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Abstract

Objective—The association of obesity susceptibility variants with change in body mass index
(BMI) across the life course is not well understood.

Subjects—In ancestry stratified models of 5,962 European American (EA), 2,080 African
American (AA), and 1,582 Hispanic American (HA) individuals from the National Longitudinal
Study of Adolescent to Adult Health (Add Health), we examined associations between 34 obesity
SNPs with per year change in BMI, measured by the slope from a growth-curve analysis of two or
more BMI measurements between adolescence and young adulthood. For SNPs nominally
associated with BMI change (p<0.05), we interrogated age differences within data collection Wave
and time differences between age categories that overlapped between Waves.

Results—We found SNPs in/near FTO, MC4R, MTCH?Z, TFAP2B, SEC16B, and TMEM18
were significantly associated (p<0.0015 ~ 0.05/34) with BMI change in EA and the ancestry-
combined meta-analysis. Rs9939609 in F70 met genome-wide significance at p<5e-08 in the EA

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research,
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding Author: Mariaelisa Graff, PhD, Dept of Epidemiology, University of North Carolina, 137 East Franklin Str., Suite
306, Chapel Hill, NC 27514, migraff@email.unc.edu.

DISCLOSURES: The authors declared no conflicts of interest.

MG, KEN, EML and PG-L designed the study. MG, ASR, and KMY contributed to data analysis. PG-L and KEN are responsible for
data acquisition. MIG, EML, KEN, and PG-L drafted the manuscript. All authors contributed to data interpretation and writing of the
manuscript. MIG, KEN and PG-L had full access to the data in the study and take responsibility for the integrity of the data and the
accuracy of the data analysis. All authors have approved the final version of the manuscript.


https://core.ac.uk/display/304664081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Graff et al. Page 2

and ancestry combined analysis, respectively [Beta(se)=0.025(0.004);Beta(se)=0.021(0.003)]. No
SNPs were significant after Bonferroni correction in AA or HA, although 5 SNPs in AA and 4
SNPs in HA were nominally significant (p<0.05). In EA and the ancestry-combined meta-analysis,
rs3817334 near MTCHZ showed larger effects in younger respondents, while rs987237 near
TFAPZB, showed larger effects in older respondents across all Waves. Differences in effect
estimates across time for MTCHZand TFAPZB are suggestive of either era or cohort effects.

Conclusion—The observed association between variants in/near F70, MC4R, MTCH_Z,
TFAPZB, SEC16B, and TMEM18with change in BMI from adolescence to young adulthood
suggest that the genetic effect of BMI loci varies over time in a complex manner, highlighting the
importance of investigating loci influencing obesity risk across the life course.

Keywords

Gene-environment interactions; adolescence; obesity; BMI change; African-American; Hispanic-
American

INTRODUCTION

The transition from adolescence to young adulthood is a period of high risk for weight gain
and development of obesity [1-3], with high rates of incident obesity (24.1%) and severe
obesity (7.9%) [3]. Genome-wide association (GWAS) studies of over 200,000 European
descent adults, have identified several independent loci associated with BMI [4, 5]. While
recent studies have analyzed BMI loci across the lifecycle [6-14], few longitudinal studies
have examined BMI loci associated with change in body mass index (BMI) in the period
between adolescence and young adulthood. Several studies have examined the association of
FTOand MC4R, two of the earliest identified BMI susceptibility variants, with longitudinal
change in BMI from childhood into adulthood [6-8, 15]. Results for BMI change with F70
and MC4R suggest stronger estimated effects encompassing the early adolescent to young
adult period compared to later in adulthood [6, 7, 15]. Further, childhood growth trajectories
from age one to 16 years have been shown to be associated with established BMI
susceptibility loci as a risk score [13], suggesting that genetic determinants associated with
BMI at cross-sectional periods are also associated with changes in BMI across the life
course. Studies of the influence of genetic variants on BMI change have not yet been
interrogated during the late adolescent to early adulthood transition, a developmental period
associated with substantial BMI change. More research is warranted to determine the impact
of BMI genetic variants across this phase of the life course.

