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Abstract

Background—Long-term HIV care and treatment engagement is required for maximal clinical 

and prevention benefits, but longitudinal care patterns are poorly understood. We used the last ten 

years’ worth of HIV surveillance data from North Carolina (NC) to describe longitudinal HIV care 

trajectories from diagnosis.

Methods—We conducted a retrospective, population-based cohort study of all persons newly 

HIV-diagnosed in NC between March 31, 2006 and March 31, 2015 (N=16,207). We defined HIV 

care attendance in each three-month and six-month interval after diagnosis as the presence of viral 

load and/or CD4 records (care visit proxies) in the interval. We used group-based trajectory 

modeling to identify common care trajectories and baseline predictors thereof.

Results—A predicted 26% of newly HIV-diagnosed person showed consistently high care 

attendance over time; ~16% exhibited steadily declining attendance; ~26% showed consistently 

low attendance; ~17% had initially weak attendance with an increase starting ~1.5 year later; and 

~15% showed initially weak attendance with an increase starting ~3 years later. Older age at 

diagnosis was protective against all sub-optimal trajectories (with the “consistently high” pattern 

as referent), and MSM status was protective against three of the four sub-optimal patterns.
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Conclusions—As measured by surveillance-based laboratory proxies, most newly HIV-

diagnosed persons exhibited sub-optimal care trajectories, but there was wide variation in the 

particular pathways followed. The insights provided by this analytical approach can help to inform 

the design of epidemic models and tailored interventions, with the ultimate goal of improving HIV 

care engagement and transmission prevention.
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Introduction

Antiretroviral therapy (ART) for people living with HIV/AIDS (PLWHA) dramatically 

improves health1 and reduces onward HIV transmission.1,2 Unfortunately, a minority of 

PLWHA in the United States (US) attains the levels of HIV care engagement and successful 

treatment required to realize these benefits, with only 30%–40% being retained in care and 

19%–30% achieving viral suppression.3–6 Recognition of these systemic failures along the 

“HIV care continuum” has led to strong research and programmatic emphases on 

understanding and improving HIV-infected persons’ engagement with care and treatment, 

such that the individual-level benefits of ART can be translated more effectively to the 

population level.

Despite the intensive efforts directed in recent years toward measuring and improving HIV 

care engagement and retention, the longitudinal pathways that HIV-infected persons follow 

through the HIV care system are poorly understood. Indeed, while the term “continuum” 

acknowledges that movement from HIV diagnosis to viral suppression is often non-linear, 

many continuum analyses are cross-sectional and the particular routes that HIV-infected 

persons do in fact follow are not well-defined. Insights about longitudinal trajectories of 

HIV care engagement could provide useful information for designing and targeting 

interventions to particular groups at crucial times.7 For example, if we could distinguish 

people at diagnosis who are likely to consistently attend HIV care visits over the long term 

from those who are likely to initially attend but subsequently trail off, we could identify 

subsets of PLWHA in whom greater support is warranted from their very first contact with 

the healthcare system. Identification of such care engagement pathways could also inform 

the structure of mathematical models describing the HIV care continuum and its effects on 

population-level HIV incidence.

In this study, we used the last ten years’ worth of HIV surveillance data from North Carolina 

(NC) to describe longitudinal HIV care trajectories followed by HIV-infected persons from 

the time of HIV diagnosis, and to assess demographic and clinical predictors of each HIV 

care trajectory in this population. In addition to seeking information for designing and 

targeting intervention strategies in NC, our more general intention was to provide a case 

study illustrating the use of powerful analytical methods that can be readily adapted to HIV 

care datasets in other settings.
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Methods

Study design, setting, and population

We conducted a retrospective cohort study of persons becoming newly HIV-diagnosed in 

North Carolina over the last ten years. Eligible diagnoses were those occurring between 

March 31, 2006 and March 31, 2015 (inclusive), ensuring that all persons could contribute at 

least one year of longitudinal data prior to the close of data collection on March 31, 2016.

