusted analyses for treatment effects under the MAR-like assumption

Method Parameter (SE) HR (95% CI) p-values

Univariate (unadjusted) Cox model −0.393 (0.161) 0.675 (0.493, 0.925) 0.014

Multivariable Cox model (adjusted) −0.410 (0.164) 0.664 (0.482, 0.915) 0.012

NPANCOVA (adjusted) −0.374 (0.156) 0.688 (0.507, 0.935) 0.017
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Table 5

Key steps and assumptions in the performance of sensitivity analyses under θ = 1

Multiple imputation strategy Analysis for imputed data

Methods for obtaining survivor 
estimates

PH assumption for 
survival distributions

Analysis method PH assumption 
for covariates

1. KM estimator for individual groups Not required Univariate Cox model with treatment as the 
only explanatory variable

Not required

2. KM estimator for individual groups Not required Non-parametric ANCOVA Not required

3. KM estimator for individual groups Not required Multivariable Cox model with treatment and 
the seven covariables

Required

4. Breslow estimator from univariate Cox 
model with treatment as explanatory 
variable

Required for treatment 
groups

Univariate Cox model with treatment as 
explanatory variable

Not required

5. Breslow estimator from univariate Cox 
model with treatment as explanatory 
variable

Required for treatment 
groups

a. Nonparametric ANCOVA Not required

b. Multivariable Cox model with treatment and 
the seven covariables

Required

6. Breslow estimator from multivariable 
Cox model with treatment and 
covariables

Required for treatment 
groups and covariates

a. Nonparametric ANCOVA Not required

b. Multivariable Cox model with treatment and 
the seven covariables

Required
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