In this study, we examined the association between 34 established BMI variants and change
in BMI derived from measured height and weight assessed from adolescence to early
adulthood in youth enrolled in an ethnically diverse, nationally representative cohort, the
National Longitudinal Study of Adolescent to Adult Health (Add Health), followed for 13
years across three time points, which we call Waves, between 1996 and 2008 when the
cohort fell between the ages of 13 years and 34 years. We hypothesized that carriers of
obesity risk alleles would have a greater rate of change in increasing BMI across the
adolescent and early-adulthood time period. In addition, because of increasing
environmental influences that might mask genetic ones as we age, we speculated that some
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variants might have comparatively stronger estimated effects at earlier versus later ages of
the period between adolescence and young adulthood.

Participants—Add Health is a nationally representative school-based cohort of US
adolescents (Wave |: 1994-95, n=20,745, aged 11-20 y, mean age 15.9 y) drawn from a
probability sample of 80 high schools and 52 middle schools, representative of US schools
in 1994-95 with respect to region, urban setting, school size and type, and race or ethnic
background. Wave 11 (1996, n = 14,738, aged 12-21 y, mean age 16.5 y) included by design
Wave | adolescents still of school age, including those currently in high school and high
school dropouts. Oversampled subgroups include related and non-related adolescents
sharing a Wave | household (n=5,524 Wave | respondents living in 2,639 households) [16]
and several race/ethnic subpopulations, including Chinese, Cubans, Puerto Ricans, and
Filipinos. Wave 111 (2001-2002, n= 15,197, aged 18-27 y, mean age 22.3 y) and Wave 1V
(2008-2009, n=15,701, aged 23-32 y, mean age 28.9 y) followed all Wave | respondents,
regardless of Wave Il participation. The most recent data collection (Wave 1V) included
follow-up interviews from 15,701 respondents drawn from 19,962 of the original 20,745
Wave | respondents and included DNA collection and banking for future studies. Survey
procedures have been described elsewhere [17-19], and were approved by the Institutional
Review Board, University of North Carolina at Chapel Hill.

Literature-based SNPs and Genotyping—We selected 34 SNPs associated with BMI
reported by the Genetic Investigation of ANthropometric Traits (GIANT) consortium
(Supplementary Table 1) and other studies in European adults [4, 20-24]. Familial
relationships were classified according to participant and parental self-report. Twin zygosity
was confirmed by 11 molecular genetic markers [25]. Genotyping was performed using
TagMan assays and the ABI Prism 7900® Sequence Detection System (Applied Biosystems,
Foster City, CA, USA). Sequences for primers and TagMan probes are available upon
request. Procedures for genotyping (call rate 98%, discordance 0.3%) have been detailed
elsewhere [26].

Ancestry—Ancestry was constructed using race and ethnic background and family
relationship status (i.e. country of origin, ancestry, and adoption): European American (EA),
African American (AA), and Hispanic American (HA), with indicators for subpopulation
(e.g., Mexican, Cuban) and immigrant status (e.g., US and non-US born), given differences
in BMI by immigrant status [27, 28].

Analysis sample

We included individuals with phenotype data in at least two Waves of data collection, and
those that had at least 80% of the SNPs genotyped (n=10,710). In addition, we excluded one
from each twin pair (n=142 pairs) with the fewest genotypes SNPs, Asian, Native American
or other race/ethnicity (n=719); disabled (n=76); and individuals missing covariate data
(n=125) or pregnant at all BMI observations available (n=18). BMI was set to missing for
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women who were pregnant at a particular observation. The final analytic sample included
9,624 individuals measured at Waves I, 111, and/or IV with DNA data (Supplementary
Figure 1). Wave | included only self-reported height and weight and was only one year prior
to Wave I, thus we did not include these self-reported observations. Within each of three
ethnic groups, sample sizes were comprised of 5,962 EA, 2,080 AA, and 1,582 HA. When
analyzing AAs, we excluded 12 of 34 SNPs (rs2568958, rs1514175, rs1555543, rs887912,
rs2890652, rs13078807, rs2112347, rs4929949, rs4771122, rs11847697, rs571312, rs29941;
see notes in all tables) that did not show evidence of association at p<0.20 and consistent
direction of effect in AA GWAS [29, 30]. Given the lack of large GWAS in Hispanics, and
the observation that 75% of GWAS SNPs for complex traits were replicated in Hispanics
[31], all 34 SNPs were considered in analyses of this population.

