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Abstract

Studies of genetic variations in vitamin D-related pathways and breast cancer risk have been 

conducted mostly in populations of European ancestry, and only sparsely in African Americans 

(AA), who are known for a high prevalence of vitamin D deficiency. We analyzed 24,445 germline 

variants in 63 genes from vitamin D-related pathways in the African American Breast Cancer 

Epidemiology and Risk (AMBER) consortium, including 3,663 breast cancer cases and 4,687 

controls. Odds ratios (OR) were derived from logistic regression models for overall breast cancer, 

by estrogen receptor (ER) status (1,983 ER positive and 1,098 ER negative), and for case-only 

analyses of ER status. None of the three vitamin D-related pathways were associated with breast 

cancer risk overall or by ER status. Gene-level analyses identified associations with risk for 

several genes at a nominal p ≤ 0.05, particularly for ER− breast cancer, including rs4647707 in 

DDB2. In case-only analyses, vitamin D metabolism and signaling pathways were associated with 

ER− cancer (pathway-level p = 0.02), driven by a single gene CASR (gene-level p = 0.001). The 

top SNP in CASR was rs112594756 (p = 7 × 10−5, gene-wide corrected p = 0.01), followed by a 

second signal from a nearby SNP rs6799828 (p = 1 × 10−4, corrected p = 0.03). In summary, 
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several variants in vitamin D pathways were associated with breast cancer risk in AA women. In 

addition, CASR may be related to tumor ER status, supporting a role of vitamin D or calcium in 

modifying breast cancer phenotypes.
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Vitamin D plays a central role in skeletal development and maintenance. A primary source 

of vitamin D in humans is cutaneous synthesis under sunlight exposure. Ultraviolet-B 

(UVB) light converts 7-dehydrocholesterol to vitamin D precursor, which undergoes a 

cascade of further enzymatic reactions until fully activated. The active vitamin D metabolite, 

1α,25-dihydroxyvitamin D, acts by binding to the vitamin D receptor (VDR), altering 

transcription of many target genes.

Over the last two decades, many extra-skeletal effects of vitamin D have been delineated, 

including a series of anti-cancer activities, from anti-proliferation to induction of apoptosis, 

promotion of differentiation, anti-inflammation, and inhibition of angiogenesis and 

metastasis.1,2 These findings support the biologic basis for a relationship of vitamin D 

deficiency with cancer morbidity and mortality, complementing the ecological evidence.3

There is no definitive evidence regarding the role of vitamin D in breast cancer prevention. 

Epidemiologic studies of sun exposure, dietary and supplementary vitamin D intake, and 

circulating vitamin D biomarkers, provide inconclusive results.4–6 A candidate gene 

approach has also been used to study genetic variations with breast cancer risk, with no 

consistent findings across studies.7–9 These previous studies were based largely on 

populations of European ancestry (EA) and focused on only a small number of markers and 

genes.

AAs have a high rate of vitamin D deficiency, likely due, in part, to dark skin pigmentation 

which blocks UVB light, and, to a lesser extent, lactose intolerance which may limit vitamin 

D intake from fortified dairy products.10 Our previous studies have also demonstrated wide-

spread differences in variant frequency and linkage disequilibrium (LD) in vitamin D-related 

genes between AA and EA populations.11 It is thus important to understand whether 

ancestral variations in vitamin D-related genes in AAs, which were shaped over millennia in 

sun exposure-abundant Africa, would put AA women at high risk of breast cancer in a 

Northern hemisphere environment where sun exposure is limited and seasonally 

fluctuates.10

Associations may also differ according to estrogen receptor (ER) status, given the increasing 

recognition of breast cancer etiological heterogeneity.12 In an earlier study, we found that 

circulating levels of 25(OH)vitamin D were inversely associated with aggressive breast 

cancer characteristics, including ER negative (ER-) tumors.13 Because AA women are more 

likely to be diagnosed with ER− cancer than EA women and have a higher prevalence of 

vitamin D deficiency, it is plausible to extrapolate that genetic variations in vitamin D-

related pathways may be associated with ER status in AA women. In this study, we 
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comprehensively examined genetic variations in vitamin D-related pathways with breast 

cancer risk in a large AA breast cancer consortium.

