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Abstract

Background/Objectives—Central adiposity measures such as waist circumference (WC) and 

waist-to-hip ratio (WHR) are associated with cardiometabolic disorders independently of BMI and 

are gaining clinically utility. Several studies report genetic variants associated with central 

adiposity, but most utilize only European ancestry populations. Understanding whether the genetic 

associations discovered among mainly European descendants are shared with African ancestry 

populations will help elucidate the biological underpinnings of abdominal fat deposition.

Subjects/Methods—To identify the underlying functional genetic determinants of body fat 

distribution, we conducted an array-wide association meta-analysis among persons of African 

ancestry across seven studies/consortia participating in the Population Architecture using 

Genomics and Epidemiology (PAGE) consortium. We used the Metabochip array, designed for 

fine mapping cardiovascular associated loci, to explore novel array-wide associations with WC 

and WHR among 15 945 African descendants using all and sex-stratified groups. We further 

interrogated 17 known WHR regions for African ancestry-specific variants.

Results—Of the 17 WHR loci, eight SNPs located in four loci were replicated in the sex-

combined or sex-stratified meta-analyses. Two of these eight independently associated with WHR 

after conditioning on the known variant in European descendants (rs12096179 in TBX15-WARS2 
and rs2059092 in ADAMTS9). In the fine mapping assessment, the putative functional region was 

reduced across all four loci but to varying degrees (average 40% drop in number of putative SNPs 

and 20% drop in genomic region). Similar to previous studies, the significant SNPs in the female 

stratified analysis were stronger than the significant SNPs from the sex-combined analysis. No 

novel associations were detected in the array-wide analyses.

Conclusions—Of 17 previously identified loci, four loci replicated in the African ancestry 

populations of this study. Utilizing different linkage disequilibrium patterns observed between 
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European and African ancestries, we narrowed the suggestive region containing causative variants 

for all four loci.

INTRODUCTION

Waist-related traits such as waist-to-hip ratio (WHR) and waist circumference (WC) are 

common measures of central adiposity – a risk factor of cardiovascular and metabolic 

disease. WC may better predict type 2 diabetes mellitus in comparison to overall adiposity 

(BMI) and greater hip circumference potentially associates with lower risk of cardiovascular 

diseases, particularly among women.1–4 In the U.S., while the increase in overall obesity 

prevalence has slowed,5 the average WC continues to increase6 and obesity (overall and 

central) continues to disproportionally burden minority groups such as African 

Americans.7, 8 According to a recent report by the Centers for Disease Control, the 

demographic group with the highest prevalence of obesity is non-Hispanic African 

American women (57% obese).9

Though obesity is higher among many minority groups, most genetic studies have focused 

on European descendant populations, and any benefits reaped from genetic studies may only 

be applicable and benefit European descendants. In addition, due to high linkage 

disequilibrium (LD) in European ancestry groups, the single nucleotide polymorphisms 

(SNPs) identified in European ancestry genome wide association studies (GWAS) often only 

point to general genomic areas of interest and the causal functional variants remain elusive. 

A greater refinement of genomic regions containing putative functional variants is possible 

by utilizing different LD patterns among various ancestry populations, particularly the 

relatively low LD among African descendants.10

We aimed to refine the genomic regions containing the functional genetic determinants of 

body fat distribution by conducting an array-wide association analysis among African 

descendants. For genotyping, we used a chip (Metabochip) uniquely poised to refine 

genomic regions of interest due its custom design densely covering cardiovascular related 

genomic regions of interest, including 17 genetic regions associated with waist-to-hip ratio 

adjusted for BMI (WHRa).11

MATERIALS AND METHODS

Participant recruitment and study population

Participants were recruited from studies involved in the PAGE consortium – a consortium 

initiated by the National Human Genome Research Institute (NHGRI) specially designed to 

investigate well-replicated genetic variants among racially and ethnically diverse populations 

in the U.S as described elsewhere.12 For this PAGE Metabochip study, all cohorts with 

African American participants and waist-related traits were included for the analyses, which 

consisted of the Atherosclerosis Risk in Communities (ARIC) study, Coronary Artery Risk 

Development in Young Adults (CARDIA) study, the Cardiovascular Health Study (CHS), 

the Multiethnic Cohort Study (MEC), and the Women’s Health Initiative (WHI). We also 

extended the collaboration to three additional studies – GenNet, Hypertension Genetic 

Epidemiology Network (HyperGen), and the Multi-Ethnic Study of Atherosclerosis 
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(MESA), which brought up the total sample size to 15 945 (see Supplementary Information 

and Supplementary Table S1 for detailed study descriptions). All studies were approved by 

Institutional Review Boards at their respective sites. All participants in this analyses 

provided written informed consent and self-identified as African American or having 

African ancestry.

Anthropometry measurements

Weight, height, WC and hip circumference were measured by trained staff at study 

enrollment in a clinical setting for studies ARIC, CARDIA, CHS, HyperGEN, GenNet, 

MESA, and WHI. MEC participants provided self-reported height and weight and self-

measured WC and hip circumference. In a MEC validation subset, self-measured 

circumferences were highly correlated with technician measurements for waist (r=0.93), hip 

(r=0.96), and WHR (r=0.76) and slightly underestimated the waist (by 3.95cm) and hip (by 

0.1cm) circumferences.13 Other studies have similarly shown correlations above 0.8614–16 

and small systematic mismeasurement between self-reported and measured anthropometry, 

which may reduce detection power of WC or WHR associated variants but not bias the 

associations in self-reported data.14, 17, 18

BMI was calculated by dividing weight (kg) by height (m2) and WHR was calculated by 

dividing waist circumference (cm) by hip circumference (cm). We excluded, underweight 

(BMI<18.5 kg/m2) and extreme overweight (BMI>70 kg/m2) individuals and those with 

outlier WC and WHR values (SD > 3) with the assumption that these extremes could be 

attributable to data coding errors or underlying rare conditions with contributions from 

genetic variants not common to the general population. We also limited analysis to 

individuals aged 20 years or above to exclude the adolescent age period where weight and 

height can fluctuate dramatically and increase variability.