Statistical analysis

Outcome Measure: Change in Body Mass Index (BMI)—BMI (kg/m?) was
calculated from measured height and weight taken at Waves 11, I11 and IV during in-home
surveys using standardized procedures. Self-reported height and weight (r=0.95/0.94 with
measured weight/height [32]) were substituted for those refusing measurement and/or
weighing more than scale (Health-o-meter 844KL digital scale, Jarden Corporation; Rye,
NY) capacity (n=163 at Wave Il, n=371 at Wave Il1, and n=82 at Wave 1V). The maximum
scale at all waves was 200 kg / 440 Ibs maximum. We used BMI rather than Z-scores as is
common in the literature [33-35], which allows more straightforward interpretation.
Individual participant linear slopes were derived using the best linear unbiased prediction
method (“BLUP™), regressing BMI on age as both a fixed and random effect. We also
adjusted for current smoking at the indicated Wave, and an indicator for whether or not
height and weight was self-reported as fixed effects. Models were run by sex to account for
sex-specific differences in weight across time and by ancestry to account for ancestry
differences in weight gain over time. Of the 9,624 individuals in the analyses, 6,403 had 3
BMI measurements used to create the slope and 3,221 had 2 BMI measurements (1,296 with
BMI at Wave Il and Wave 1V, 1,913 with BMI at Wave 111 and Wave 1V, and 12 with BMI at
Wave Il and Wave 1I1) to create their slope.

Association analyses—Ancestry-stratified association analyses between change in BMI
and SNP genotype were conducted using linear mixed models incorporated in Stata, version
12.1 (Stata Corp, College Station, TX. Each SNP was modeled under an additive model,
with SNPs scored for the number of copies of the established (from prior GWAS) risk allele
or ‘BMlI-increasing’ allele. Covariates included baseline age, sex, geographic region,
oversampling of highly educated AAs (n=520), Hispanic ancestry: Cuban (n=284), Puerto
Rican (n=275), Central/South American (n=160), Mexican (n=863), other Hispanic (n=102),
and if the participant was foreign born (n=432). Study design effects and relatedness were
accounted for using random effects for school and family (of the 9,624 total individuals,
1744 (18%) were related or shared a household with another individual in the sample).
Effect estimates were combined and meta-analyzed in METAL using the inverse standard-
error weighted approach [36]. For each SNP association, we evaluated heterogeneity
between race/ethnic groups using Cochran’s Q. We considered evidence for heterogeneity
when the chi-square p <0.10 or 12 index >50[37, 38]. While we examined all nominally
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significant findings (p<0.05), we corrected for multiple testing: a = 0.05/number of SNPs
tested (p<0.0015 in EA, p<0.0015 in HA, and p<0.0023 in AA, and p<0.0015 in the
combined meta-analyzed sample). We also ran models without including any SNPs
(Supplementary Table 2).

For SNPs with nominally significant effects (p<0.05) on the change in BMI, we interrogated
two additional sets of analyses to assess whether the effects on change in BMI were due to
different effects across age groups or points in time, the latter for which we use Wave of data
collection. Given the narrow age range among participants (approximately 10 year age-span)
within each Wave of data collection, cohort and age effects are highly collinear. Thus, to
interrogate whether SNP effects vary by age, we performed SNP-by-age interaction analyses
on cross-sectional BMI at each Wave. This set of analyses considered that a locus might
have a stronger effect in younger compared to older individuals within the full age range
studied (e.g., 12-21 years at Wave 1) or vice versa. To keep the sample size constant when
testing for the SNP-by-age interaction at each Wave, we included a subsample of
participants with measured anthropometry at Waves I, 111 and V. This reduced our sample
size to 6,190 (3,155 females and 3,035 males). To aid in interpretation of the SNP-by-age
interaction results, we plotted the results by year of age at each Wave, except for ages 13-14
and ages 18-21, which we combined due to smaller sample sizes. Second, we examined the
main genetic effects of each SNP on cross-sectional BMI between individuals at similar ages
but at a different Wave of data collection Wave, to verify that the main effect of the SNP on
BMI is changing from one Wave to the next (i.e., across time periods). We attempted to age
match the groups when testing the same ages between 2 different Waves (i.e. time points).
Given the small sample sizes we combined age groups that overlapped including ages 18-20
as one group, both in Wave 11 and Wave 111, and ages 25-26 as a second group, both in Wave
I11 and Wave IV. Then we ran interaction models by testing the SNPxWave effect separately
in each of the two age groupings.