Study Population and Methods

The African American Breast Cancer Etiology and Risk (AMBER) consortium

The AMBER consortium was established in 2011 to integrate epidemiologic resources of 

four existing studies with the primary goal to aggregate an adequate sample size to study 

epidemiology of breast cancer subtypes in AA women. The four studies include two case-

control studies, the Women’s Circle of Health Study (WCHS) and the Carolina Breast 

Cancer Study (CBCS), and two prospective cohort studies, the Black Women’s Health Study 

(BWHS) and the Multi-Ethnic Cohort (MEC). A detailed description of the consortium and 

the four contributing studies can be found elsewhere.14–19

The WCHS is a case-control study enrolling breast cancer patients of age 25–75 years, 

initially in New York City (NYC) and New Jersey (NJ), and later exclusively in NJ.16,17 The 

enrollment began in 2002 with incident breast cancer patients ascertained and consented in 

NYC hospitals with large referral patterns of AAs and through the NJ State Cancer Registry. 

Controls matched on state, race and age were recruited from random digital dialing and 

community events. The CBCS is a population-based case-control study in North Carolina 

beginning in 1993.15 Breast cancer patients of age 20–74 were identified through state 

cancer registry, and controls were enrolled through Division of Motor Vehicle lists and 

Health Care Finance Administration lists.

The BWHS is a prospective study of 59,000 AA women across the US who were 21–69 

years of age at the study entry in 1995 and have been followed by biennial questionnaire 

since that time.18 Women diagnosed with breast cancer are identified by self-report in 

follow-up questionnaires, and confirmed by medical records, state cancer registries, and the 

National Death Index. The MEC is a multiethnic prospective cohort in Hawaii and southern 

California with follow-up of 215,000 men and women aged 45–75 at the time of study entry 

in 1993.19 Breast cancer diagnoses are confirmed by linkage to state cancer registries and 

the National Death Index. Controls for the BWHS and MEC were identified from among 

AA participants who had not been diagnosed with breast cancer.

All study participants provided consent for using their data and specimens for research 

purposes, and the study was approved by Institutional Review Boards at participating 

institutions. A descriptive summary of the number of cases and controls from each 

contributing study included in this analysis, with index age and ER status in cases obtained 

from pathology reports, is provided in Table 1.

Genetic marker selection, genotyping, quality control and imputation

For genotyping efforts in the BWHS, CBCS and WCHS, a systematic approach was used to 

select all known candidate genes from three vitamin D-related pathways defined by the 

Molecular Signature Database (MSigDB)20: the vitamin D metabolism and signaling 

pathway, the pigmentation synthesis and metabolism pathway, and the UV exposure 

response pathway (Table 2). TagSNPs were chosen from each gene using criteria of r2 ≥ 0.8 
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and minor allele frequency ≥ 10% in the Yoruban (YRI) population from the 1000 Genome 

Project.21 These SNPs were added as part of the custom content to the Illumina Human 

Exome Beadchip v1.1.

Genotyping was performed by the Center for Inherited Disease Research (CIDR), followed 

by stringent sample and marker QC steps.22 Imputation to the 1000 Genomes data using the 

IMPUTE2 program23 was performed by the University of Washington (UW). MEC samples 

had been geno-typed previously using the Illumina 1M-Duo chip and also imputed to the 

1000 Genomes data. The imputed MEC data were pooled with those from the BWHS, 

CBCS and WCHS to create a final analytical dataset. Markers with mismatching alleles or 

allele frequencies that were different by > 0.15 between MEC and the other three studies 

were excluded. Also, markers with MAF < 0.6% or imputation info score- < 0.5 in either 

study were removed. For this analysis of vita-min D-related pathways, a total of 24,445 

variants in 63 genes were included.