Genotyping and quality control

Genotyping was performed using the Metabochip – a chip with more than 122 000 SNPs 

included to fine-map 257 GWAS loci of 23 traits. The Metabochip design, trait selection, 

and locus definition has been described elsewhere.19 Of the 257 loci, fourteen WHRa GWAS 

loci were included on the array and were the main focus of the current study. After the 

completion of the Metabochip design, another large-scale GWAS on WHR by Shungin et 

al.20 identified 33 additional novel WHRa SNPs. We cross checked whether these 33 SNPs 

overlapped with other Metabochip fine-mapping regions and found three more loci initially 

placed on the Metabochip for other trait investigation (triglycerides, systolic blood pressure, 

and QT interval). The additional three loci increased our target loci to 17 (Supplementary 

Table S2). Further quality control information available elsewhere21 and Supplementary 

Table S3.

For all studies, with the exception of family based studies (HyperGen and GenNet), we 

estimated identical-by-descent statistics to identify related persons using PLINK.22 For each 

first-degree relative pairs identified, we excluded the member with the lower call rate. We 

also excluded samples with an inbreeding coefficient (F) above 0.15 (ARIC, CHS, 

CARDIA, MEC, MESA, WHI).23 As described elsewhere,21,24 ancestral outliers were 
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determined visually against HapMap phase 2 reference populations (Supplementary Figure 

S1), in addition to EIGENSOFT25,26 determination of outliers (any first ten principal 

components with SD > 6). Ancestral principal components were then recalculated separately 

for each study excluding HapMap genotypes.

Statistical analysis

The overall study design are depicted in Figure 1. We evaluated the association between 

each SNP and natural log-transformed WC and WHR with adjustment for BMI (WCa and 

WHRa respectively). Due to the high sex dimorphism noted in several studies on WHR 

associated SNPs,11, 27–30 we conducted the association analyses in sex stratified groups as 

well (sex-combined, females-only, and males-only) in each study. For all studies except 

GenNet and HyperGen (family studies), we used linear regression under the assumption of 

an additive genetic model with the adjustment for BMI, age, sex, age*sex (for sex-combined 

analyses only), study site (as applicable), and ancestry principal components in each study. 

Any overly influential outliers were removed. Family data from GenNet and HyperGen were 

analyzed using linear mixed models to account for relatedness.31 As a sensitivity analysis, 

we analyzed MEC using all participants combined and also separately by case-control status 

for diabetes (390 cases, 667 controls). However, there was little difference between the 

meta-analyzed results (Supplementary Figure S2); therefore, we present meta-analyses from 

all studies including all MEC participants.

Fixed-effect models with inverse variance weighting were used to pool the study-specific 

association results as implemented in METAL.32 Chi-square statistics and I2 were used to 

measure heterogeneity across studies, and SNPs with chi-square heterogeneity P-value <0.05 

or I2 > 50 were excluded. When testing all SNPs Metabochip-wide for SNPs with significant 

association with WCa or WHRa, we used a Bonferroni adjusted significance level based on 

the total number of SNPs on the chip, 2.5×10−7 (0.05 divided by 200,000 SNPs).

For the 17 WHRa regions of interest (Supplementary Information, Supplementary Table S2), 

we first interrogated the genome-wide significant SNP from Heid et al.11 or Shungin et al.20 

which we labeled the “index SNP”. If the SNP shared directional consistency in both 

European and African ancestry populations and showed nominal statistical significance (P-

value<0.05) in our meta-analyses, we classified the index SNP as “generalized”.

Due to the decreased LD in populations of African ancestry,33, 34 we also hypothesized that 

even if the index SNP originally identified in European ancestry populations was not 

associated with WHRa for those within our African ancestral cohort, another variant in the 

same chromosomal region may show strong associations: “lead SNPs”. Therefore, we 

searched for common variants strongly associated with WHRa within the established loci 

and differentiated whether the identified SNPs were “index-dependent lead signals” or 

“index independent lead signals”. We identified lead SNPs as index-dependent signals (thus 

potentially better markers of the index signal) if they were (1) within the defined WHRa 

region of the index SNP as defined on the Metabochip19, (2) dependent on the index SNP 

(r2≥0.4) based on the referent population (CEU), and (3) associated with WHRa in our data 

at a Bonferroni significance level, correcting for the average number of SNPs across the 17 

regions tested (P-value<9.97×10−5). We identified lead SNPs as index-independent signals if 
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they (1) were within the defined WHRa region, (2) had an r2<0.4 of the index SNP based on 

CEU LD, (3) displayed a region wide significance (P-value<9.97×10−5) and 4) after 

controlling for the index SNP using approximate conditional analysis methods35, had 

retained a P-value of at least 9.97×10−5.

LD in the African American sample (including African Americans from ARIC, MEC, and 

WHI) was calculated in 500kb sliding windows using PLINK.22 Likewise, Metabochip LD 

and frequency information in Europeans was provided by the Malmö Diet and Cancer Study 

on 2143 controls from a Swedish population36 to facilitate the LD pattern comparisons 

between African and European ancestry populations. LocusZoom plots37 were used to 

graphically display the fine-mapping results. Recombination rates were estimated from 

1000G Project data.

Given our sample size (~16 000), we are reasonably powered (80%) to detect common SNPs 

(30%) with average effect sizes (0.003), but are underpowered to detect lower frequency 

variants (<10%) (Supplementary Information).

