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Abstract

Introduction—Altered DNA methylation (DNAm) levels of hypothalamic-pituitary-adrenal 

(HPA) axis genes has been associated with exposure to childhood maltreatment (CM) and 

depression; however, it is unknown whether CM and depression have joint and potentially 

interacting effects on the glucocorticoid receptor (NR3C1) DNAm. We investigated the impact of 

CM and lifetime major depressive disorder (MDD) on NR3C1 DNAm and gene expression (GE) 

in 147 adult participants from the Detroit Neighborhood Health Study.

Methods—NR3C1 promoter region DNAm was assessed via pyrosequencing using whole blood-

derived DNA. Quantitative RT-PCR assays measured GE from leukocyte-derived RNA. Linear 

regression models were used to examine the relationship among CM, MDD, and DNAm.

Results—Both CM and MDD were significant predictors of NR3C1 DNAm: CM was associated 

with an increase in DNAm in an EGR1 transcription factor binding site (TFBS), whereas MDD 
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was associated with a decrease in DNAm downstream of the TFBS. No significant CM-MDD 

interactions were observed. CM alone was associated with significantly lower NR3C1 GE.

Limitations—Our report of CM is a retrospective self-report of abuse, which may introduce 

recall bias. DNAm was measured in whole blood and may not reflect brain-derived DNAm levels.

Conclusions—CM and MDD are both associated with altered DNAm levels in the NR3C1 
promoter region, however the location and direction of effects differ between the two exposures, 

and the functional effects, as measured by GE, appear to be limited to CM exposure alone. CM 

exposure may be biologically embedded in this key HPA axis gene.
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1. Introduction

There is a well-established link between early life adversity and poor mental health later in 

life (Afifi et al., 2008; McEwen, 2003). Specifically, childhood maltreatment has been 

strongly associated with the onset of major depressive disorder (MDD) (Kendler et al., 2004; 

Nemeroff, 2004) and other mental illnesses during adulthood, including posttraumatic stress 

disorder (PTSD) (Green et al., 2010), bipolar disorder (Afifi et al., 2008), and anxiety 

disorders (Kessler et al., 1997). Several decades of work in rodents, humans, and non-human 

primates has demonstrated the importance of early environment on the molecular pathways 

regulating the stress response (reviewed in (Klengel et al., 2014)). These studies have largely 

focused on examining the epigenetics of hypothalamic-pituitary-adrenal (HPA) axis genes 

due to the primary role of the HPA axis in regulating the body's stress response. 

Dysregulation of the HPA axis results in an altered stress response (Nemeroff, 2004), 

producing an increased risk for mood and anxiety disorders, as well as physical disorders 

such as diabetes and cardiovascular disease (Irwin and Cole, 2011; Nemeroff, 2004; Radtke 

et al., 2011). However, the molecular mechanisms that underlie HPA axis dysregulation, and 

their possible associations with commonly occurring mental disorders such as depression 

remain unclear. DNA methylation is a stable, but modifiable, epigenetic mark that is 

characterized by a chemical alteration to the nucleotides that comprise DNA (Whitelaw and 

Whitelaw, 2006). This chemical modification does not alter the underlying DNA sequence 

but rather serves to regulate chromatin structure and DNA accessibility, often resulting in 

altered transcription. DNA methylation is characterized by the addition of a methyl group, –

CH3, to the 5′ position of cytosine – typically when cytosine is coupled to guanine on the 

same strand of DNA – and is stable over time (Heijmans et al., 2008; Tyrka et al., 2008), 

tissue specific (Gama-Sosa et al., 1983), and responsive to environmental exposures (Fraga 

et al., 2005). From a functional perspective, DNA methylation of transcription factor binding 

sites (TFBS) within gene promoter regions typically results in reduced gene expression 

(Brenet et al., 2011), and, in particular, has been associated with early life changes to stress-

relevant phenotypes that persist into adulthood (Weaver et al., 2004). Thus, as a stable, but 

modifiable, molecular mechanism with functional effects, epigenetic regulation is a potential 

contributor to the etiology of mental disorders resulting from adverse early life experiences.
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A substantial body of evidence has shown that early life adversity, in particular childhood 

maltreatment, is associated with DNA methylation differences in HPA axis gene nuclear 

receptor subfamily 3, group member 1 (NR3C1), whose product is commonly known as the 

glucocorticoid receptor (McGowan et al., 2009; Tyrka et al., 2012). The glucocorticoid 

receptor plays an important role in the body's stress response as it not only binds to the stress 

hormone cortisol, but also modulates the negative feedback of the HPA axis. High levels of 

cortisol tamp down the stress response by reducing corticotropin releasing hormone (CRH), 

the hormone released by the hypothalamus that triggers the stress response cascade (Binder, 

2009); this negative feedback is facilitated by the binding of cortisol to the glucocorticoid 

receptor (Binder, 2009). Initial rodent studies in NR3C1 demonstrated that early 

environment, specifically level of maternal care, was associated with alterations to NR3C1 
DNA methylation, resulting in changes in stress sensitivity that last into adulthood (Weaver 

et al., 2004). Similarly, in humans, maternal depressed/anxious mood during the third 

trimester was associated with increased NR3C1 DNA methylation in a TFBS in cord 

derived-blood, and with increased infant cortisol responses 3 months postnatally (Oberlander 

et al., 2008). Subsequent human studies have confirmed exposure to childhood maltreatment 

and other early life adversities are associated with increased NR3C1 DNA methylation 

measured in both blood and post mortem brain tissue (Labonte et al., 2012; Martin-Blanco et 

al., 2014; McGowan et al., 2009; Tyrka et al., 2012). Maternal experiences during pregnancy 

have also been associated with DNA methylation differences in NR3C1 in their offspring, 

reviewed and summarized in a recent meta-analysis (Palma-Gudiel et al., 2015). These 

studies underscore the importance of early life environments and, in particular, the long-term 

impact of early life adversity (ELA)-induced changes to DNA methylation on mental health.