RESULTS

The participants (47% females) were an average of 16.1 years of age (ranging from 13-21
years) in 1996 (Wave Il) and 28.5 years (ranging from 25-34 years) in 2008 (Wave V).
Mean BMI in 1996 ranged from 22.9+4.9 kg/m? in EA to 24.1+5.7 kg/m? in AA, while in
2008 mean BMI ranged from 28.5+7.1 kg/m? in EA to 30.5+8.4 kg/m? in AA (Table 1). The
average change per year was largest in AA, 0.54+28 kg/m? and smallest in EA, 0.45+22
kg/mZ2. Analyses using a model without SNPs (Supplementary Table 2) showed significant
associations with age, sex, and in most cases random effect parameters. Sampling based on
education in Africans was not significant. Foreign born and ancestry variables in Hispanics
were not significant except that Cuba had significantly lower change in BMI compared to
Puerto Ricans (the referent).

In EA, FTO SNP rs9939609 was genome-wide significantly associated (p=2.42e-09) with
the slope of BMI (e.g. change in BMI over time), suggesting a 0.025 kg/m? per year of age
increase in BMI for each additional copy of the established risk allele compared to non-
carriers (Table 2). Similar results were seen for variants (in/near) rs571312 (MC4R),
rs3817334 (MTCH?2), rs6548238 (TMEM18), rs987237 (TFAPZB), and rs543874
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(SEC16B), with estimated effect sizes suggesting increases in BMI ranging from 0.014 to
0.025 kg/m? per year for each additional copy of their respective established risk alleles as
compared to non-risk allele carriers (Table 2). These results were significant after correcting
for 34 tests (p<0.0015). Thirty-two of 34 SNPs displayed positive effect estimates on BMI
change (consistent with the established risk alleles being associated with higher cross-
sectional BMI in prior reports) and 13 of these were at least nominally significant, which is
more than expected by chance alone (binomial p=3.9E-09). In AA, no SNPs were
significantly associated with BMI slope. However, 17 of 24 tested had positive beta
estimates and 5 of these variants in/near SEC16B (rs543874), GNPDAZ (rs10938397),
ETV5(rs7647305), LRRN6C (rs10938397), and MAP2K5 (rs2241423) were also nominally
significant, which is more than expected by chance (binomial p=0.005). In HA, no SNPs
were significantly associated with BMI slope, but 22 of 34 SNPs had positive beta estimates,
and four were nominally significant (rs1514175, rs543874, rs9939609, rs12444979,
respectively in/near TNNI3K, SEC16B, FTOand GPRC5B). In the all ancestry meta-
analysis, 31 of 34 SNPs had positive effect estimates for the established risk allele on change
in BMI and six SNPs in/near MC4R (rs571312), MTCHZ (rs3817334), TMEM18
(rs6548238), TFAPZB (rs987237), FTO (rs9939609), and SEC16B (rs543874) displayed
significant associations after correcting for multiple testing (Figure 1). Again, F70 met
genome-wide significance. While the statistical significance estimates in the meta-analyses
for these 6 loci were dominated by the larger EA results, effect estimates were largely
consistent across ethnic groups. Two notable exceptions were for /70 SNP rs9939609 and
TFAPZB SNP rs987237, where the effect estimates in AA were noticeably smaller compared
to EA and HA (Table 2), possibly because these SNPs are not tagging the relevant signal in
Africans. We calculated the variance explained by each SNP based on our meta-analysis
results. We calculated the variance explained for a one year change in BMI for each SNP
based on our European ancestry analysis results (Table 2). The cumulative variance
explained by the six SNPs that met Bonferroni significance or by the 15 SNPs that met
nominal significance (p<0.05), is 0.09% 0.37%, respectively.