Comparison with other published lead SNPs

Several GWAS in European descent populations have identified different SNPs in the 17 

loci38, 39 than those reported by Heid et al.11 Additionally, two discovery studies in African 

descent populations also identified other SNPs.27, 28 We compared our lead SNPs to the 

significant SNPs identified in these previous studies and assessed independence of the 

signals by conditional analyses when the LD was r2<0.4 using the 1000G CEU structure. We 

additionally estimated the amount of narrowing each WHRa region by contrasting all SNPs 

in high LD (r2 > 0.8) with the significant SNPs using the 1000G YRI LD structure and the 

1000G CEU LD structure.

Genotype-tissue expression lookups

We collected association values between genetic variation and gene expression in human 

tissues using the Genotype-Tissue Expression (GTEx)40 database. The database offers 

expression quantitative trait locus (eQTL) mapping in several different tissues. We focused 

on subcutaneous adipose and skeletal muscle tissues (plausible target tissues for the waist 

size variants) to estimate eQTL. For the four loci where we identified a significant SNP (P-

value<9.97×10−5), we found association strengths between our lead SNPs or other reported 

SNPs13,14,17,18,19 and the expression of genes lying within +/−500kb. We used a Bonferroni 

correction based on the number of SNPs and tissues and genes tested for each locus. For 

example, for the TBX15-WARS2 locus, we tested five SNPs in two tissues with expression 

in three different genes (TBX15, WARS2, and RP11-418J17.1), making our P-value cut-off 

0.00167 (P-value < 0.05/(5*2*3)).

RESULTS

Up to 15 945 African ancestry participants from eight studies were included in the meta-

analyses with a mean age of 55 years in women and 48 years in men (range 20 to 100 years; 

Supplementary Information, Supplementary Table S1). Approximately 77% of participants 
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were females. On average, females had lower WHR and WC (WHR=0.85, WC=97.5 cm) in 

comparison to men (WHR=0.9, WC=98 cm).

In our Metabochip-wide analyses of the WCa trait, no SNPs reached array wide significance. 

In our analyses of the WHR and WHRa trait, only one SNP (rs2059092 SNP in ADAMTS9; 

β[SE]=0.0072 [0.0014]; P-value=9.98×10−8) reached array-wide significance for WHRa in 

the female stratified analysis. Minimal inflation was observed in the analyses (inflation 

factor λ<1.1) (Supplementary Figure S3).

Sex-specific Fine Mapping of Metabochip Regions for WHR

When we focused on fine mapping of the 17 known WHRa loci in European ancestry 

populations, our female-specific analysis (Supplementary Information, Supplementary Table 

S2) showed that 13 of the 17 index SNPs had directional consistency in the effect estimates 

(binominal distribution P-value = 0.005) with the lead SNP for the region. Of the 17 known 

WHR regions on the Metabochip, four loci (in or near TBX15-WARS2, GRB14, 
ADAMTS9, and RSPO3) contained a lead SNP associated with WHRa at our Bonferonni 

corrected significance threshold of P-value<9.97×10−5 in this African ancestry sample 

(Table 1, Supplementary Information, and Supplementary Figures S4–7). The lead SNP in 

RSPO3 (rs9491696) was also the index SNP previously identified in the European ancestry 

discovery study.14 The lead SNP near the locus GRB14 has strong LD (r2=0.806 using 

1000G CEU LD) with the index SNP. The lead SNP in the TBX15-WARS2 locus had a LD 

r2 of 0.326 with the index SNP, and the lead SNP in the ADAMTS9 locus had a LD r2 of 

0.056 with the index SNP of the same locus. Of the three significant lead SNPs, only 

rs2059092 showed attenuation in significance after adjusting for the index SNP (rs6795735) 

but remained significant (P-value before conditioning = 9.98×10−8, P-value after 

conditioning = 1.23×10−6) indicating that the lead SNP in the ADAMTS9 locus points to an 

independent signal (Table 2).

In the male-specific analysis (Supplementary Information and Supplementary Table S5), 

nine of the 17 index SNPs showed directional consistency in effect estimates (binominal 

distribution P-value = 0.183), and two index SNPs showed nominal significance (P-

value<0.05). Only one of the 17 loci contained a lead SNP reaching significance (rs7412918 

in TBX15-WARS2, P-value = 2.47×10−5) (Table 1). The lead SNP from the TBX15-WARS2 
locus was in low LD with the index SNP (r2=0.24) and therefore was followed up with a 

conditional analysis. The lead SNP in TBX15-WARS2 for the male-only analysis was in a 

different gene than that of the index SNP (WARS2 instead of TBX15), yet strength of the 

association between the lead SNP and WHRa was attenuated after conditioning on the index 

SNP (P-value=2.47×10−5 before conditioning, P-value=5.80×10−4 after conditioning), 

suggesting they are identifying the same signal and makes the determination of which gene 

contains the true signal difficult (Table 2).

Sex-combined Fine Mapping of Metabochip Regions for WHR

In the sex-combined analysis, 12 out of the 17 index SNPs displayed effect estimates 

directionally consistent with estimates from Heid et al.11 (binomial distribution P-value = 

0.02) (Supplementary Information, Supplementary Table S6).
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For two loci, the index SNPs (rs10195252 near GRB14 and rs9491696 in RSPO3) displayed 

statistical evidence for generalization (directional consistency and P-value<9.97×10−5), 

while three other index SNPs (in or near TBX15-WARS2, LYPLAL1, and LY86) showed 

nominal statistical significance (p<0.05). For the RSPO3 locus there was another lead SNP, 

rs9321069, that was slightly more significant than the index SNP and had an r2<0.4 in CEU, 

thus we conditioned it on the index SNP. However, after conditioning on the index SNP, 

rs9491069 was no longer significant. Three loci (rs12096179 near TBX15-WARS2, 

rs2059092 in ADAMTS9, and rs9491069 in RSPO3) harbored a lead SNP that was in LD 

(r2<0.4) with the previously identified index SNP in European descent populations, thus we 

considered these possible index-independent SNPs. For the rs12096179 SNP in TBX15-
WARS2 and rs2059092 in ADAMTS9, conditioning on the respective index SNP in these 

loci did not diminish their significance (Table 2), indicating these are independent signals.