Despite the extensive research supporting the link between ELA and altered DNA 

methylation, few studies have examined the link between depression and NR3C1 DNA 

methylation. To date, only two studies have directly examined NR3C1 promoter region DNA 

methylation and MDD. A recent study examined NR3C1 DNA methylation and 

hippocampal volume in a group of participants with MDD compared to healthy controls, 

finding MDD patients had significantly lower levels of DNA methylation within the 

promoter region of NR3C1 (Na et al., 2014). Additionally, a second paper examined NR3C1 
DNA methylation in a group of participants with and without MDD, reporting a significant 

increase in NR3C1 DNA methylation at a single CpG site associated with the disorder 

(Nantharat et al., 2015). These studies report opposite associations between MDD and 

NR3C1 DNA methylation levels measured in blood; however, the relationship among 

childhood maltreatment, MDD, and NR3C1 DNA methylation was not addressed in either 

work. To address this gap in knowledge, we sought to examine the impact of childhood 

maltreatment and MDD on NR3C1 DNA methylation and gene expression levels among 

adults. We hypothesized that (1) childhood maltreatment and MDD affect NR3C1 DNA 

methylation in a joint and potentially interacting manner, and, secondarily, that (2) DNA 

methylation differences resulting from childhood maltreatment and/or MDD would 

contribute to functional consequences in NR3C1 as measured by gene expression levels.
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2. Methods

2.1. Participant selection

The Detroit Neighborhood Health Study (DNHS) was approved by the institutional review 

boards at the University of Michigan and the University of North Carolina at Chapel Hill. 

Participants (N=152) were selected from the DNHS, a longitudinal, population-based 

representative sample of adult residents from Detroit, MI (Uddin et al., 2010). All 

participants provided informed consent prior to participation in the DNHS. Selection for 

inclusion within this study was based on the availability of whole-blood derived DNA, 

leukocyte-derived RNA, and complete survey data regarding childhood maltreatment and 

depression histories. In our study population of 152 DNHS participants, 94 were female and 

58 were male; 26 self-identified as European-American, 116 as African-American, and 10 as 

“other”. The average age was 49.6 years.

2.2. Childhood maltreatment

Participant survey data regarding childhood maltreatment history were collected via 

structured telephone interviews on the severity, duration, and frequency of each event type. 

Assessment of childhood maltreatment was based on the Conflict Tactics Scale (CTS) 

(Straus, 1979) and the Childhood Trauma Questionnaire (CTQ) (Bernstein et al., 1997), as 

previously described (Keyes et al., 2012; Uddin et al., 2013). CTS items assessed physical 

and emotional abuse before age 11, with responses rated on a 5-point scale. CTQ assessed 

physical and sexual abuse before age 18, rating responses on a 3-point scale. The childhood 

maltreatment score variable is a continuous measure ranging from 0 to 22, as previously 

described (Keyes et al., 2012; Uddin et al., 2013). In this study, participants with childhood 

maltreatment exposure (N=76) were defined as any individual belonging to the upper 

quartile for childhood maltreatment score within the full DNHS survey sample (N=1547). 

Participants without childhood maltreatment exposure (N=76) belonged to the bottom 

quartile of childhood maltreatment score within the full DNHS survey sample.

2.3. Depression measure

MDD was assessed using the Patient Health Questionnaire (PHQ-9) (Kroenke et al., 2001) 

with additional questions that assessed timing and duration of symptoms, consistent with 

DSM-IV criteria (American Psychiatric, 1994). The PHQ-9 is a 9-item instrument rating 

responses on a 4-point scale ranging from 0 (not at all) to 3 (nearly every day), with total 

scores ranging from 0 to 27. The measure has been previously validated (Uddin et al., 2011). 

MDD was defined as the presence of lifetime MDD (cases N=76, controls N=76).

2.4. Antidepressant medication

Participant medication information was taken during the in-home visit at the time of biologic 

sample collection (see Section 2.5). Participants were instructed to provide all current 

prescribed and over the counter medication to the phlebotomist, who recorded the 

medication name, dosage, and frequency each medication was taken. Antidepressant 

medication use for this study was determined based on participant medication information 
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from the appropriate wave. SAS Enterprise Guide 7.1 (SAS Institute Incorporated, NC) was 

used to code medications as antidepressants.

2.5. Sample preparation

2.5.1. DNA—Whole blood was collected via venipuncture from study participants during 

scheduled in home visits by a trained phlebotomist. DNA was isolated from whole blood 

using Qiagen's QIAamp DNA Blood Mini Kit (Qiagen, Valencia, CA) and LifeSciences's 

Quickgene DNA Whole Blood Kit (St. Petersburg, FL) following the manufacturer's 

recommended protocols. DNA concentrations were verified using the NanoDrop 1000 

(ThermoScientific, Waltham, MA) following the manufacturer's recommended protocol.

2.5.2. RNA—RNA was obtained from leukocytes using Leukolock kits following the 

manufacturer's alternative protocol to preserve total RNA (Ambion, Austin, TX). Quality 

control criteria was used to ensure high quality RNA was obtained, including a RNA 

integrity number (RIN) ≥ 5, 28s/18s ≥ 1.0, and 260/280 ≥ 1.7 (Fleige and Pfaffl., 2006; 

Fleige et al., 2006). RNA sample RIN values and 28s/18s ratios were calculated using the 

2100 Bioanalyzer (Agilent, Wilmington, DE) to determine RNA quality. RNA concentration 

for each sample was determined using the NanoDrop 1000 (ThermoScientific).

2.5.3. Peripheral blood mononuclear cell counts—At the time of blood draw, two 

FICOLL gradient containing 8 ml BD Vacutainers CPT™ with sodium citrate (Franklin 

Lakes, NJ) were used for the collection of peripheral blood mononuclear cells (PBMC) 

samples. Participant tubes were spun in a centrifuge within two hours of collection and 

processed immediately. During processing, mononuclear cells were isolated, assessed for 

viability, and counted using Invitrogen's Countess automated cell counter (Carlsbad, CA). A 

small number of PBMC samples used in this study were measured using TPP PCV Packed 

CellVolume tubes (Trasadingen, Switzerland) and assessed for viability using a 

hemacytometer (Fisher Scientific, Pittsburgh, PA).