We next considered whether the loci significantly associated (p<0.05) with change in BMI
within each ancestry might have different magnitudes of effect at younger compared to older
ages. Therefore, we tested a SNP-by-age interaction on cross-sectional BMI at each of
Waves Il, Il and IV for nine SNPs in EA and two SNPs each in AA and HA. In EA, we
found two interactions that remained statistically significant after correction for multiple
testing (p<0.05/9 SNPs=0.0056); a negative estimated SNP-by-age interaction effect on BMI
at Wave |1 for rs3817334 (in MTCHZ, Binteractiont[se] = —0.192[0.065]) and a positive
estimated interaction effect for rs987237 (in 7TFAPZB; Binteractiont[Se] = 0.308[0.085])
(Table 3 and Supplementary Table 3). Thus, the SNP near 7FAP2B had a stronger influence
on BMI in EA adolescents who were older, while MTCHZhad a stronger influence on BMI
in EA adolescents who were younger. No other SNP-by-age interactions on BMI at any
Wave were significant, although SNP-by-age interaction estimates for MTCHZ2and TFAPZB
on BMI were consistent in direction of effect but smaller in magnitude at Waves Il and IV
compared to Wave I1.

To aid in interpretation of these effect estimates, we estimated the main effect associations
between BMI and rs3817334 (in MTCH?2) and rs987237 (in TFAPZB), by age group at each
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Wave (Figure 2). For rs3817334 (in MTCH2), estimated main effects were comparatively
larger in younger respondents across all Waves, with an increasing range in differences by
age across time. The magnitude of the estimated effect appears to be driven by the
individuals who were younger compared to older (e.g. aged < 15 years versus =16 years),
with increased variability in effect estimates in 2001 (Wave 11) and again in 2008 (Wave I11)
[Figure 2]. The magnitudes of the estimated main effects were highest across all Waves in
the youngest participants that were recruited to Add Health and who were age 13-14 years
at Wave Il. For rs987237 (in TFAPZB), the estimated main effects were comparatively larger
in older respondents across all Waves. We then compared effect sizes in all participants who
were similar ages but at different points in time (i.e. those who were aged 18-20 years in
Wave |1 versus Wave 111 or 25-26 years in Waves |11 versus Wave V). While no SNPs were
significant for SNP-by-Wave interactions after correcting for multiple testing, both
rs3817334 in MTCHZ (stronger effects in Wave 111 than Wave 1) and rs987237 in TFAP2B
(weaker effects in Wave 111 than Wave 1) had nominally significant SNP-by-Wave
interactions when comparing aged 18-20 year olds between Waves 11 and 111 (Table 4 and
Supplementary Table 4).

DISCUSSION

Over the past decade, numerous common genetic loci have been reported to be associated
with BMI in primarily European descent adults, as well as in other ancestral groups, and at
one or more phases of the life course including adulthood [4, 21, 29, 39-41], childhood [7,
42-44] and adolescence [7, 26, 45]. We extended these findings to interrogate 34 known
obesity-related loci for association with change in BMI across the transition from
adolescence to adulthood in an ethnically diverse, nationally representative cohort of
adolescents followed over 13 years into adulthood.