Comparison with other published lead SNPs

We compared this study’s lead SNPs to previously reported WHRa SNPs in four loci (for 

full comparison results see Supplementary Information, Supplementary Table S7, and 

Supplementary Figures S8a–d, 9–12). The TBX15-WARS2 locus on chromosome 1 

(position on Build36: 119.25 to 119.58 Mb), spans across the genes TBX15, WARS2, and 

RP11-418J17.1, a long non-coding RNA. To date, two SNPs in the TBX15-WARS2 locus 

have been associated with WHRa in the literature (the index SNP, rs984222,11 and the 

African ancestry discovery SNP, rs1092371428), to which we detected three additional 

SNPs; one each from the sex-combined (rs12096179), female (rs6701378), and male 

(rs7412918) analyses. Among these five SNPs, we identified one potentially independent 

signal: the sex-combined SNP (rs12096179) association with WHRa remains strong after 

conditioning on the index SNP from the literature (rs984222) (Table 2 and Supplementary 

Information, Supplementary Table S8). Importantly, fine mapping at this locus, using the 

YRI LD structure, reduces the number of putative SNPs from 37 to 24 SNPs and covers a 

20kb region, reducing the regional space harboring the functional variant by 8% (Table 3).

The GRB14 locus on chromosome 2 (position on Build36 165.21 to 165.28Mb), stretches 

across the genes GRB14, COBLL1, SNORA70F and TCONS_00004484 (a long non-coding 

RNA). In the GRB14 locus, the two SNPs from our analyses and all five published SNPs are 

in high LD with one another (r2 > 0.7) and point to a single signal. Using the CEU LD 

structure, 16 SNPs have a LD r2 of 0.8 or greater with any of the four significant SNPs and 

span across approximately 53kb. In contrast, using the YRI LD structure, 12 SNPs have a 

LD r2 of 0.8 or greater with any of the four significant SNPs and span across approximately 

43kb, narrowing the region by 19% (Table 3).

The ADAMTS9 locus in chromosome 3 (position on Build36: 64.67Mb to 64.71Mb), spans 

across the ADAMTS9-AS2, an anti-sense noncoding RNA, and microRNA, MIR548A2. 

The index SNP, rs6795735, identified in CEU by Heid et al14 is conditionally independent of 

the sex-combined and female lead SNP identified in this study (Table 2). Overall, 45 SNPs 

are in high CEU LD (r2 > 0.8) with these lead SNPs as compared to only seven SNPs that 

are in high YRI LD. Using the physical genomic region to assess the narrowing of a signal 
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region, the 45 SNPs span over ~30kb whereas the seven SNPs span over ~16kb, thus the 

region is narrowed by 45.1% (Table 3).

The RSPO3 locus on chromosome 6 (position on Build36: 127.42 to 127.57 Mb) includes 

the AK127272 and the RSPO3 genes. In reviewing previous studies, we found five SNPs in 

the RSPO3 locus that have been associated with WHRa. We contribute an additional WHRa 

SNP (rs9321069 from the sex-combined analysis) to the list. All six SNPs are conditionally 

dependent on one another and therefore appear to be tagging the same signal 

(Supplementary Information, Supplementary Table S8). Treating these six SNPs as a single 

signal and comparing the CEU LD to the YRI LD structure, we narrowed the pool of 

potentially functional SNPs from 95 SNPs down to 68 SNPs, though only reduced the 

purported functional variant region by 8% (Table 3).

Genotype-tissue expression associations

We assessed the association of our lead SNPs and other reported SNPs detected in the four 

WHRa regions with expression of genes lying within +/-500kb of the lead SNP (for full 

description of results see Supplementary Information and Supplementary Table S9). For the 

TBX15-WARS2 region, we identified significance within the WARS2 gene in skeletal 

muscle for two SNPs, rs7412918 identified in the current study, and the previously identified 

rs984222. For the locus in and near GRB14-COBLL1 genes, we identified significance 

within the SLC38A11 gene in skeletal muscle for three SNPs, rs6717858 rs13389219, and 

rs1128249. The latter eQTL, rs1128249-SLC38A11, was also significant in adipose tissue as 

well (P-value =0.001). For the loci in and near ADAMTS9 and RSPO3, no eQTLs were 

significant.

DISCUSSION

Interrogation of 17 previously reported European descent loci

We interrogated 17 previously identified genomic regions associated with WHRa in a large 

sample of African ancestry participants. Among the 17 WHRa loci, we found at least one 

significant lead SNP in either the sex-combined, female, or male only analyses. Notably, the 

lead SNP (rs10195252) in the GRB14 locus for the sex-combined analysis was the same as 

the Heid et al. index SNP identified in European descent populations. Similarly in RSPO3, 

the lead SNP in the female-only analysis (rs9491696) was also the same as the Heid et al. 

index SNP. The lack of significant SNPs in the other 13 loci may be due to low power to 

detect genetic effects and the small relative sample sizes rather than true lack of 

generalization. Power calculations using our sample size (N ~16 000) compared to the Heid 

et al. sample size (N ~ 100 000) show diminished ability to detect variants (Supplementary 

Information).