Statistical analysis

Population structure by principle component analysis (PCA) was assessed by the smartpca 
program in the EIGENSOFT package.24 A plot of the top two principal components (PCs) 

of the study population with HapMap controls is shown in Supporting Information Figure 1. 

Relatedness was assessed by PLINK.25 Thirty-five individual outliers in PCA and 162 1st-

degree relatives identified were flagged for sensitivity analysis. No substantial changes in 

risk estimates were found after excluding these individuals and they thus were kept in the 

analysis. Ten PCs were tested with case-control status while controlling for covariates, 

including index age, study, geographic region and DNA source, and none was significantly 

associated with breast cancer risk. To be conservative, three PCs with a p < 0.10 were 

included in the logistic regression models.

Breast cancer risk was analyzed overall, and separately for ER positive (+), and ER− disease 

compared to controls. We also performed case-only analysis, with ER+ cases as the 

“controls”, to assess potential differential associations between genetic variants and ER 

subgroups. Three levels of analyses of genetic variations were performed: pathway-level, 

gene-level and single marker-level, under the hypothesis that aggregating the effects of 

multiple markers within a gene or a biological pathway might be more statistically powerful 

and less prone to multiple testing bias than single marker analysis. Pathway- and gene-level 

analyses were performed first, using the adaptive rank truncated product (ARTP) statistic,26 

which can optimize the number of single marker p-values combined in each gene-level and 

pathway-level test. For pathway-level analysis, the PIGE software implementation of the 

ARTP method takes gene-level information into consideration when combining markers in a 

pathway (https://cran.r-project.org/web/packages/PIGE/index.html). To avoid redundancy of 

markers in high LD (r2 ≥ 0.8), the ARTP gene-level tests combined the optimal number of 

most significant SNP p-values from among the top 10 pruned-in SNPs for each gene. The 

ARTP pathway tests combined the optimal percentage (in 5% increments) of the most 

significant gene p-values in each pathway, without exceeding 50%. This parameter of the top 

10 pruned markers was chosen to ensure excellent representation of the genetic variations, 

but also not to dilute any effects from truly causal markers by including too many null 
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markers in the analysis. Following gene-level testing, single marker-level analyses were only 

pursued within genes reaching a nominal significance level of 0.05 using PLINK with 

dosage data and controlling for age, study, geographic region, DNA source, and three top 

PCs. We corrected for multiple testing within these genes with a Bonferroni correction for 

the effective number of independent markers tested within a gene using Gao’s SimpleM 

approach,27 and called this the “gene-wide” significance. Single marker associations for top 

genes were plotted with linkage disequilibrium data using the LocusZoom program.28

Results

At the pathway-level, none of the three vitamin D-related pathways was associated with 

breast cancer risk overall or stratified by ER status (p > 0.05). At the gene-level, several 

genes were associated with breast cancer risk at nominal p ≤ 0.05. We considered single-

marker associations only within genes that at the gene-level demonstrated nominal 

significance at p ≤ 0.05, and we corrected for multiple comparisons within genes. For overall 

breast cancer risk, four genes, including BCL3, MAPK8, REV1 and CYP2R1, were 

identified (Table 2). The most significant gene was REV1 (p = 0.004), which encodes for 

DNA repair protein REV1 (Fig. 1a). The most significant variant in this gene was an intronic 

SNP rs9308822, with the C allele associated with decreased odds of breast cancer (OR = 

0.86, 95% CI = 0.80 – 0.93, p = 1 × 10−4, gene-wide corrected p = 0.01) (Table 3). Two 

other variants, one each in BCL3 and PAICS, also remained significant at a gene-wide level.