Data source

All study data were drawn from the North Carolina enhanced HIV/AIDS Reporting System 

(eHARS), an electronic surveillance system storing all new HIV and AIDS diagnoses made 

by physicians, hospitals, and laboratories in NC since 1982. As of July 1, 2013, reporting to 

eHARS of all CD4 and viral load tests performed in the state has been mandated by law. 

Prior to this date, the reporting mandate applied only to detectable viral loads and CD4 

counts < 200; however, many reporting entities transmitted all viral load and CD4 results 

before the mandate required them, rather than filtering out the undetectable viral loads and 

CD4 counts >200 that were not subject to the mandate. Limited sociodemographic data (age, 

race, sex, and transmission risk group) collected at the time of diagnosis are also housed in 

eHARS. Dates of death identified in annual searches of vital registries are entered into 

eHARS for those who die.

Outcome definitions – HIV care

Based on recommendations of several major medical and public health organizations that 

HIV-infected persons should attend HIV primary care visits every three to six months,8–11 

we specified two main HIV care outcome measures to encompass this full range: one that 

defines care attendance using a three-month interval and a separate one that uses a six-month 

interval. For each outcome, we assessed HIV care trajectories based on a dichotomous 

determination as to whether ≥1 HIV primary care visit occurred for a given participant 

during the specified interval (3 or 6 months), starting at the first such interval after diagnosis. 

As is standard with surveillance-based assessments of HIV care engagement,12 we used the 

presence of a CD4 or viral load result in the surveillance dataset as a proxy for an HIV 

primary care visit. Although imperfect, these laboratory measures have been found to 

perform reasonably well as proxies for routine care in clinical cohort data.13

Despite anecdotal evidence suggesting that some clinicians are comfortable scheduling visits 

less frequently than every six months in patients with well-controlled viremia, we did not 

additionally analyze HIV care engagement using a one-year interval for two reasons: 1) 

treatment guidelines14 continue to recommend quarterly to semi-annual frequency of the 

laboratory tests serving as our care engagement proxy, and 2) annual data points would 

result in less granularity for discriminating separate care trajectories. For this latter reason, 

we also chose not to assess surveillance-based proxies of the care retention indicators 

recommended by the Department of Health and Human Services (DHHS) or the Institute of 

Medicine (IOM), both of which classify patient care status annually based on frequency of 

and spacing between visits within a given year.8,10
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Statistical Analyses

We used group-based trajectory modeling,15 which is similar to latent class analysis, to 

identify clusters (i.e., “trajectory groups”) of newly HIV-diagnosed persons with similar 

patterns of HIV care attendance. With this approach, which was first developed in the field 

of developmental psychology,15 we assume that the population comprises a mixture of 

distinct groups defined by their longitudinal patterns in the outcome of interest (here, HIV 

care attendance). The approach uses flexible polynomial functions fitted to individual care 

attendance events over time, and allows prediction of each participant’s probability of 

membership in each identified “trajectory group,” as well as estimation of the overall 

proportions of participants in each group. Applications of this approach to the study of other 

longitudinal behavioral patterns have included analyses of physical aggression,15 anxiety,16 

substance abuse,17 and adherence to HIV prevention products.18

In addition to our primary cohort (i.e., persons diagnosed between March 31, 2006 and 

March 31, 2015), we also conducted trajectory analyses in the subset of persons diagnosed 

between July 1, 2013 and March 31, 2015 (i.e., only those persons diagnosed after reporting 

of all CD4 and viral load results became mandatory) to assess whether changes in reporting 

rules would alter the care patterns observed and conclusions drawn.

We defined time zero as the date of HIV diagnosis. Participants were censored at the time of 

death (where applicable) or at the maximum amount of potential follow-up, given the timing 

of diagnosis vis-à-vis administrative end. For example, a person diagnosed on March 31, 

2014 was censored after the interval that ended two years post-diagnosis (i.e., after the 

fourth interval in the analysis of six-month outcomes and after the eight interval in the 

analysis of three-month outcomes), as data were only collected through March 31, 2016 in 

our dataset. Persons dying before the end of the first outcome interval (3 or 6 months) were 

excluded from the analysis.