An advantage of using the custom Metabochip, unlike previous array-wide investigations of 

WHRa, is the inclusion of 1000G SNPs on the Metabochip and therefore their direct 

characterization. We were able to densely genotype both rare and common SNPs in specific 

regions of the genome that contained variants highly associated with WHR. While we did 

not identify any novel independent signals, we were able to narrow the purported region 
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containing the functional variant due to the dense mapping and comparison of the CEU LD 

to the YRI LD.

Another advantage of using the Metabochip is that some of the LD regions extended beyond 

the traditional 250 kb flanking region of the Heid et al. index SNP. Because African descent 

populations have lower LD, previous investigations have traditionally explored only the 250 

kb flanking regions of identified variants, whereas in European descent populations, 

investigators have explored a larger 500 kb flanking region. However, in our investigation, 

we found significant SNPs in African ancestry populations can span over a wide interval of 

the genome (e.g. SNPs identified in the TBX15-WARS2 locus spanned across the 330kb 

locus region). Future studies may consider looking beyond 250 kb, even in ancestral 

populations with lower LD.

Sex heterogeneity

The lead SNPs in GRB14 and ADAMTS9 were stronger in the female only analysis 

compared to the lead SNP in the sex-combined analysis. Additionally, the effect estimates 

for the lead SNPs identified in the female-only analysis were larger than the effect estimates 

of the lead SNPs identified in the sex-combined analysis. This finding is similar to 

observations made by Heid et al.11 Direct comparison of the female-specific and male-

specific results are difficult due to the large disparity in sample size, but the results are 

similar to previous studies which have found that the signals from the male-only analysis 

have lower effect sizes and are less significant in comparison to the female-only analysis. 

The reasoning for strong sex-heterogeneity observations is still unclear, though sex 

differential regulation factors, transcripts, metabolites, and microbes have been 

observed.41–43 Variant interaction with these factors may lead to larger impacts on WHRa in 

one sex group over the other.

Biologic function of identified genomic regions

In addition to using differences in ancestral LD patterns to narrow a genomic region, we 

assessed whether any genes or variants within the genomic region have any biological 

plausibility in affecting WHR. While several SNP variants may affect functionality, 

unfortunately, based on the available bioinformatics data, no definitive functional SNPs were 

identified (for full function description see Supplementary Information and Supplementary 

Table S10). A possible limitation is the current lack of experiments on specific tissue 

samples that would be relevant to WHR. While data from over 1600 experiments have been 

added to the ENCODE project, only a few experiments have been run on normal karyotype 

tissue samples of adipose, liver, and pancreas tissues. Since chromatin shape and regulation 

is known to be tissue specific, understanding whether a genetic variant affects function is 

limited to the cell lines that have been given first priority in the ENCODE project.

CONCLUSION

Fine-mapping of previously identified WHR loci produced variable results among African 

ancestry populations: some loci produced lead SNPs identical to the index SNPs from 

European ancestries, some loci where the identified SNPs were conditionally dependent on 
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the index SNPs, and a couple of loci had lead SNPs independent of the index signal. Out of 

the 17 loci, four loci generalized to the African ancestry population in our study, suggesting 

that at least some of the biologic pathways that affect WHR are shared across race and 

ethnic groups. More importantly, this study demonstrates the utility of fine-mapping regions 

which may contain functional variants. Further analyses in various multi-racial and ethnic 

groups are likely to provide a more complete picture of how the associated loci contribute to 

waist-related traits. Importantly, a clearer understanding of the genetic underpinnings of 

central adiposity may help elucidate molecular pathways that affect obesity, which in turn 

may help improve interventions and drug development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Analysis flow chart. This diagram shows the main steps used in the meta-analysis. The 

rectangular box shows steps for SNPs reaching array-wide significance. Shaded boxes show 

steps for SNPs reaching locus-wide significance, including the further locus interrogation 

through conditional analyses, fine-mapping, and bioinformatics interrogation.

*WCa: Waist circumference adjusted for BMI; WHRa: Waist-to-hip ratio adjusted for BMI

Yoneyama et al. Page 14

Int J Obes (Lond). Author manuscript; available in PMC 2017 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yoneyama et al. Page 15

Ta
b

le
 1

W
H

R
 a

ss
oc

ia
tio

n 
re

su
lts

 o
f 

si
gn

if
ic

an
t l

ea
d 

SN
Ps

 a
nd

 th
e 

pr
ev

io
us

ly
 r

ep
or

te
d 

E
ur

op
ea

n 
de

sc
en

t i
nd

ex
 S

N
P 

in
 th

e 
sa

m
e 

lo
cu

s.

L
oc

us
L

oc
us

 N
am

ea
L

ea
d 

SN
P

b
In

de
x 

SN
P

c
B

P
 p

os
it

io
nd

E
A

/O
A

E
A

F
B

et
a

SE
P

-v
al

ue
H

et
 P

-v
al

ue
 e

Sa
m

pl
e 

Si
ze

r2  
in

 
E

A
 f

r2  
in

 
A

A
 g

N
ea

re
st

 G
en

eh

F
em

al
e-

on
ly

 a
na

ly
si

s 
si

gn
if

ic
an

t 
le

ad
 S

N
P

s

1p
12

T
B

X
15

-W
A

R
S2

rs
67

01
37

8
11

94
40

07
6

A
/G

0.
46

2
0.

00
54

0.
00

13
3.

07
E

-0
5

0.
10

4
10

87
0

–
–

W
A

R
S2

 (
in

tr
on

ic
)

rs
98

42
22

11
93

05
36

6
G

/C
0.

45
4

0.
00

18
0.

00
12

0.
15

0.
03

9
10

86
7

0.
32

6
0.