2.5.4. Bisulfite conversion—750 ng of DNA from each participant was bisulfite 

converted using Qiagen's Epitect Bisulfite Kit following the manufacturer's recommended 

protocol. Negative controls containing RNA/DNA free water in place of DNA were included 

with each bisulfite conversion. High and low methylation control DNA purchased from 

Zymo Research (Irvine, CA) were bisulfite converted along with the participant samples in 

order to assess assay performance.

2.6. PCR amplification and pyrosequencing

DNA methylation for 13 CpG sites within the promoter region of NR3C1 were assessed via 

pyrosequencing (CHR5: 142,783,655–142,783,501). The 13 CpG sites targeted in our 

analyses encompass a 155 bp region and contain an EGR1 TFBS (also known as NGF1-A) 

(Fig. 1). This locus has been the focus of several other previous studies (McGowan et al., 

2009; Oberlander et al., 2008; Radtke et al., 2011; Tyrka et al., 2012). Primers were newly 

developed for this study (see below) using the PyroMark Q24 Assay Design Software 2.0 

(Qiagen). Validation experiments were carried out according to recommendations in the 

PyroMark manual on all custom assays to ensure high quality primers were used. PCRs were 

Bustamante et al. Page 5

J Affect Disord. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



run in duplicate and contained 20 ng of bisulfite converted DNA as starting template. No 

template controls were also run in duplicate with each set of PCRs as a negative control. 

Each primer was also tested using bisulfite converted DNA from high and low methylation 

controls (Zymo). Qiagen's PyroMark Q24 Pyrosequencer was used to detect DNA 

methylation levels following manufacturer's protocols and default settings.

1 to 4CpG.

Forward PCR primer: 5′-AGTTTTAGAGTGGGTTTGGAG-3′.

Reverse PCR primer (biotinylated): 5′-

ACCACCCAATTTCTCCAATTTCTTTTCTC-3′.

Sequencing primer: 5′-GAGTGGGTTTGGAGT-3′.

5 to 13CpG.

Forward PCR primer: 5′-GGGGGAGGGAAGGAGGTA-3′.

Reverse PCR primer (biotinylated): 5′-CCCCCAACTCCCCAAAAA-3′.

Sequencing primer: 5′-GGGAGGGAAGGAGGTAG-3′.

9 to 13CpG.

Forward PCR primer: 5′-GGAAGGAGGTAGAGAGAAAAGAAATTGG-3′.

Reverse PCR primer (biotinylated): 5′-CCCCCAACTCCCCAAAAA-3′.

Sequencing primer: 5′-GGAGAAATTAGGTTTTTTTAA-3′.

PCR Program: (same for all primer sets).

Initial 15 minutes 95°C

Denaturation 30 seconds 94°C

Annealing 30 seconds 56°C 50 cycles

Extension 30 seconds 72°C

Final 10 minutes 72°C

Hold 4°C indefinitely

2.7. Reverse transcription and Real Time PCR

To analyze gene expression levels, RNA was reverse transcribed into cDNA following the 

manufacturer's protocol using the High Capacity Reverse Transcription Kit purchased from 

Applied Bio-Systems (Foster City, CA). Ready-made Taqman gene expression assays 

(Applied Biosystems) were used to measure relative transcript levels of the target gene 

NR3C1 (Hs00353740_m1) and the control gene PGK1 (Hs00943178_g1) run in separate 

wells. The NR3C1 Taqman assay specifically targeted the GRα isoform. Reactions were 

performed in triplicate for each locus, with each replicate tested in a 20 µl reaction 

containing 10 ng of participant cDNA. Reactions were run on a HT7500 Fast Real Time 
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PCR machine (Applied BioSystems, Foster City, CA) following the manufacturer's 

recommended protocol for standard reactions.

2.8. Primary analyses

Previous studies have reported significant associations between DNA methylation at CpG 

sites 1–4 and early life experiences, while CpG sites 5–13 have been grouped together for 

exploratory analyses (McGowan et al., 2009; Oberlander et al., 2008; Tyrka et al., 2012). 

Additionally, the ERG1 TFBS, previously implicated in multiple studies of early-life 

adversity and NR3C1 DNA methylation (Romens et al., 2015; Tyrka et al., 2012; van der 

Knaap et al., 2014) encompasses CpG site 3 and 4, while other TFBS are located within bin 

5–13 as identified using the UCSC genome browser track “Encode Regulation” ChIP-seq 

data. The TFBSs within the 5–13CpG region have been confirmed in a variety of cell lines 

including those derived from blood and brain tissues. Similar binning approaches have been 

applied to analyses of stress-related effects on other HPA axis genes, in which functionally 

distinct regions are grouped together in bins (e.g. FKBP5; (Klengel et al., 2013; Yehuda et 

al., 2015). Therefore, in our study, DNA methylation levels were analyzed in two bins, 1–4 

and 5–13. Bin 1–4 was created by averaging DNA methylation levels within participants 

across all 4 sites. To create bin 5–13, we pooled data generated from both the 5to13CpG and 

9to13CpG primer sets, and then averaged DNA methylation levels within participants across 

all 9 sites. Once data collection was complete, the full DNA methylation dataset N=152 was 

examined for normality according to bin (1–4 or 5–13) using boxplots, histograms, and the 

Shapiro-Wilk test of normality in IBM SPSS Statistics for Windows, version 22.0 (IBM 

Corp., Armonk, NY). Extreme outliers (more than 3 interquartile ranges from the nearest 

edge of the boxplot) were removed from the dataset to facilitate normality, resulting in a 

final dataset comprised of N=147.

2.8.1. T-tests—Independent samples t-tests were used to test for bivariate associations 

between childhood maltreatment exposure and demographic covariates, as well as MDD and 

demographic covariates, using IBM SPSS Statistics for Windows version 22.0 (IBM Corp., 

Armonk, NY). Chi-square tests were used to test for associations between childhood 

maltreatment exposure and the demographic variables of sex and race. Similarly, Chi-square 

tests were used to test for the association between MDD history and sex and race. All 

statistical tests were two-tailed and results were considered significant with an uncorrected p 
< 0.05.