For each outcome interval (three-month or six-month) and cohort (full or subset), we tested 

predictor-free trajectory models that specified the existence of two, three, four, or five 

trajectory groups, using the Bayesian information criterion (BIC) to identify the best-fitting 

number of trajectories. We decided a priori not to consider models with higher numbers of 

trajectory groups to ensure that model results would be simple enough to be easily 

interpretable. Given the dichotomous nature of the outcome (a visit did or did not occur 

within a given interval), we specified a logit link and binomial distribution in each model. To 

allow maximum flexibility in trajectory forms, we fit cubic polynomials. To avoid undue 

influence from smaller numbers of observations at the longest follow-up times, we assessed 

trajectories over the first eight years (rather than the maximum possible ten years) after 

diagnosis in the full cohort, and over the first 2.5 years (rather than the maximum possible 

2.75 years) in the more recent subset.

After selecting the number of trajectories with the predictor-free models, we then assessed 

several potential predictors of membership in each trajectory group. The predictors available 

in eHARS that we assessed were sex (male vs. female), race/ethnicity (dichotomized as 

white non-Hispanic vs. all other categories), transmission risk group (dichotomized as men 

who have sex with men vs. all others), age at diagnosis (specified as a continuous variable), 
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and first CD4 count at care entry (specified as an ordinal variable with a value of 1 for ≥500, 

2 for 350–499, 3 for 200–349, and 4 for <200). We conducted the predictor assessment using 

a two-stage process.19 First, we constructed multinomial logistic regression models in which 

the explanatory variables were the potential predictors and the outcome was the trajectory 

group assigned to each person based on his/her maximum posterior membership probability 

in the final predictor-free model (described above). Second, we constructed a new group-

based trajectory model for each cohort (full or subset) and interval (three-month or six-

month) combination, specifying the number of groups identified in the predictor-free model 

selection process and including the predictors found to be significant at alpha=0.20 for at 

least one trajectory group comparison in the corresponding multinomial logistic regression 

model of stage one. The inclusion of this second step ensures that predictor coefficient 

estimates and corresponding confidence intervals properly account for the probabilities of 

membership in each group and covariance between parameter estimates.

As a sensitivity analysis to complement the predictor-free “recent subset” analysis, we also 

analyzed trajectories over the first 2.5 years after diagnosis only among persons diagnosed in 

the first 2.75 years of the study period (i.e., between March 31, 2006 and December 31, 

2008). This analysis allows us to compare the shorter-term trends seen in the “recent subset” 

(i.e. late subset) against the patterns seen over the same 2.5-year window after diagnosis in a 

sub-cohort diagnosed early in the study period.

All analyses were conducted using SAS software, version 9.4 (© 2013, SAS Institute, Inc., 

Cary, NC, USA).

Results

A total of 16,207 people were newly diagnosed with HIV in NC between March 31, 2006 

and March 31, 2015. Of these, 15,887 (98.0%) and 15,784 (97.3%) survived long enough 

(i.e., through the first interval) to be included in the full cohort analysis using the three-

month and six-month outcome intervals, respectively (Table 1). Members of the study 

population were relatively young (median age at diagnosis 34 years), most (63%) were 

black/non-Hispanic, and of those with risk group information available (~62%), most (79%) 

were men who have sex with men. The subset of people diagnosed from July 1, 2013 

through March 31, 2015 tended to be younger (median age at diagnosis 31 years) and were 

more likely to be MSM (84% of those with data available), but the racial/ethnic distribution 

was similar to that of the full cohort.

Overall, an average of about 28% of those in the full cohort attended an HIV care visit in a 

given 3-month interval and about 42% attended in a given six-month interval (Figure 1) over 

most of the maximum eight-year follow-up period, with higher attendance (~60% and 

~67%, respectively) in the first interval. In the subset of more recent diagnoses, 

approximately 78% and 84% attended a visit in the first three and six months, respectively. 