36
7

T
B

X
15

 (
in

tr
on

ic
)

2q
24

.3
G

R
B

14
rs

67
17

85
8

16
52

47
90

7
A

/G
0.

31
8

0.
00

71
0.

00
14

3.
49

E
-0

7
0.

55
4

10
86

3
–

–
1.

6k
b 

3′
 o

f 
C

O
B

L
L

1

rs
10

19
52

52
16

52
21

33
7

A
/G

0.
28

5
0.

00
74

0.
00

15
3.

97
E

-0
7

0.
27

8
10

86
7

0.
86

5
1

28
kb

 3
′ 

of
 C

O
B

L
L

1

3p
14

.1
A

D
A

M
T

S9
rs

20
59

09
2

64
69

07
44

A
/G

0.
68

7
0.

00
72

0.
00

14
9.

98
E

-0
8

0.
86

0
10

83
8

–
–

A
D

A
M

T
S9

-A
S2

 (
in

tr
on

ic
)

rs
67

95
73

5
64

68
04

05
G

/A
0.

19
5

0.
00

27
0.

00
16

0.
09

0.
42

6
10

86
7

0.
05

6
0.

09
0

A
D

A
M

T
S9

-A
S2

 (
in

tr
on

ic
)

6q
22

.3
3

R
SP

O
3

rs
94

91
69

6
12

74
94

33
2

G
/C

0.
38

1
0.

00
53

0.
00

13
2.

58
E

-0
5

0.
76

3
10

87
2

–
–

R
SP

O
3 

(i
nt

ro
ni

c)

in
de

x 
an

d 
le

ad
 a

re
 th

e 
sa

m
e 

SN
P

–
–

–
–

–
–

–
–

–

M
al

e-
on

ly
 a

na
ly

si
s 

si
gn

if
ic

an
t 

le
ad

 S
N

P
s

1p
12

T
B

X
15

-W
A

R
S2

rs
74

12
91

8
11

95
01

98
8

G
/C

0.
62

6
0.

00
54

0.
00

13
2.

47
E

-0
5

0.
14

4
36

98
0.

23
6

0.
09

6
R

P1
1-

41
8J

17
.1

rs
98

42
22

11
93

05
36

6
G

/C
0.

46
3

0.
00

32
0.

00
12

6.
92

E
-0

3
0.

07
9

37
06

–
–

T
B

X
15

 (
in

tr
on

ic
)

Se
x-

co
m

bi
ne

d 
an

al
ys

is
 s

ig
ni

fi
ca

nt
 le

ad
 S

N
P

s

1p
12

T
B

X
15

-W
A

R
S2

rs
12

09
61

79
11

94
37

24
6

G
/A

0.
45

1
0.

00
44

0.
00

09
2.

24
E

-0
6

0.
20

6
15

94
3

–
–

W
A

R
S2

 (
in

tr
on

ic
)

rs
98

42
22

11
93

05
36

6
G

/C
0.

45
4

0.
00

25
0.

00
09

5.
52

E
-0

3
0.

35
8

15
93

6
0.

32
6

0.
36

7
T

B
X

15
 (

in
tr

on
ic

)

2q
24

.3
G

R
B

14
rs

10
19

52
52

16
52

21
33

7
A

/G
0.

27
9

0.
00

49
0.

00
11

3.
69

E
-0

6
0.

10
0

15
93

9
–

–
28

kb
 3
′ 

of
 C

O
B

L
L

1

in
de

x 
an

d 
le

ad
 a

re
 th

e 
sa

m
e 

SN
P

–
–

–
–

–
–

sa
m

e
sa

m
e

3p
14

.1
A

D
A

M
T

S9
rs

20
59

09
2

64
69

07
44

A
/G

0.
68

6
0.

00
44

0.
00

10
5.

89
7E

-0
6

0.
57

5
15

90
6

–
–

A
D

A
M

T
S9

-A
S2

 (
in

tr
on

ic
)

rs
67

95
73

5
64

68
04

05
G

/A
0.

18
8

0.
00

21
0.

00
11

0.
06

0.
23

1
15

93
7

0.
05

6
0.

09
A

D
A

M
T

S9
-A

S2
 (

in
tr

on
ic

)

6q
22

.3
3

R
SP

O
3

rs
93

21
06

9
12

74
34

67
0

G
/A

0.
65

8
0.

00
42

0.
00

10
1.

35
E

-0
5

0.
20

8
15

94
3

–
–

R
P1

1-
73

O
6.

4

rs
94

91
69

6
12

74
94

33
2

G
/C

0.
37

9
0.

00
36

0.
00

09
8.

91
E

-0
5

0.
22

5
15

94
4

0.
36

5
0.

07
2

R
SP

O
3 

(i
nt

ro
ni

c)

A
bb

re
vi

at
io

ns
: C

hr
 =

 c
hr

om
os

om
e;

 B
P 

=
 b

as
e 

pa
ir

; E
A

 =
 e

ff
ec

t a
lle

le
; O

A
 =

 o
th

er
 a

lle
le

; E
A

F 
=

 e
ff

ec
t a

lle
le

 f
re

qu
en

cy
; S

E
 =

 s
ta

nd
ar

d 
er

ro
r;

 E
A

 =
 E

ur
op

ea
n 

an
ce

st
ry

; A
A

 =
 A

fr
ic

an
 a

nc
es

tr
y

a L
oc

us
 n

am
e 

ba
se

d 
on

 n
ea

rb
y 

ge
ne

 r
ep

or
te

d 
by

 H
ei

d 
et

 a
l. 