2.8.2. Regression—Linear regressions were performed separately on each bin to test 

whether childhood maltreatment and MDD have joint and potentially interacting 

relationships on DNA methylation in these regions. In addition to our main variables of 

interest, all regression models included age, sex, race, PBMC viability count and anti-

depressant medication information as covariates. Main effect models were run first, followed 

by interaction models. We addressed the concern of multiple hypothesis testing by 

calculating the false discovery rate (FDR) using the Benjamini Liu method (Benjamini et al., 

2001) for our primary study hypotheses, such that results were accepted as significant when 

pcorrected ≤ 0.012.
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2.8.3. Secondary analyses

2.8.3.1. Gene expression: To examine the potential functional consequences of observed 

DNA methylation differences, we analyzed NR3C1 gene expression values using real-time 

PCR data. Cycle threshold (CT) values for each replicate were averaged to obtain a mean 

CT value for each participant used in our analysis. All data was examined for outliers, and 

any replicates with a standard deviation greater than 0.3 were removed (n=6), and the mean 

CT was re-calculated from remaining data points. Gene expression data were analyzed using 

the comparative CT method (Schmittgen and Livak, 2008), normalizing NR3C1 gene 

expression against the control gene PGK1. Resulting data were analyzed by student's t-test 

to compare expression levels according to the main study variables, as warranted by the 

DNA methylation data, and results were accepted as significant if p < 0.05.

3. Results

Participants with exposure to childhood maltreatment did not differ significantly from those 

without childhood maltreatment exposure in terms of age, sex, or race (Table 1). As 

expected, participants with childhood maltreatment exposure differed from those without 

such exposure for childhood maltreatment score (Table 1); in addition, DNA methylation 

over CpG sites 1–4 was significantly higher in those with vs. without childhood 

maltreatment exposure (Fig. 2). Similarly, MDD cases and controls were significantly 

different for childhood maltreatment score (Table 1); in addition, DNA methylation was 

significantly lower over CpG sites 5–13 in those with vs. without MDD (Fig. 3).

3.1. Main effect and interaction of childhood maltreatment and MDD to predict NR3C1 DNA 
methylation levels

3.1.1. Average DNA methylation CpG sites 1–4—We first examined whether 

childhood maltreatment and MDD predict DNA methylation levels in our study participants, 

with DNA methylation averaged at CpGs 1–4 and 5–13, respectively, as the outcome (Table 

2). In the main effects model for the average DNA methylation of CpG sites 1–4, childhood 

maltreatment significantly predicted DNA methylation levels at CpG sites 1–4, such that 

participants with childhood maltreatment exposure showed increased DNA methylation 

(β=0.038 SE 0.015, pcorrected=0.001); MDD was not associated with DNA methylation in 

this region (pcorrected=0.019) following FDR adjustment, which attenuated the unadjusted 

significant p-value (p=0.026). Age, sex, race, PBMC, and antidepressant medication were 

also not significant in this model (Table 2). In addition, the interaction model showed no 

significant synergistic effect of childhood maltreatment and MDD on NR3C1 DNA 

methylation (Table 2).

3.1.2. Average DNA methylation CpG sites 5–13—For DNA methylation averaged 

across CpG sites 5–13, the main effects models revealed that MDD significantly predicted 

lower DNA methylation (β=−1.038 SE 0.315, pcorrected=0.008). childhood maltreatment 

was not associated with DNA methylation in this region (pcorrected=0.05). In addition, age, 

sex, PBMCs, and antidepressant medication were not significant in this model (Table 2). As 

with sites 1–4, analyses of sites 5–13 showed no significant synergistic effect of childhood 

maltreatment and MDD on NR3C1 DNA methylation (pcorrected=0.05; Table 2).
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3.2. Gene expression of peripheral leukocytes

Results from the regression models suggested independent effects of childhood maltreatment 

and MDD on DNA methylation, thus we chose to separately examine the potential effect of 

childhood maltreatment and MDD on gene expression. T-tests were used to determine 

significant differences in gene expression levels within groups (childhood maltreatment vs 

No childhood maltreatment and MDD vs. No MDD). Results indicated a significant 

(p=0.037) decrease in fold change in the childhood maltreatment group compared to the No 

childhood maltreatment group; no significant expression differences were observed for 

MDD (p=0.27) (Fig. 4).

4. Discussion

The overall goal of this study was to investigate the association of childhood maltreatment 

and MDD with DNA methylation and gene expression of the glucocorticoid receptor in an 

adult population. Our primary analyses sought to test whether childhood maltreatment and 

MDD have a joint and potentially interacting association with NR3C1 DNA methylation. 

Our secondary analyses assessed whether childhood maltreatment and/or MDD-associated 

differences in NR3C1 DNA methylation levels were also associated with differences in gene 

expression. Results from our primary analyses showed that childhood maltreatment exposure 

was associated with an increase in DNA methylation in the upstream region of NR3C1 
tested in our assays, i.e. across the four CpG sites spanning the EGR1 TFBS. Conversely, 

MDD was associated with significant decreases in DNA methylation in the latter half of the 

CpG sites examined (i.e. sites 5–13). No significant childhood maltreatment × MDD 

interactions were observed in either region (1–4 or 5–13), suggesting that there is no effect 

heterogeneity for childhood maltreatment and MDD on DNA methylation within these sites 

of the NR3C1 promoter region. Taken together, results indicate that while childhood 

maltreatment and MDD are both associated with DNA methylation differences the NR3C1 
promoter region, the location and direction of effects differ between the two exposures.

Our finding of increased NR3C1 DNA methylation associated with exposure to childhood 

maltreatment is consistent with previous literature focusing on either childhood 

maltreatment (Martin-Blanco et al., 2014; McGowan et al., 2009; Tyrka et al., 2012) or early 

life experiences (Oberlander et al., 2008; Radtke et al., 2011). Similarly, our MDD results 

are also consistent with a recent study examining NR3C1 DNA methylation levels which 

reported decreased DNA methylation (Na et al., 2014). It should be noted that one other 

study that examined NR3C1 promoter region DNA methylation levels reported a significant 

increase at their CpG site 7 (corresponding to CpG site 5 in this study) in MDD cases 

compared to healthy controls (Nantharat et al., 2015). Additionally, only one of their CpG 

sites overlaps with the region we found to be significantly associated with MDD in our 

study, which is a point of consideration when comparing results. However, neither of these 

studies assessed childhood maltreatment or other adverse life events in their population. 