The proportion attending visits in a given quarterly or semi-annual interval in this subgroup 

then declined to about 35% and 60%, respectively, by 2.5 years.
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In our predictor-free model selection process for each outcome interval in the full cohort, we 

determined the optimal number of trajectories to be five. Patterns of care attendance 

according to a five-trajectory model were qualitatively similar across the three-month and 

six-month outcome definitions (Figure 2, panels A and B). Specifically, a predicted 26% of 

newly diagnosed persons showed consistently high care attendance (~60% or ~85% average 

probability of attending a visit in each three-month or six-month interval, respectively); 

about 16% exhibited steadily declining HIV care attendance (falling from ~65%–75% 

attendance at the first interval to ~15%–25% attendance by year eight); about 26% exhibited 

a consistent pattern of very low attendance (<15%) after possibly attending the initial visit; 

approximately 17% had weak attendance at the very beginning but began to show an 

increase in attendance from ~1 year after diagnosis; and about 15% showed initially weak 

attendance with a steady increase starting ~3 years after diagnosis. We subjectively labeled 

these groups “consistently high,” “steadily declining,” “consistently low,” “early 

increasing,” and “late increasing,” respectively.

In the subset analysis restricted to those persons diagnosed after reporting of all CD4 and 

viral load results became mandatory (i.e., from July 1, 2013 onward), only the models based 

on the three-month outcome converged. In this model, five groups emerged (Figure 2C) that 

were qualitatively similar to those observed in the full cohort, although the predicted 

proportions of persons in the “early increasing” (3%) and “consistently low” (15%) groups 

were considerably smaller than they were in the full cohort. Additionally, the predicted size 

of the “steadily declining” trajectory group (42%) was considerably larger. We note that 

because we performed the model selection process separately for each cohort (full or subset) 

and outcome interval (quarterly or semiannual), and because the specification of cubic 

polynomials allows trajectory shapes to vary across trajectory groups, our approach was 

capable of detecting highly variable trajectory patterns across cohort/interval combinations if 

present. (In other words, the similarity of results across the different populations and 

intervals is not simply an artifact of the methods.) In our sensitivity analysis among those 

diagnosed in the first 2.75 years of the study period, we again identified five trajectories 

(Supplemental Figure). In this early sub-cohort, the “consistently low” group was 

considerably larger (43.6%) than in the more recent subset, the “steadily declining” group 

was smaller (8.7%), and the “early increasing” group was larger (12.1%) but exhibited only 

a transient and much less pronounced increase in care attendance.

In stage one of our predictor analyses in the full cohort, all five predictors (age at diagnosis, 

sex, race/ethnicity, risk group, and CD4 at care entry) were identified with both the three-

month and six-month outcome intervals for further examination in stage two. All predictors 

but race were identified for inclusion in the stage two predictor analyses in the more recent 

subset. In stage two, the subset model did not converge with predictors included, but in the 

full cohort, we found increasing age at diagnosis to be consistently protective against all sub-

optimal trajectories when compared to the “consistently high” group (Table 2): odds ratios 

(ORs) ranged across sub-optimal trajectory groups and outcome intervals from 0.81 (95% 

CI: 0.78, 0.83) to 0.88 (0.85, 0.91) for each five-year age increase. Male sex was associated 

with the “consistently low” pathway (versus “consistently high”) based on both outcome 

intervals, but was not strongly associated with the other sub-optimal trajectories. White, non-

Hispanic race/ethnicity was also associated with the “consistently low” trajectory across 
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both outcome intervals, along with the “steadily declining” pattern. MSM status appeared to 

be protective against the three least optimal trajectories (i.e., “consistently low,” “steadily 

declining,” and “late increasing”). In general, lower CD4 counts were associated with 

slightly lower odds of membership in the “steadily declining,” “early increasing,” and “late 

increasing” trajectory groups.