Five genes were associated with ER+ breast cancer, including PAICS, BCL3, ERCC6, 

REV1 and CYP2R1 (Table 2), with 5 variants significant at a gene-wide level (Table 3). The 

top variant was rs114723899 residing in the 3′ UTR of ERCC6 (Fig. 1b). The C allele was 

associated with decreased risk of ER+ cancer (OR = 0.62, 95% CI = 0.49 – 0.78, p = 4 × 

10−5, gene-wide corrected p = 0.005). Three genes, including DCT, SLC24A4, and DDB2, 

were associated with ER− breast cancer, with 2 SNPs significant at a gene-wide level. The 

most significant SNP, rs4647707, resides in the 5′ UTR of DDB2, which encodes for DNA 

damage-binding protein 2 (Fig. 1c). The A allele was associated with increased odds of ER− 

cancer (OR = 1.26, 95% CI = 1.13 2 1.41, p = 4 × 10−5, gene-wide corrected p = 0.003). 

Based on RegulomeDB, this SNP is likely to affect transcription factor binding.

In case-only analyses, the vitamin D metabolism and signaling pathway was associated with 

ER-status (ER− vs. ER+) at a nominal pathway-level p values of 0.02. Among genes in this 

pathway, CASR, which encodes for calcium sensing receptor, was the only gene 

significantly associated with ER status (p = 0.001) (Table 2) after correction for multiple 

comparison of 11 genes in the pathway and 4 endpoints. The most significant SNP in CASR 
was an intronic SNP rs112594756 (p = 7 × 10−5, gene-wide corrected p = 0.01) (Fig. 1d). 

The G allele of this SNP was associated with increased odds of ER− breast cancer relative to 

ER+ disease (OR = 1.27, 95% CI = 1.13 – 1.43 (Table 3). A second independent intronic 

SNP in CASR, rs6799828, was also significantly related to ER status at a gene-wide level (p 
= 1 × 10−4, corrected p = 0.03), with the G allele associated with increased odds of ER− 

breast cancer compared to ER+ (OR = 1.24, 95% CI = 1.11 2 1.39). Both SNPs were 

associated with increased risk of ER-negative cancer but slightly reduced risk of ER-positive 

cancer in case-control analyses.
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In addition to the vitamin D metabolism and signaling pathway, four genes from the other 

two pathways reached nominal significance level in the case-only analyses: ALAS2, DCT, 

IRF4 and DDB2 (Table 2). One variant in DCT was significant at the gene-wide level (Table 

3).

Discussion

In this analysis of data and samples from 3,663 AA women with breast cancer and 4,687 

controls, we examined associations between breast cancer risk and variants in three vitamin 

D-related pathways: (1) pigment synthesis and metabolism, (2) response to UV exposure 

and (3) vitamin D metabolism and signaling. Although there were no significant associations 

between any of these pathways and breast cancer risk overall, we did observe that the 

vitamin D metabolism and signaling pathway was significantly associated with ER− breast 

cancer relative to ER+ disease. These associations were driven primarily by two independent 

loci from one gene, CASR. At the gene level, there were also variants that were 

preferentially associated with risk of ER− (DDB2, DCT) and ER+ (ERCC6, PAICS, 

CYP2R1, BCL3 and REV1) breast cancer, indicating a role for vitamin D in diverging 

etiologic pathways for breast cancer subtypes.

Data from experimental studies in cell culture and animal models support a variety of anti-

cancer properties of vitamin D, which, however, have yet to be confirmed in epidemiologic 

studies and prospective trials.1,2 Current literature on the relationship between circulating 

levels of vitamin D bio-marker, 25-hydroxyvitamin D (25OHD) and breast cancer risk is 

mixed.4–6 Existing studies of vitamin D-related genetic variations also provide inconclusive 

results.7–9 Many of the earlier studies were focused on several commonly studied 

polymorphisms in vitamin D receptor (VDR), including Fok1 (rs2228570), Apa1 

(rs7975232), Bsm1 (rs1544410) and Taq1 (rs731236). Although one recent meta-analysis 

concluded that the functional Fok1 polymorphism was associated with significantly 

increased risk,9 the effect size was small (OR = 1.09), and has not been detected by large 

GWAS. Because two GWAS of circulating 25OHD concentrations have identified a few 

variants, including those in GC and CYP2R1, significant at genome-wide level,29,30 a recent 

study, based on the Breast and Prostate Cancer Cohort Consortium (BPC3) of mainly 

individuals of European descent, attempted to examine whether those GWAS variants were 

also associated with breast cancer risk under a hypothesis of Mendelian randomization.31 

However, results from this study were null.