Among EA, we observed statistically significant positive associations with change in BMI
(when oriented on the obesity susceptibility allele) from adolescence into adulthood for 6 of
34 known obesity loci tested, including one ~F7O variant (rs9939609) that met genome-wide
significance. Results were similar in the meta-analyses including EA, HA and AA. Among
six Bonferroni-corrected significant SNPs, only F70, MC4R, TFAPZB, and SEC16B have
been shown to be associated with cross-sectional measures of BMI during adolescence in
this cohort [26]. The variance explained for a one year change in BMI the by six Bonferroni-
corrected significant SNPs or the 15 SNPs that met nominal significance is clinically rather
small. How this extends beyond one year is not something we can extrapolate here.
However, we have only tested a selection of SNPs and there are likely others that influence
change in BMI in addition to those tested here. Our work confirms previous findings in
younger children (ages one to 16 years) of European descent of positive associations
between BMI-related loci and BMI trajectories of at least nominal significance with F70,
MC4R, SEC16B, TMEM18, TFAPZB and MTCHZ[13]. Other analysis of F70 variant
rs9939609 and MC4R variant rs17782313 (R?=0.96 with the MC4R SNP rs571312 we
tested) associations with change in BMI from childhood into adulthood in a sample of 2,479
European descent individuals suggested comparatively stronger association with BMI from
age two to 20 years and then weakening to age 53 [7]. In our study, 70O variant rs9939609
and MCR4 variant rs571312 were positively associated with change in BMI, however,
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though consistent in direction with the prior report, the effects of these variants in higher vs.
lower ages in Wave-stratified age-by-SNP interaction analyses were not significant. A
longitudinal study in over 41,000 European descent adults from three studies, mean ages 60,
45, and 58 years, found no statistically significant association with #70Oand change in BMI
across a 10-year period of time [46]. Thus, /7O may play a comparatively less prominent
role in relation to weight change in later adulthood. A recent study comparing genome-wide
genetic effects on BMI in younger adults <=50 years versus older adults (>50 years) showed
11 of 15 loci with greater estimated effects on younger adults [43]. None of the 11 loci were
associated with birth weight, yet all but one were nominally associated with increased risk of
childhood obesity and BMI in 16-t0-25 year-olds, suggesting that some loci exert genetic
effects relatively early in life and into young adulthood. Among the 11 loci were variants in
FTO, MC4R, SEC16B, and TMEMI8that are in high linkage disequilibrium (R2>0.8) with
those identified in the current study.

Change in BMI over time, and the effects of genotype on this change, is likely impacted by
many factors including changes in age and environment. Many of the specific environmental
factors are either unknown or difficult to adequately measure and/or represent in a social
epidemiological study. Over the past couple of decades, there has been a profound increase
in obesity in both adolescent and adult populations due to a number of external factors
strongly associated with the time period. In our study, like most social and epidemiological
longitudinal studies, the impact of change in age and general change in environment
captured by year of study (Wave) are highly confounded. In addition to assessing
longitudinal change in BMI, we also performed Wave-stratified age-by-SNP interactions and
age-matched Wave-by-SNP interactions between adjacent Waves to attempt to tease apart
this confounding. Our findings suggest that the etiology for the observed strengthening
associations between established BMI variants and BMI during the period of adolescence
and young-adulthood is complex and may be a function of both the aging process and
exposure to an increasingly obesogenic environment[47]. The interaction between rs987237
(near TFAPZB) and age suggests that this variant has stronger effects on BMI in older
adolescents/young adults (in the 13-21 year age range at Wave Il, the estimated increase in
BMI from each established risk allele is 2.5kg/m? greater for those at age 21 compared to
those at age 13). On the other hand, for MTCHZ variant rs3817334, we observed evidence
for stronger estimated effects on BMI at younger ages as suggested by the significant
interaction of age and rs3817334 during Wave Il when participants ranged from 13 to 21
years old. Given the main and interaction effect sizes, the estimated increase in BMI per T
allele of rs3817334 is 1.5kg/m? greater in those who are 13 years at Wave 11 versus those
who are 21 years at Wave I1. Interestingly, we also found supporting evidence for this same
variant having stronger effects on BMI in later Waves (e.g. stronger in Wave 11 vs. Wave I11)
in age-matched participants. For TFAPZB variant rs987237, the effects appear to be stronger
in earlier Waves among age-matched participants. MTCHZis highly expressed in white
adipose tissue and adipocytes, and thought to play a regulatory role in adipocyte
differentiation and biology, while 7TFAPZB mRNA expression has been shown to be
correlated negatively with leptin and positively with IL-6 expression in both subcutaneous
and omental adipose tissues [48]. Possibly MTCHZ might influence younger individuals
more in playing a role during puberty while 7FAP2B might have a stronger effect in older
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individuals in that cytokines (e.g. IL-6) have markedly lower levels in children versus adults
[49]. For the other variants associated with change in BMI, we found no significant evidence
pointing to differential effects across ages or year of study.