Despite these findings, our study is distinct from this more recent work as we examined the 

joint and potentially interacting effects of both childhood maltreatment and MDD on NR3C1 
DNA methylation. Interestingly, despite this difference in focus from previous studies, we 

did detect significant differences in DNA methylation associated with childhood 
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maltreatment and MDD, which are consistent with previous studies that examined these 

outcomes separately.

To date, research on NR3C1 DNA methylation has largely focused on the importance of 

early life environment (Oberlander et al., 2008; Radtke et al., 2011; Tyrka et al., 2012). Our 

results, however, identify a significant association between MDD and DNA methylation in 

adults, suggesting that NR3C1 DNA methylation levels are potentially more plastic than 

previously thought; early life environment may not be the only critical window where 

alterations of DNA methylation levels can occur within HPA axis genes. Additionally, we 

did not observe a significant interaction between childhood maltreatment and MDD for CpG 

sites in either of the two bins (1–4 or 5–13). This finding is somewhat surprising given the 

strong body of evidence linking childhood maltreatment exposure with MDD onset (Kendler 

et al., 2004; Nemeroff, 2004) and our significant association of childhood maltreatment and 

MDD with DNA methylation levels. The lack of significant interaction suggests childhood 

maltreatment and MDD influence NR3C1 promoter region DNA methylation levels 

independently of one another.

Our secondary analyses tested whether the observed significant DNA methylation 

differences were reflective of gene expression levels in NR3C1. We found a significant 

decrease in gene expression between individuals with vs. without childhood maltreatment 

exposure. This finding is consistent with previous reports in the literature linking increased 

DNA methylation within the promoter to decreased gene expression (Brenet et al., 2011; 

McGowan et al., 2009), in particular at CpG sites spanning the EGR1 TFBS (Weaver et al., 

2007). Despite finding significantly lower DNA methylation in the downstream region of 

NR3C1 CpG sites associated with MDD, we did not observe significant gene expression 

differences associated with MDD status; however, MDD does not significantly influence 

DNA methylation at the EGR1-associated CpG sites, suggesting that its functional 

consequences (as measured by NR3C1 expression) may be limited compared to the effects 

of childhood maltreatment exposure. This null gene expression finding associated with 

MDD is consistent with a previous study examining DNA methylation and gene expression 

in a group of MDD patients and healthy controls (Nantharat et al., 2015).

It should be noted that several transcripts of NR3C1 exist as a result of alternative splicing. 

The presence of these different transcripts can result in altered glucocorticoid sensitivity 

(Lewis-Tuffin and Cidlowski, 2006; Shahidi et al., 1999). Two of the more prominent 

products of alternative splicing include: glucocorticoid receptor α (GRα) and β (GRβ). 

Multiple studies have reported GRα as the main active isoform (Labonte et al., 2014, 2012; 

Pujols et al., 2002) which works to bind glucocorticoids, while GRβ negatively regulates 

GRα (Hagendorf et al., 2005; Oakley et al., 1996; Pujols et al., 2002). GRα is more 

prevalent in peripheral leukocytes and monocytes compared to GRβ (Hagendorf et al., 2005; 

Pujols et al., 2002), the same tissues used in this study to measure relative gene expression 

and DNA methylation levels of NR3C1, respectively. Our Taqman gene expression assay 

specifically targeted the GRα isoform. Taking into account our finding of decreased mRNA 

expression in those with a history of childhood maltreatment, is it likely that GR-α is down 

regulated among those with this exposure, possibly leading to decreased cortisol sensitivity. 

This notion is supported by a study reporting significantly decreased GRα mRNA 
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expression in participants with PTSD compared to healthy controls. Of particular relevance 

to the current work is the finding that decreased GRα expression was modulated by a dose-

response effect of trauma irrespective of PTSD status, such that those with higher trauma 

loads showed more marked decrease in GRα expression (Gola et al., 2014).

Of particular importance to this study is the issue of tissue specificity in DNA methylation. 

In this study, we report DNA methylation levels derived from a peripheral tissue, blood, and 

do not assess DNA methylation in brain, as our population is composed of living individuals. 

Nevertheless, several studies have examined post-mortem brain tissue samples and report 

similar patterns of DNA methylation as those observed in peripheral tissue (Farre et al., 

2015; McGowan et al., 2009). To assess whether DNA methylation levels within NR3C1 
were consistent between blood and brain tissues, we visualized our regions of interest (see 

methods for coordinates) using the UCSC genome browser (genome.ucsc.edu) and 

MARMAL-AID (marmal-aid.org). NR3C1 DNA methylation levels were similar in both 

tissues, providing further support that the observed changes in blood are potentially a useful 

biomarker of changes occurring in the brain. Additional work in rodents suggests that GR-

responsive genes, including NR3C1, show concordant gene expression changes in brain and 

blood in relation to stress-related phenotypes (Daskalakis et al., 2014), further supporting the 

use of select blood-based measures as biomarkers of stress-related conditions.

4.1. Limitations

It is important to note limitations one must consider when interpreting our results. First, the 

childhood maltreatment variable used in our study is a retrospective self-reported measure 

from each individual of abuses occurring before the age of 18. Even though early life 

experiences have been shown to be long lasting and detected into adulthood, self-reported 

measures may introduce recall bias. Previously, retrospective self-reports of childhood 

maltreatment from adults with documented cases were associated with underreporting of 

physical and sexual abuse (Widom and Morris, 1997; Widom and Shepard, 1996). 