The lack of strong associations between overall breast cancer risk and vitamin D-related 

genetic variants in our study may be attributed to etiological heterogeneity, i.e., distinct 

disease subgroups are caused different sets of risk factors. The primary impetus to establish 

the AMBER consortium was to pool four large studies to reach an adequate AA sample size 

to investigate risk factors with breast cancer subtypes. In analyses of pooled data from this 

large consortium, we have demonstrated etiological heterogeneity by ER status in AA 

women.32–34 Therefore, in this study, we also investigated vitamin D-related genetic variants 

with breast cancer risk by ER status, as well as ER− vs. ER+ status in case-only analysis.
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The significant pathway-based findings are consistent with our hypothesis that vitamin D 

signaling and metabolism could be related to aggressive breast cancer in AA women. This is 

supported by results from our previous study of circulating 25OHD levels and breast cancer 

aggressive characteristics. In that study, we found that high 25OHD levels were associated 

with lower risk of ER− cancer, with little influence on ER+ disease.13 These converging data 

from circulating vitamin D biomarkers, genetic variations and reported work on tumor 

expression, support the notion that active vitamin D signaling may be protective against 

aggressive breast cancer subtypes.10 Similar findings were also reported from other 

observational studies in breast cancer and prostate cancer,35–39 and some experimental 

studies have provided biological mechanisms underlying the associations with more 

aggressive cancers.40–42 However, there are also studies reporting no associations of vitamin 

D levels with aggressive cancer characteristics.43

The above pathway-level association with ER status was driven by a single gene, CASR, 

which is crucial to calcium homeostasis. There is evidence of CASR functioning as a tumor 

suppressor in mammary cells,44 and CASR genetic variations have been related to lethal 

prostate cancer in EA men.45 In another study in Chinese women, rs17251221 in CASR was 

associated with breast cancer ER status and prognosis.46 However, this SNP was not 

associated with ER status in our study, nor in strong LD with the two significant SNPs in 

AA population. Because vitamin D is intricately related to calcium homeostasis, it remains a 

challenge to separate the effects of vitamin D from calcium on cancer.

In an effort to determine whether the associations observed in our study are race-specific or 

are also present in EA women, we looked up the top variants from Table 3 in a large 

European population using the GAME-ON GWAS look up tool (http://

gameon.dfci.harvard.edu). We were able to obtain results for 3 out of 12 variants and for a 

proxy marker in high LD (r2 = 0.847 in Europeans) with a fourth variant in Table 3. The 

findings, along with allele frequencies in the European population (1K Genome CEU), are 

summarized in Supporting Information Table 1. None of these four variants were associated 

with either overall or ER− breast cancer risk in Europeans. Another three variants were 

monomorphic or had very low allele frequency (0.01) in Europeans. For the other five 

variants in Table 3, we could not obtain association results from the GAME-ON GWAS data 

for the variants or their proxies. Therefore, we looked up all the variants in the 

corresponding genes in the GAME-ON GWAS data. Again, no similar associations with 

breast cancer overall or ER− cancer could be found from this large European population. 

The lack of consistency of the associations in AA and EA women is not unexpected. In the 

WCHS, we previously found that genetic associations in several biological pathways,47–50 

including several vitamin D-related genes,11 differed between AA and EA women. These 

data suggest that associations between genetic variants in vitamin D-related pathways and 

breast cancer risk in AAs may be different from those in EAs.