While our study capitalizes on an ancestrally diverse, nationally representative cohort
measured during a unique period of the lifecycle, there are limitations. There is a lack of
established obesity loci in HA and power in HA for common loci in our study was limited
by smaller sample sizes. In addition, the age range of our participants limited our ability to
separate differences in effect by age that might be due to cohort, time, and or age. The Add
Health sample is largely comprised of post-pubertal adolescents. For example <1% of Add
Health females had not achieved menarche by wave 1. Nonetheless we conducted a
sensitivity analysis with (and without) adjustment for age at menarche in women (we have
no such comparable measure for men) (Supplementary Table 5). This sensitivity analysis
suggests little difference and therefore would infer that there is little confounding from lack
of adjustment for puberty. We were unable to test periods of the life course that might be
defined as childhood or middle- to late-adulthood, making comparisons with other studies
difficult. However, these questions extend beyond the scope of the current study given our
sample. Finally, while it is possible, most common variants are not affected by pop
stratification in Europeans which is where we find most results. We are not well powered to
detect effects in these samples. Thus, it is not likely that we are reporting any false positives.

In conclusion, we demonstrated that several established BMI variants are positively
associated with change in BMI during the period of adolescence and young-adulthood.
Through stratified analyses, we demonstrate that M7CHZ variant rs3817334 has stronger
effects on BMI in younger participants and in later Wave (i.e. time periods), and that
TFAPZB variant rs987237 has stronger effects in older participants and in earlier Waves.
Due to the confounding between age and Wave in longitudinal analyses, stratified analyses
were necessary to tease apart these directionally conflicted findings for both variants. Our
results suggest that the genetic effect of BMI loci varies over time in a complex manner,
highlighting the importance of investigating loci influencing obesity risk across the life
course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
For SNPs that achieved statistical significance at p<0.05 across the meta-anlayzed sample,

effect estimates for per allele change in slope of BMI across adolescence to young adulthood
for the Add Health cohort by ethnic/race group and combined.
*Denotes SNPs that do not generalize to African Americans and thus were not considered.
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Figure 2.

Effect estimates of (a) rs3817334 (near MTCHZ2) and (b) rs987237 (near TFAP2B) with
cross-sectional measures of BMI at each Wave by age group at Wave 1.2

@ To aid in interpretation, we plotted the results by year of age at each Wave, except for those
aged 13-14 and aged 18-21 which we combined due to smaller sample sizes.

Sample sizes for MTCH2:

Aged 13-14 in 1996 (N=961 in Wave I, N=836 in Wave IlI, N=975 in Wave 1V)

Aged 15 in 1996 (N=961 in Wave Il, N=836 in Wave Ill, N=975 in Wave 1V)
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Aged 16 in 1996 (N=1007 in Wave I, N=840 in Wave Ill, N=1023 in Wave V)
Aged 17 in 1996 (N=960 in Wave Il, N=782 in Wave Ill, N=974 in Wave 1V)

Aged 18-21 in 1996 (N=1022 in Wave 11, N=904 in Wave IIl, N=1069 in Wave IV)
Sample sizes for TEAP2B:

Aged 13-14 in 1996 (N=966 in Wave I, N=843 in Wave I1l, N=980 in Wave 1V)
Aged 15 in 1996 (N=835 in Wave Il, N=715 in Wave |11, N=845 in Wave 1V)
Aged 16 in 1996 (N=1009 in Wave I, N=842 in Wave Ill, N=1025 in Wave V)
Aged 17 in 1996 (N=967 in Wave Il, N=789 in Wave Ill, N=981 in Wave 1V)
Aged 18-21 in 1996 (N=1028 in Wave 11, N=908 in Wave IIl, N=1075 in Wave IV)
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