Therefore, our measure of childhood maltreatment may well be an underestimate of previous 

abuse. Second, we report small, yet significant DNA methylation changes and observed 

effect sizes within our data; however, these results are consistent with previous childhood 

maltreatment and depression-related reports of NR3C1 DNA methylation (Labonte et al., 

2014; Oberlander et al., 2008; Tyrka et al., 2012). In addition, the functional effect of 

childhood maltreatment-associated DNA methylation differences on gene expression lends 

support to the relevance of these small effects. Third, although we controlled for PBMC 

viability counts, which did not differ among participants with vs. without childhood 

maltreatment or MDD, we were not able to control for differences in white blood cell 

subsets. Thus it is possible that the childhood maltreatment and/or MDD-associated DNA 

methylation differences might be localized to a particular cell type. Fourth, studies have 

shown that atypical and melancholic subtypes of MDD manifest in different biologic 

pathways (Charmandari et al., 2005; Lamers et al., 2013); however, in our work we were 

unable to subdivide our participants into atypical or melancholic depression based on the 

instrument used within the parent study preventing a more detailed interpretation of our 

findings with regard to MDD subtype. Finally, we were unable to assess whether our 

observed DNA methylation and expression differences in NR3C1 were also associated with 
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differences in cortisol levels, as such samples were not collected in the original parent study. 

However, related studies suggest that DNA methylation differences are indeed associated 

with differences in cortisol levels (Tyrka et al., 2012), with increased NR3C1 DNA 

methylation associated with reductions in plasma cortisol.

This study also has many strengths. Our study is unique in that we are testing samples from 

a non-clinical, community-based cohort of adult residents in Detroit, providing the 

opportunity to generalize our results to the larger Detroit population. Additionally, our 

analyses included participant antidepressant medication information: controlling for 

medication use in analyses is imperative to accurately interpret data and results, due to 

multiple reports of altered epigenetic signatures following antidepressant medication use 

(Melas et al., 2012; Perisic et al., 2010). Furthermore, our study extends the current 

literature, as we simultaneously examined the association of childhood maltreatment and 

MDD on DNA methylation and gene expression levels within the same study participants. 

Finally, we tested study participants for both gene expression and DNA methylation levels, 

allowing us to infer the potential downstream impact of differences in DNA methylation 

levels.

5. Conclusion

In conclusion, we report significant DNA methylation differences within the promoter 

region of NR3C1 associated with both childhood maltreatment and MDD. We also found a 

significant decrease in NR3C1 gene expression among those exposed to childhood 

maltreatment, however no significant difference in relative gene expression levels was 

observed in MDD. Future work on other HPA axis genes should provide additional insight 

into the joint and potentially interacting effects of childhood maltreatment and MDD on 

stress-relevant DNA methylation.

Acknowledgments

The authors would like to thank Sarah Lee for assisting with medication data entry.

Funding

This work was funded by NIH grants DA022720 and MH088283.

References

Afifi TO, Enns MW, Cox BJ, Asmundson GJ, Stein MB, Sareen J. Population attributable fractions of 
psychiatric disorders and suicide ideation and attempts associated with adverse childhood 
experiences. Am. J. Public Health. 2008; 98:946–952. [PubMed: 18381992] 

American Psychiatric, A. Diagnostic and Statistical Manual of Mental Disorders, Fourth edition. 
Washintgon, DC: American Psychiatric Association; 1994. 

Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior 
genetics research. Behav. Brain Res. 2001; 125:279–284. [PubMed: 11682119] 

Bernstein DP, Ahluvalia T, Pogge D, Handelsman L. Validity of the Childhood Trauma Questionnaire 
in an adolescent psychiatric population. J. Am. Acad. Child and Adolesc. Psychiatry. 1997; 36(3):
340–348. [PubMed: 9055514] 

Bustamante et al. Page 12

J Affect Disord. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Binder EB. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and 
therapy of affective and anxiety disorders. Psycho-neuroendocrinology. 2009; 34(Suppl. 1):S186–
S195.

Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, Scandura JM. DNA methylation of the 
first exon is tightly linked to transcriptional silencing. PLoS One. 2011; 6:e14524. [PubMed: 
21267076] 

Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu. Rev. Physiol. 
2005; 67:259–284. [PubMed: 15709959] 

Daskalakis NP, Cohen H, Cai G, Buxbaum JD, Yehuda R. Expression profiling associates blood and 
brain glucocorticoid receptor signaling with trauma-related individual differences in both sexes. 
Proc. Natl. Acad. Sci. USA. 2014; 111:13529–13534. [PubMed: 25114262] 

Farre P, Jones MJ, Meaney MJ, Emberly E, Turecki G, Kobor MS. Concordant and discordant DNA 
methylation signatures of aging in human blood and brain. Epigenetics Chromatin. 2015; 8:19. 
[PubMed: 25977707] 

Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Asp. 
Med. 2006; 27:126–139.

Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW. Comparison of relative mRNA 
quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. 
Biotechnol. Lett. 2006; 28:1601–1613. [PubMed: 16900335] 

Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, 
Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag 
A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M. Epigenetic differences arise during the 
lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA. 2005; 102:10604–10609. [PubMed: 
16009939] 

Gama-Sosa MA, Midgett RM, Slagel VA, Githens S, Kuo KC, Gehrke CW, Ehrlich M. Tissue-specific 
differences in DNA methylation in various mammals. Biochim. Biophys. Acta. 1983; 740:212–
219. [PubMed: 6860672] 

Gola H, Engler A, Morath J, Adenauer H, Elbert T, Kolassa IT, Engler H. Reduced peripheral 
expression of the glucocorticoid receptor alpha isoform in individuals with posttraumatic stress 
disorder: a cumulative effect of trauma burden. PLoS One. 2014; 9:e86333. [PubMed: 24466032] 

Green JG, McLaughlin KA, Berglund PA, Gruber MJ, Sampson NA, Zaslavsky AM, Kessler RC. 
Childhood adversities and adult psychiatric disorders in the national comorbidity survey 
replication I: associations with first onset of DSM-IV disorders. Arch. Gen. psychiatry. 2010; 
67:113–123. [PubMed: 20124111] 

Hagendorf A, Koper JW, de Jong FH, Brinkmann AO, Lamberts SW, Feelders RA. Expression of the 
human glucocorticoid receptor splice variants alpha, beta, and P in peripheral blood mononuclear 
leukocytes in healthy controls and in patients with hyper- and hypocortisolism. J. Clin. Endocrinol. 
Metab. 2005; 90:6237–6243. [PubMed: 16118334] 

Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. 
Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. 
Natl. Acad. Sci. USA. 2008; 105:17046–17049. [PubMed: 18955703] 

Irwin MR, Cole SW. Reciprocal regulation of the neural and innate immune systems. Nat. Rev. 
Immunol. 2011; 11:625–632. [PubMed: 21818124] 

Kendler KS, Kuhn JW, Prescott CA. Childhood sexual abuse, stressful life events and risk for major 
depression in women. Psychol. Med. 2004; 34:1475–1482. [PubMed: 15724878] 

Kessler RC, Davis CG, Kendler KS. Childhood adversity and adult psychiatric disorder in the US 
National Comorbidity Survey. Psychol. Med. 1997; 27:1101–1119. [PubMed: 9300515] 

Keyes KM, McLaughlin KA, Koenen KC, Goldmann E, Uddin M, Galea S. Child maltreatment 
increases sensitivity to adverse social contexts: Neighborhood physical disorder and incident binge 
drinking in Detroit. Drug Alcohol Depend. 2012; 122:77–85. [PubMed: 21981990] 

Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, Pace TWW, Mercer KB, 
Mayberg HS, Bradley B, Nemeroff CB, Holsboer F, Heim CM, Ressler KJ, Rein T, Binder EB. 
Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat. 
Neurosci. 2013; 16:33–41. [PubMed: 23201972] 

Bustamante et al. Page 13

J Affect Disord. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Klengel T, Pape J, Binder EB, Mehta D. The role of DNA methylation in stress-related psychiatric 
disorders. Neuropharmacology. 2014; 80:115–132. [PubMed: 24452011] 

Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J. 
Gen. Intern. Med.: Off. J. Soc. Res. Educ. Prim. Care Intern. Med. 2001; 16:606–613.

Labonte B, Azoulay N, Yerko V, Turecki G, Brunet A. Epigenetic modulation of glucocorticoid 
receptors in posttraumatic stress disorder. Transl. Psychiatry. 2014; 4:e368. [PubMed: 24594779] 

Labonte B, Yerko V, Gross J, Mechawar N, Meaney MJ, Szyf M, Turecki G. Differential 
glucocorticoid receptor exon 1(B), 1(C), and 1(H) expression and methylation in suicide 
completers with a history of childhood abuse. Biol. Psychiatry. 2012; 72:41–48. [PubMed: 
22444201] 

Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman AT, Penninx BW. Evidence for a 
differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic 
versus atypical depression. Mol. Psychiatry. 2013; 18:692–699. [PubMed: 23089630] 

Lewis-Tuffin LJ, Cidlowski JA. The physiology of human glucocorticoid receptor beta (hGRbeta) and 
glucocorticoid resistance. Ann. N.Y. Acad. Sci. 2006; 1069:1–9. [PubMed: 16855130] 

Martin-Blanco A, Ferrer M, Soler J, Salazar J, Vega D, Andion O, Sanchez-Mora C, Arranz MJ, 
Ribases M, Feliu-Soler A, Perez V, Pascual JC. Association between methylation of the 
glucocorticoid receptor gene, childhood maltreatment, and clinical severity in borderline 
personality disorder. J. Psychiatr. Res. 2014; 57:34–40. [PubMed: 25048180] 

McEwen BS. Early life influences on life-long patterns of behavior and health. Ment. Retard. Dev. 
Disabil. Res. Rev. 2003; 9:149–154. [PubMed: 12953293] 

McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ. 
Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood 
abuse. Nat. Neurosci. 2009; 12:342–348. [PubMed: 19234457] 

Melas PA, Rogdaki M, Lennartsson A, Bjork K, Qi H, Witasp A, Werme M, Wegener G, Mathe AA, 
Svenningsson P, Lavebratt C. Antidepressant treatment is associated with epigenetic alterations in 
the promoter of P11 in a genetic model of depression. Int. J. Neuropsychopharmacol./Off. Sci. J. 
Coll. Int. Neuropsychopharmacol. 2012; 15:669–679.

Na KS, Chang HS, Won E, Han KM, Choi S, Tae WS, Yoon HK, Kim YK, Joe SH, Jung IK, Lee MS, 
Ham BJ. Association between glucocorticoid receptor methylation and hippocampal subfields in 
major depressive disorder. PLoS One. 2014; 9:e85425. [PubMed: 24465557] 

Nantharat M, Wanitchanon T, Amesbutr M, Tammachote R, Praphanphoj V. Glucocorticoid receptor 
gene (NR3C1) promoter is hypermethylated in Thai females with major depressive disorder. 
Genet. Mol. Res.: GMR. 2015; 14:19071–19079. [PubMed: 26782558] 

Nemeroff CB. Neurobiological consequences of childhood trauma. J. Clin. Psychiatry. 2004; 65(Suppl. 
1):18–28.

Oakley RH, Sar M, Cidlowski JA. The human glucocorticoid receptor beta isoform. Expression, 
biochemical properties, and putative function. J. Biol. Chem. 1996; 271:9550–9559. [PubMed: 
8621628] 

Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to 
maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and 
infant cortisol stress responses. Epigenetics: Off. J. DNA Methylation Soc. 2008; 3:97–106.

Palma-Gudiel H, Cordova-Palomera A, Eixarch E, Deuschle M, Fananas L. Maternal psychosocial 
stress during pregnancy alters the epigenetic signature of the glucocorticoid receptor gene 
promoter in their offspring: a meta-analysis. Epigenetics: Off. J. DNA Methylation Soc. 2015; 
10:893–902.

Perisic T, Zimmermann N, Kirmeier T, Asmus M, Tuorto F, Uhr M, Holsboer F, Rein T, Zschocke J. 
Valproate and amitriptyline exert common and divergent influences on global and gene promoter-
specific chromatin modifications in rat primary astrocytes. Neuropsychopharmacol.: Off. Publ. 
Am. Coll. Neuropsychopharmacol. 2010; 35:792–805.