We a priori chose to examine models with no more than five care trajectory groups, but 

because the five-group models were consistently preferred on the basis of the BIC, we 

conducted a post-hoc analysis to explore whether inclusion of six-group models would have 

modified our interpretations. With both quarterly and semiannual intervals in the full cohort, 

six groups were preferred according to the BIC, but the corresponding model essentially 

split the “early increasing” and “late increasing” trajectories into a third “intermediate 

increasing” group comprising only ~5% of the population (results not shown), so the main 

insights arising from this modeling approach remained largely unchanged. Six-group models 

did not converge for either outcome interval in the subset of more recent diagnoses.

Discussion

Through the application of group-based trajectory modeling to a decade’s worth of HIV 

surveillance data, we have identified a small set of HIV care trajectories that PLWHA appear 

to follow from the time of diagnosis in North Carolina. Results were qualitatively similar 

whether we used a care attendance interval of three or six months. For both outcome 

intervals we observed five broad patterns: “consistently high,” “consistently low,” “steadily 

declining,” “early increase,” and “late increase.” The predicted proportions of the population 

exhibiting each of these patterns was similar across outcome intervals. However, the 

estimated proportions attending a visit at a given time point in a given trajectory were 

generally higher with the six-month interval than with the three-month interval, as 

attendance every six months is clearly less difficult to achieve.

No single “gold standard” care attendance interval applies to all persons over the entire 

duration of infection. Most guidelines suggest visits every three to six months;8–11 some 

recommendations suggest that visits may be moved from a three-month to a six-month 

interval once a patient has achieved stable viral suppression.11 We also note that although 

some physicians may space visits at even greater intervals in patients with controlled 

viremia, treatment guidelines14 continue to recommend quarterly to semi-annual 

performance of the laboratory tests defining our outcome. The combined results from our 

three-month and six-month analyses may thus be thought of as providing lower and upper 

bounds on the extent to which “acceptable” levels of care engagement are achieved 

according to time since HIV diagnosis, with the relevance of the three-month vs. six-month 

results varying across populations. In cohorts with large proportions of PLWHA on 

successful ART, the care trajectories based on six-month intervals may be the more relevant 

patterns, whereas trajectories based on three-month intervals may be more relevant in 

populations with less well-established ART use.

These types of analyses can complement more traditional “continuum” estimation by 

identifying time trends in HIV care patterns that would be obscured with typical cross-
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sectional approaches or even longitudinal analyses (e.g., those shown for illustration in 

Figure 1) that do not allow for heterogeneity in engagement patterns. Our results suggest, for 

example, that moderate but steadily declining HIV care attendance over the first two years is 

likely to continue on a downward trajectory, but that very low attendance from the first year 

after diagnosis may improve. The observed patterns underscore that while a strong public 

health emphasis on initial linkage to care is important, the resources committed to those 

efforts need to be balanced with retention maintenance and care re-engagement efforts over 

the long term. More generally, insights about the likely range of future time trends given an 

observed pattern to date can inform the timing of care engagement interventions, such that 

they are targeted to the right people at the right times.

The baseline predictors that we found to be associated with sub-optimal HIV care 

trajectories are consistent with results of previous cross-sectional analyses of HIV care 

engagement,20–23 providing additional evidence that persons characterized by these 

predictors may need improved support. In particular, younger age, non-white race/ethnicity, 

higher CD4 count, and transmission risk group other than MSM were associated to at least 

some extent with at least some of the sub-optimal trajectories. The use of group-based 

trajectory modeling enables more nuanced assessment of these predictors than more 

traditional cross-sectional approaches, however, by recognizing substantively different 

patterns of “sub-optimal” care with which a given covariate may be associated. We note that 

in this particular analysis, many of the predictor associations were not especially strong, 

suggesting that baseline prediction of likely trajectories – at least in the context of limited 

predictor information in surveillance data – could be challenging in practice. We also note 

that because we dichotomized transmission risk group and race/ethnicity for simplicity and 

ease of interpretation, any important trajectory differences between (for example) Hispanics 

and non-Hispanics, or between people who inject drugs and people who do not inject drugs, 

were not discernable in our analyses. Additionally, the predictor analyses may have been 

biased by the exclusion of a sizeable proportion of our cohort with missing transmission risk 

group information, although the direction and magnitude of such a bias are difficult to 

predict.