In conclusion, in one of the largest breast cancer studies of AA women, we found evidence 

of associations of vitamin D-related genetic variations with breast cancer risk, particularly 

with ER− breast cancer. Our finding of CASR variants associated with tumor ER status 

suggests a potential role of vitamin D in modulating breast cancer phenotypes and highlights 
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the importance of considering tumor heterogeneity in future studies of vitamin D and breast 

cancer etiology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What’s new?

Vitamin D displays many anti-cancer activities. While African Americans are known to 

have a high prevalence of vitamin D deficiency, studies of genetic variations in vitamin 

D-related pathways and breast cancer risk have been conducted mostly in populations of 

European ancestry. This study is the largest and most comprehensive investigation of 

vitamin D-related genetic variations with breast cancer risk and tumor estrogen receptor 

status in African American women. The data reveal modest associations of genetic 

variations in vitamin D pathways with breast cancer risk, and suggest a role for vitamin D 

in risk of estrogen receptor negative breast cancer.
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Figure 1. 
Plots of log-transformed p-values from single marker analysis for top genes in each 

subgroup test were generated using the Locus-Zoom program. The labeled marker in the 

plots were the most significant SNP (index SNP) in each gene, and the LD between the each 

of other markers in the gene and the index SNP was color coded, with red color indicating 

strong LD (r2 > 0.8) and blue color indicating weak LD (r2 < 0.2). Genotyped SNPs were 

indicated by closed dots and imputed SNPs were indicated by closed squares.
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Table 1

Descriptive characteristics of the study populations in the AMBER consortium

BWHS CBCS MEC WCHS

Case,
n (%)

Control,
n (%)

Case,
n (%)

Control,
n (%)

Case,
n (%)

Control,
n (%)

Case,
n (%)

Control,
n (%)

Total 901 2249 1408 615 533 989 821 834

Age group

18–39 47 (5) 217 (9) 204 (14) 87 (14) 0 (0) 0 (0) 85 (10) 116 (14)

40–49 262 (29) 652 (29) 459 (33) 211 (34) 9 (2) 16 (2) 215 (26) 228 (27)

50–59 302 (34) 770 (34) 381 (27) 150 (24) 112 (21) 222 (22) 292 (36) 319 (38)

60–69 204 (23) 442 (20) 267 (19) 114 (19) 175 (33) 288 (29) 173 (21) 142 (17)

70+ 86 (9) 168 (7) 97 (7) 53 (9) 237 (44) 463 (47) 56 (7) 29 (3)

Estrogen receptor status in cases

Positive 498 (55) – 741 (53) – 309 (58) – 435 (53) –

Negative 233 (26) – 565 (40) – 135 (25) – 165 (20) –

Unknown 170 (19) – 102 (7) – 89 (17) – 221 (27) -
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Table 2