Pujols L, Mullol J, Roca-Ferrer J, Torrego A, Xaubet A, Cidlowski JA, Picado C. Expression of 
glucocorticoid receptor alpha- and beta-isoforms in human cells and tissues. Am. J. Physiol. Cell 
Physiol. 2002; 283:C1324–C1331. [PubMed: 12225995] 

Bustamante et al. Page 14

J Affect Disord. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Radtke KM, Ruf M, Gunter HM, Dohrmann K, Schauer M, Meyer A, Elbert T. Transgenerational 
impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. 
Transl. Psychiatry. 2011; 1:e21. [PubMed: 22832523] 

Romens SE, McDonald J, Svaren J, Pollak SD. Associations between early life stress and gene 
methylation in children. Child. Dev. 2015; 86:303–309. [PubMed: 25056599] 

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat. 
Protoc. 2008; 3:1101–1108. [PubMed: 18546601] 

Shahidi H, Vottero A, Stratakis CA, Taymans SE, Karl M, Longui CA, Chrousos GP, Daughaday WH, 
Gregory SA, Plate JM. Imbalanced expression of the glucocorticoid receptor isoforms in cultured 
lymphocytes from a patient with systemic glucocorticoid resistance and chronic lymphocytic 
leukemia. Biochem. Biophys. Res. Commun. 1999; 254:559–565. [PubMed: 9920778] 

Straus MA. Measuring intrafamily Conflict and violence: the conflict tactics (CT) (scales). J. Marriage 
Fam. 1979; 41:75–78.

Tyrka AR, Price LH, Marsit C, Walters OC, Carpenter LL. Childhood adversity and epigenetic 
modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PLoS 
One. 2012; 7:e30148. [PubMed: 22295073] 

Tyrka AR, Wier L, Price LH, Ross N, Anderson GM, Wilkinson CW, Carpenter LL. Childhood 
parental loss and adult hypothalamic-pituitary-adrenal function. Biol. Psychiatry. 2008; 63:1147–
1154. [PubMed: 18339361] 

Uddin M, Aiello AE, Wildman DE, Koenen KC, Pawelec G, de Los Santos R, Goldmann E, Galea S. 
Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc. Natl. 
Acad. Sci. USA. 2010; 107:9470–9475. [PubMed: 20439746] 

Uddin M, Chang SC, Zhang C, Ressler K, Mercer KB, Galea S, Keyes KM, McLaughlin KA, 
Wildman DE, Aiello AE, Koenen KC. Adcyap1r1 genotype, posttraumatic stress disorder, and 
depression among women exposed to childhood maltreatment. Depress. Anxiety. 2013; 30:251–
258. [PubMed: 23280952] 

Uddin M, Koenen KC, Aiello AE, Wildman DE, de los Santos R, Galea S. Epigenetic and 
inflammatory marker profiles associated with depression in a community-based epidemiologic 
sample. Psychol. Med. 2011; 41:997–1007. [PubMed: 20836906] 

van der Knaap LJ, Riese H, Hudziak JJ, Verbiest MM, Verhulst FC, Oldehinkel AJ, van Oort FV. 
Glucocorticoid receptor gene (NR3C1) methylation following stressful events between birth and 
adolescence. The TRAILS study. Transl. Psychiatry. 2014; 4:e381. [PubMed: 24713862] 

Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, 
Meaney MJ. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004; 7:847–854. 
[PubMed: 15220929] 

Weaver IC, D’Alessio AC, Brown SE, Hellstrom IC, Dymov S, Sharma S, Szyf M, Meaney MJ. The 
transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: 
altering epigenetic marks by immediate-early genes. J. Neurosci.: Off. J. Soc. Neurosci. 2007; 
27:1756–1768.

Whitelaw NC, Whitelaw E. How lifetimes shape epigenotype within and across generations. Hum. 
Mol. Genet. 2006; 15(2):R131–R137. [PubMed: 16987876] 

Widom CS, Morris S. Accuracy of adult recollections of childhood victimization: Part 2. Childhood 
sexual abuse. Psychol. Assess. 1997; 9:34–46.

Widom CS, Shepard RL. Accuracy of adult recollections of childhood victimization: Part 1. Childhood 
physical abuse. Psychol. Assess. 1996; 8:412–421.

Yehuda R, Daskalakis NP, Bierer LM, Bader HN, Klengel T, Holsboer F, Binder EB. Holocaust 
exposure induced intergenerational effects on FKBP5 methylation. Biol. Psychiatry. 2015

Bustamante et al. Page 15

J Affect Disord. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Promoter region of NR3C1 examined within this study (CHR5: 142,783,501–142,783,655 

UCSC Genome Browser Build 2009/hg19). CpG sites tested in this study are depicted in 

bold green font (online version) and are also numbered. The EGR1 transcription factor 

binding site is located at CpG sites 3 and 4 and is denoted by underline. The transcription 

start site is indicated by “+1”. Lowercase nucleotides represent intronic regions, while 

uppercase nucleotides represent exon 1F. Figure was adapted from “Prenatal exposure to 

maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) 

and infant cortisol stress responses”, Oberlander et al. Epigenetics April 2008 with 

permission of the publisher (Taylor & Francis Ltd: http://www.tandfonline.com).
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Fig. 2. 
Average DNA methylation among participants with vs. without childhood maltreatment 

(CM) exposure at CpG sites 1–4 and 5–13 within NR3C1, N=147. * denotes statistical 

significance (pcorrected <0.012). The error bars represent standard error of the mean within 

each binned CpG region.
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Fig. 3. 
Average DNA methylation among participants with vs. without MDD history at CpG sites 

1–4 and 5–13 in NR3C1, N=147. * denotes statistical significance (pcorrected < 0.012). The 

error bars represent standard error of the mean within each binned CpG region.
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Fig. 4. 
Fold change of NR3C1 gene expression levels between individuals with vs. without 

childhood maltreatment (CM) exposure and for participants with and without MDD history. 

Paired T-tests show a significant (p = 0.037) decrease in expression among CM cases and 

controls for NR3C1. No significant difference was observed for MDD cases compared to 

controls. Error bars represent standard error of the mean.
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