In addition to potentially allowing identification of people who are likely to follow sub-

optimal trajectories, as well as identification of key time points at which trajectories diverge, 

the results of these analyses may also be useful in the development of HIV epidemic models. 

These models have become increasingly complex in the “Treatment as Prevention” era: 

because ART receipt depends strongly on HIV diagnosis and care, mathematical models 

have had to incorporate these features. However, the optimal way in which to include care 

entry, disengagement, and re-engagement in transmission models remains an open question. 

Trajectory analyses such as ours can help to identify care attendance “phenotypes” (e.g., 

“consistently high” and “consistently low” attenders) that can then be explicitly built into the 

model structure.

It is important to note that the trajectory groups we identified and the corresponding shapes 

of their HIV care patterns are not fixed entities to which HIV-infected persons “belong.” 

Furthermore, we do not mean to imply that any two persons follow exactly the same 

trajectory. Instead, our approach enables objective summarization and reduction of complex 

Powers et al. Page 8

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



longitudinal data to a simple form, allowing a comprehensible, approximate description of 

complex realities that can inform our approach to improving these realities. We also note 

that while the specific patterns we identified might be broadly generalizable to similar 

settings in the southeastern United States with heavy HIV burdens, different patterns of care 

attendance might be observed in other types of settings.

The surveillance data on which our analyses were based have limitations, as we12,24 and 

others13,25 have described previously. These data do not allow us to easily discern people 

who discontinue care from those who move to a different state, as both outcomes will be 

characterized in the database only by the absence of CD4/VL results. This limitation is 

likely to result in underestimated HIV care engagement, although the magnitude of any such 

bias and the extent to which it might affect different trajectory patterns is difficult to 

estimate. Additionally, although surveillance data on CD4 and viral load have tremendous 

utility in population-based continuum estimation, they are imperfect proxies for primary 

HIV care visits,12,13 the true outcome of interest. We also note that only a very few 

sociodemographic and clinical variables are contained in the surveillance data source, 

limiting our ability to richly characterize predictors of care engagement trajectories in this 

study.

As we have noted, reporting rules in North Carolina have changed over time, with mandates 

for full reporting of all CD4 and viral load values coming only in July of 2013. To account 

for this aspect of our data source, we conducted trajectory analyses in both the full cohort 

and in the subset of cohort members diagnosed from July 1, 2013 onward. The results of the 

subset analyses were similar to those observed in the full cohort; however, the “early 

increase” and “late increase” trajectories emerged and peaked earlier in the subset analysis. 

Additionally, the “early increase” and “consistently low” groups were considerably smaller 

in the subset of more recent diagnoses than in the whole cohort, and the “steadily declining” 

group was considerably larger. We found similar differences between the recent subset 

trajectory group sizes and those among an “early” cohort in supplemental sensitivity 

analyses. The overall proportions attending HIV care in each interval were also higher in the 

recent subset than in the full cohort (as illustrated in Figure 1), suggesting that increased 

capture by surveillance of CD4 and viral load results in recent years may well play a role in 

the differences between the two main analysis sets. Some differences may also be due to true 

changes in care attendance trends as the ART era has matured. For example, the second-year 

decline in overall attendance in the recent subset according to the three-month but not the 

six-month interval (Figure 1) suggests that in recent years, clinicians and/or patients may be 

intentionally spacing scheduled visits farther apart once care has been well-established.