(2
01

0)

b Pr
ev

io
us

ly
 r

ep
or

te
d 

in
de

x 
SN

P 
w

as
 ta

ke
n 

fr
om

 H
ei

d 
et

 a
l (

20
10

),
 w

ith
in

 1
4 

kn
ow

n 
W

H
R

 r
eg

io
ns

 o
n 

th
e 

m
et

ab
oc

hi
p.

c SN
P 

w
ith

 th
e 

lo
w

es
t p

-v
al

ue
 o

f 
al

l S
N

Ps
 te

st
ed

 w
ith

in
 a

 p
ar

tic
ul

ar
 lo

ci
 a

m
on

g 
A

fr
ic

an
 d

es
ce

nd
an

ts
 in

 th
e 

PA
G

E
 s

tu
dy

d B
P 

po
si

tio
n 

ba
se

d 
on

 b
ui

ld
 3

6

Int J Obes (Lond). Author manuscript; available in PMC 2017 May 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yoneyama et al. Page 16
e P-

va
lu

e 
of

 th
e 

he
te

ro
ge

ne
ity

 te
st

 a
cr

os
s 

al
l s

tu
di

es
 c

on
tr

ib
ut

in
g 

to
 th

e 
m

et
a-

an
al

ys
is

f T
he

 r
-s

qu
ar

e 
va

lu
e 

be
tw

ee
n 

th
e 

le
ad

 S
N

P 
an

d 
in

de
x 

SN
P 

us
in

g 
E

ur
op

ea
n 

an
ce

st
ry

 li
nk

ag
e 

di
se

qu
ili

br
iu

m
 s

tr
uc

tu
re

g T
he

 r
-s

qu
ar

e 
va

lu
e 

be
tw

ee
n 

th
e 

le
ad

 S
N

P 
an

d 
in

de
x 

SN
P 

us
in

g 
A

fr
ic

an
 a

nc
es

tr
y 

lin
ka

ge
 d

is
eq

ui
lib

ri
um

 s
tr

uc
tu

re

h T
he

 N
ea

re
st

 g
en

e 
to

 S
N

P;
 b

as
ed

 o
n 

R
ef

Se
q 

bu
t i

f 
no

t a
va

ila
bl

e 
ca

se
d 

on
 G

E
N

C
O

D
E

 g
en

es

* m
on

om
or

ph
ic

 S
N

P 
(t

es
te

d 
in

 1
00

0G
 C

E
U

)

Int J Obes (Lond). Author manuscript; available in PMC 2017 May 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yoneyama et al. Page 17

Ta
b

le
 2

A
pp

ro
xi

m
at

e 
co

nd
iti

on
al

 a
na

ly
se

s 
as

se
ss

in
g 

in
de

pe
nd

en
ce

 o
f 

le
ad

 S
N

Ps
 in

 th
e 

cu
rr

en
t a

na
ly

si
s 

fr
om

 th
e 

in
de

x 
SN

Ps

L
oc

us
L

oc
us

 N
am

ea
C

on
di

ti
on

in
g 

St
at

us
SN

P
 o

f 
in

te
re

st
b

C
on

di
ti

on
in

g 
SN

P
c

E
A

F
B

et
a

SE
P

-v
al

ue
N

R
es

ul
t 

fo
r 

in
de

pe
nd

en
ce

d

F
em

al
e-

on
ly

 a
na

ly
si

s:
 le

ad
 S

N
P

 c
on

di
ti

on
ed

 u
po

n 
by

 in
de

x 
SN

P

1p
12

T
B

X
15

-W
A

R
S2

Pr
e-

co
nd

iti
on

in
g

rs
67

01
37

8
0.

46
2

0.
00

54
0.

00
13

3.
07

E
-0

5

Po
st

-c
on

di
tio

ni
ng

rs
98

42
22

0.
47

0
0.

00
46

0.
00

12
1.

02
E

-0
4

10
35

5.
9

N
ot

 I
nd

ep
en

de
nt

3p
14

.1
A

D
A

M
T

S9
Pr

e-
co

nd
iti

on
in

g
rs

20
59

09
2

0.
68

7
0.

00
72

0.
00

14
9.

98
E

-0
8

Po
st

-c
on

di
tio

ni
ng

rs
67

95
73

5
0.

67
4

0.
00

64
0.

00
13

1.
23

E
-0

6
10

31
9.

4
In

de
pe

nd
en

t

M
al

e-
on

ly
 a

na
ly

si
s:

 le
ad

 S
N

P
 c

on
di

ti
on

ed
 u

po
n 

by
 in

de
x 

SN
P

1p
12

T
B

X
15

-W
A

R
S2

Pr
e-

co
nd

iti
on

in
g

rs
74

12
91

8
0.

62
6

0.
00

54
0.

00
13

2.
47

E
-0

5

Po
st

-c
on

di
tio

ni
ng

rs
98

42
22

0.
71

6
0.

00
42

0.
00

12
5.

80
E

-0
4

37
88

.3
N

ot
 I

nd
ep

en
de

nt

Se
x-

co
m

bi
ne

d 
an

al
ys

is
: 

le
ad

 S
N

P
 c

on
di

ti
on

ed
 u

po
n 

by
 in

de
x 

SN
P

1p
12

T
B

X
15

-W
A

R
S2

Pr
e-

co
nd

iti
on

in
g

rs
12

09
61

79
0.

45
1

0.
00

44
0.

00
09

2.
24

E
-0

6

Po
st

-c
on

di
tio

ni
ng

rs
98

42
22

0.
47

0
0.

00
32

0.
00

08
5.

02
E

-0
5

16
43

2.
5

In
de

pe
nd

en
t

3p
14

.1
A

D
A

M
T

S9
Pr

e-
co

nd
iti

on
in

g
rs

20
59

09
2

0.
68

6
0.

00
44

0.
00

10
5.

90
E

-0
6

Po
st

-c
on

di
tio

ni
ng

rs
67

95
73

5
0.