Future applications of these methods to clinical cohort data with richer covariate information 

may allow fuller, more nuanced assessment of predictors. However, clinical cohort data 

generally include information starting only at the time of initial care entry, which can occur 

years after diagnosis and thus does not allow a full picture of care trajectories over time. 

Additionally, as with surveillance data, it is generally not possible in analyses of clinical 

cohort data to determine whether a person who appears to be out of care is truly out of care, 

or rather in care elsewhere (but invisible to the data system). Optimal assessment of 

longitudinal trajectories in PLWHA will thus require novel methods of linking data across 
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data systems, and/or active enrollment and prospective follow-up of population-based 

cohorts, such that care engagement from diagnosis can be accurately monitored regardless of 

patient migration or transfers.

Ideally, future analyses will also include time-varying predictors to enable identification of 

specific events or other triggers that might differentially affect one trajectory group versus 

another.26 Extensions of trajectory modeling applications to include dual-trajectory 

modeling15 of both HIV care engagement and viral suppression, or care engagement and 

transmission risk behaviors, could also prove useful. These types of analyses, especially if 

combined with dynamic transmission models, could provide powerful quantitative 

information about the transmission implications of different care trajectory patterns and the 

corresponding range of interventions that could be applied.

In conclusion, group-based trajectory modeling is a promising approach for understanding 

longitudinal HIV care patterns, identifying characteristics that can predict the patterns that 

particular sub-populations are likely to follow, and specifying key time points at which care 

trajectories are likely to diverge. This analytical approach can complement more traditional 

cross-sectional analyses of the HIV care continuum by elucidating the ways in which care 

engagement changes over the course of infection and allowing for heterogeneity in these 

longitudinal care engagement patterns. The insights provided by these analyses can help to 

inform the design of HIV epidemic models and the targeting and timing of tailored 

interventions, with the ultimate goal of increasing care engagement to maximize the clinical 

and preventive benefits of ART.
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Figure 1. Overall HIV Care Attendance by Newly HIV-diagnosed Persons, North Carolina, 
2006–2015
Observed proportions of newly HIV-diagnosed persons with CD4 or viral load results 

reported to surveillance in each three-month (diamonds) and six-month (circles) interval 

after diagnosis. Results are shown separately for the full cohort of persons diagnosed 

between March 31, 2006 and March 31, 2015 (blue) and the subset of persons diagnosed 

between July 1, 2013 and March 31, 2015 (orange).
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Figure 2. Longitudinal HIV Care Trajectories among Newly HIV-diagnosed Persons in North 
Carolina, 2006–2015
Predicted trajectories for the five-trajectory predictor-free model estimated in (A) the full 

cohort on the basis of three-month intervals, (B) the full cohort on the basis of six-month 

intervals, and (C) the subset of more recent diagnoses on the basis of three-month intervals. 

Points represent the observed percentage of persons attending a visit in a given interval 

among those assigned to a given trajectory group on the basis of their maximum posterior 

group membership probability. Curves represent the proportion attending care over time as 

estimated by the model for a given trajectory group.

Note: Percentages shown at the top of each graph represent the predicted proportions of the 

cohort (or subset) following each trajectory. Also note the difference in the time axis scale 

for the population subset trajectories shown in Figure 2C vs. those in Figures 2A and 2B.
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Table 1

Characteristics of Study Population

Full cohort, 3-month outcome
(N= 15887)

Full cohort, 6-month outcome
(N= 15784)

Subset*, 3-month outcome
(N=2450)

Median age at diagnosis (IQR) 33.9 (24.6, 44.8) 33.9 (24.6, 44.8) 30.8 (23.6, 43.6)

N (%) male 12079 (76.03) 12004 (76.05) 1954 (79.76)

Race/ethnicity [N (%)]

 Black, non-Hispanic 10048 (63.25) 9974 (63.19) 1518 (61.96)

 White, non-Hispanic 3947 (24.85) 3923 (24.85) 605 (24.7)

 Hispanic, any race 1275 (8.03) 1270 (8.05) 219 (8.94)

 Asian 113 (0.71) 113 (0.72) 31 (1.27)

 American Indian/Alaska Native 91 (0.57) 91 (0.58) 22 (0.90)

 Native Hawaiian/Other Pacific Islander 13 (0.08) 13 (0.08) 2 (0.08)

 Multi-race, non-Hispanic 395 (2.49) 395 (2.50) 53 (2.16)

 Unknown 5 (0.03) 5 (0.03) 0 (0.0)

Risk group [N (%)]

 MSM only 7109 (44.75) 7080 (44.86) 1266 (51.7)

 IDU only 290 (1.83) 288 (1.82) 34 (1.39)

 Heterosexual contact only 1866 (11.75) 1856 (11.76) 243 (9.92)

 Multiple exposure types 572 (3.60) 569 (3.61) 89 (3.64)

 Other 77 (0.49) 77 (0.49) 11 (0.45)

 None reported or identified 5973 (37.59) 5914 (37.47) 807 (32.93)

Years of follow-up [N (%)]

 ≥1 15651 (98.5) 15651 (99.2) 2435 (99.4)

 ≥2 14178 (89.2) 14178 (89.8) 1127 (46.0)

 ≥3 12637 (79.5) 12637 (80.1) NA

 ≥4 11140 (70.1) 11140 (70.6) NA

 ≥5 9488 (59.7) 9488 (60.1) NA

 ≥6 7812 (49.2) 7812 (49.5) NA

 ≥7 6010 (37.8) 6010 (38.1) NA

 ≥8 4089 (25.7) 4089 (25.9) NA

 ≥9 2049 (12.9) 2049 (13.0) NA

*
Persons diagnosed between July 1, 2013 and March 31, 2015.
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Table 2

Odds Ratios (95% Confidence Intervals) Associated with Predictors of Membership in Sub-Optimal 

Trajectory Groups

Full cohort, three-month intervals

Early increasing* Late increasing* Consistently low* Steadily declining*

Age at diagnosis† 0.88 (0.85, 0.90) 0.86 (0.84, 0.89) 0.82 (0.80, 0.85) 0.83 (0.80, 0.86)

Male sex 0.99 (0.82, 1.20) 1.07 (0.89, 1.28) 1.30 (1.11, 1.53) 1.03 (0.84,1.26)

MSM only 0.89 (0.75, 1.06) 0.78 (0.66, 0.92) 0.63 (0.55, 0.73) 0.83 (0.69, 0.99)

White non-Hispanic 0.90 (0.76, 1.06) 0.93 (0.78, 1.09) 1.16 (1.01, 1.34) 1.36 (1.15, 1.62)

CD4 category‡ 0.83 (0.79, 0.88) 0.87 (0.83, 0.92) 0.99 (0.94, 1.04) 0.91 (0.86, 0.96)

Full cohort, six-month intervals

Early increasing* Late increasing* Consistently low* Steadily declining*

Age at diagnosis† 0.88 (0.86, 0.91) 0.88 (0.85, 0.91) 0.81 (0.78, 0.83) 0.82 (0.79, 0.85)

Male sex 1.02 (0.85, 1.22) 1.02 (0.84, 1.25) 1.38 (1.17, 1.64) 1.01 (0.81, 1.25)

MSM only 0.91 (0.77, 1.07) 0.74 (0.62, 0.90) 0.60 (0.51, 0.69) 0.76 (0.62, 0.92)

White non-Hispanic 0.92 (0.79, 1.07) 0.84 (0.70, 1.02) 1.17 (1.02, 1.36) 1.18 (0.98, 1.42)

CD4 category‡ 0.91 (0.87, 0.96) 0.88 (0.83, 0.94) 1.08 (1.02, 1.13) 0.95 (0.90, 1.02)

*
vs. membership in “consistently high” group

†
per five-year increase in age

‡
per increase in CD4 category, with 1 = CD4≥500, 2 = CD4≥350 and <500, 3 = CD4≥200 and <350, and 4 = CD4<200
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