67
4

0.
00

38
0.

00
09

6.
37

E
-0

5
15

30
8.

0
In

de
pe

nd
en

t

6q
22

.3
3

R
SP

O
3

Pr
e-

co
nd

iti
on

in
g

rs
93

21
06

9
0.

65
8

0.
00

42
0.

00
10

1.
35

E
-0

5

Po
st

-c
on

di
tio

ni
ng

rs
94

91
69

6
0.

65
1

0.
00

28
0.

00
09

2.
98

E
-0

3
14

63
8.

4
N

ot
 I

nd
ep

en
de

nt

A
bb

re
vi

at
io

ns
: E

A
F 

=
 e

ff
ec

t a
lle

le
 f

re
qu

en
cy

; S
E

 =
 s

ta
nd

ar
d 

er
ro

r;
 N

 =
 e

st
im

at
ed

 e
ff

ec
tiv

e 
sa

m
pl

e 
si

ze

a L
oc

us
 n

am
e 

ba
se

d 
on

 n
ea

rb
y 

ge
ne

 r
ep

or
te

d 
by

 H
ei

d 
et

 a
l. 

(2
01

0)

b L
ea

d 
SN

Ps
 o

f 
in

te
re

st
 to

 b
e 

co
nd

iti
on

ed
 u

po
n 

by
 th

e 
in

de
x 

SN
P 

to
 e

st
ab

lis
h 

in
de

pe
nd

en
ce

.

c C
on

di
tio

ni
ng

 S
N

Ps
 a

re
 th

e 
in

de
x 

SN
Ps

 (
SN

Ps
 id

en
tif

ie
d 

am
on

g 
E

ur
op

ea
n 

de
sc

en
da

nt
s 

fr
om

 H
ei

d 
et

 a
l. 

(2
01

0)
)

d L
ea

d 
SN

P 
si

gn
al

 is
 n

ot
 f

ul
ly

 d
ep

ed
en

de
nt

 o
n 

in
de

x 
si

gn
al

 if
 p

os
t-

co
nd

iti
on

in
g 

P-
va

lu
e 

re
ta

in
s 

si
gn

if
ic

an
ce

 (
<

9.
97

×
10

−
5 )

.

Int J Obes (Lond). Author manuscript; available in PMC 2017 May 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yoneyama et al. Page 18

Ta
b

le
 3

Si
gn

al
s 

id
en

tif
ie

d 
in

 e
ac

h 
of

 th
e 

fo
ur

 s
ig

ni
fi

ca
nt

 lo
ci

 a
nd

 e
st

im
at

es
 o

f 
na

rr
ow

in
g.

L
oc

us
L

oc
us

 N
am

e
C

E
U

 #
 

SN
P

s 
a

Y
R

I 
# 

SN
P

s 
a

%
 

re
du

ct
io

n 
# 

SN
P

s
C

E
U

 s
ta

rt
 t

o 
en

d 
B

P
 p

os
 

b
C

E
U

 t
ot

al
 d

is
ta

nc
e

Y
R

I 
st

ar
t 

to
 e

nd
 B

P
 p

os
 b

Y
R

I 
to

ta
l d

is
ta

nc
e

%
 r

ed
uc

ti
on

 d
is

ta
nc

e

1p
12

T
B

X
15

-W
A

R
S2

37
24

35
%

11
93

05
88

4–
11

95
26

92
3

22
10

39
11

93
05

88
4–

11
95

10
19

0
20

43
06

  7
.6

%

2q
24

.3
G

R
B

14
20

16
20

%
16

52
12

81
1–

16
52

65
56

4
52

75
3

16
52

10
09

5–
16

52
52

69
6

42
60

1
19

.2
%

3p
14

.1
A

D
A

M
T

S9
45

7
84

%
64

67
29

56
–6

47
02

88
0

29
92

4
64

68
31

54
–6

46
99

59
3

16
43

9
45

.1
%

6q
22

.3
3

R
SP

O
3

95
68

28
%

12
74

22
17

5–
12

75
64

26
6

14
20

91
12

74
32

37
8–

12
75

62
82

0
13

04
42

  8
.2

%

A
bb

re
vi

at
io

ns
: C

E
U

 =
 1

00
0 

G
en

om
es

 C
E

U
 p

op
ul

at
io

n;
 Y

R
I 

=
 1

00
0 

G
en

om
es

 Y
R

I 
po

pu
la

tio
n

a N
um

be
r 

of
 S

N
Ps

 in
 th

e 
lo

cu
s 

id
en

tif
ie

d 
in

 th
e 

cu
rr

en
t a

na
ly

si
s 

or
 p

re
vi

ou
s 

pu
bl

ic
at

io
ns

, i
n 

ad
di

tio
n 

to
 a

ll 
SN

Ps
 w

ith
 a

n 
r2

 >
 0

.8
 w

ith
 th

e 
id

en
tif

ie
d 

SN
Ps

b B
P 

po
si

tio
n 

ba
se

d 
on

 b
ui

ld
 3

6

Int J Obes (Lond). Author manuscript; available in PMC 2017 May 21.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Participant recruitment and study population
	Anthropometry measurements
	Genotyping and quality control
	Statistical analysis
	Comparison with other published lead SNPs
	Genotype-tissue expression lookups

	RESULTS
	Sex-specific Fine Mapping of Metabochip Regions for WHR
	Sex-combined Fine Mapping of Metabochip Regions for WHR
	Comparison with other published lead SNPs
	Genotype-tissue expression associations

	DISCUSSION
	Interrogation of 17 previously reported European descent loci
	Sex heterogeneity
	Biologic function of identified genomic regions

	CONCLUSION
	References
	Figure 1
	Table 1
	Table 2
	Table 3