p-values of pathway- and gene-level test with breast cancer risk

Gene # Total Marker # Effective Marker Overall ER+ ER− ER− vs. ER+

Pigment synthesis and metabolism 13,598 5,227 0.99 0.74 0.15 0.16

ALAD 181 115 0.21 0.68 0.29 0.58

ALAS1 91 52 0.49 0.67 0.59 0.39

ALAS2 92 51 0.66 0.07 0.53 0.05

AP3D1 433 144 0.46 0.84 0.96 0.94

ASIP 124 46 0.72 0.70 0.31 0.37

BLVRA 267 100 0.51 0.36 0.34 0.28

COX10 744 296 0.87 0.88 0.98 0.76

COX15 93 42 0.94 0.61 0.95 0.24

CPOX 231 113 0.43 0.84 0.59 0.78

DCT 372 139 0.34 0.64 0.003 0.01

EXOC2 1555 705 0.19 0.21 0.35 0.51

FECH 359 179 0.71 0.68 0.25 0.23

GMPS 410 82 0.68 0.17 0.56 0.29

GPR143 293 137 0.14 0.14 0.90 0.78

HERC2 1133 285 0.48 0.40 0.72 0.61

IRF4 256 160 0.37 0.65 0.07 0.007

KITLG 369 90 0.95 1.00 0.49 0.56

MC1R 38 28 0.38 0.49 0.97 0.62

NFE2L1 129 62 0.97 0.97 0.60 0.73

OCA2 2511 786 0.67 0.76 0.38 0.29

PAICS 158 41 0.27 0.03 0.43 0.23

PPOX 57 33 0.24 0.73 0.50 0.21

SLC24A4 1642 801 0.18 0.47 0.04 0.09

SLC24A5 69 32 0.47 0.88 0.15 0.23

SLC45A2 244 157 0.55 0.32 0.87 0.31

TPCN2 417 143 0.48 0.26 0.83 0.31

TSPO 175 95 0.83 0.46 0.27 0.34

TYR 933 240 0.68 0.76 0.97 0.57

TYRP1 222 73 0.78 0.79 0.55 0.87

Response to UV exposure 5,814 1,886 0.13 0.09 0.80 0.71

BCL3 214 131 0.03 0.01 0.22 0.45

BRSK1 175 114 0.93 0.86 0.99 0.99

CDKN2D 26 14 0.77 0.44 0.81 0.18

DDB2 160 74 0.19 0.92 0.05 0.03

ERCC2 139 82 0.19 0.65 0.52 0.70

ERCC3 248 78 0.74 0.75 0.81 0.89

ERCC4 332 107 0.99 1.00 0.25 0.58

ERCC5 187 80 0.52 0.68 0.94 0.60
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Gene # Total Marker # Effective Marker Overall ER+ ER− ER− vs. ER+

ERCC6 493 108 0.23 0.01 0.88 0.22

ERCC8 414 87 0.49 0.64 0.33 0.66

FEN1 13 10 0.86 0.93 0.29 0.63

GPX1 51 24 0.64 0.52 0.95 0.95

IL12A 5 5 0.73 0.65 0.40 0.49

IL12B 106 55 0.82 0.68 0.99 0.85

IVL 197 90 0.39 0.52 0.86 0.96

MAPK8 763 122 0.05 0.10 0.21 0.35

POLD1 355 99 0.35 0.37 0.73 0.81

RELA 94 44 0.20 0.11 0.27 0.13

REV1 391 90 0.004 0.02 0.22 0.52

RPAIN 71 26 0.82 0.79 0.85 0.80

SCARA3 384 146 0.31 0.34 0.79 0.37

SERPINB13 199 79 0.11 0.15 0.88 1.00

UBE4B 797 221 0.50 0.70 0.62 0.39

Vitamin D metabolism and signaling 5,033 2,127 0.54 0.45 0.64 0.02

CASR 755 196 0.70 0.24 0.11 0.001

CYP24A1 323 178 0.44 0.61 0.84 0.83

CYP27A1 245 92 0.31 0.44 0.58 0.64

CYP27B1 15 14 0.81 0.99 0.21 0.54

CYP2R1 63 43 0.05 0.04 0.43 0.32

GC 450 178 0.23 0.35 0.55 0.49

NCOA1 802 182 0.89 0.89 0.56 0.86

RXRA 1004 464 0.70 0.47 0.43 0.16

RXRB 35 25 0.37 0.16 0.86 0.91

SMAD3 837 448 0.12 0.21 0.10 0.38

VDR 504 307 0.41 0.43 0.47 0.77

For the columns “Overall”, “ER+” and “ER−”, the tests were comparing breast cancer as a single entity, ER+ cancer, and ER− cancer with healthy 
controls, respectively.
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Table 3

Top markers associated with breast cancer risk with a corrected p values ≤0.05

SNP Gene Function A1/A2
A1
frequency

Info
score OR (95% CI) p

Corrected
p

Overall breast cancer risk

rs9308822 REV1 intronic C/T 0.27 1.00 0.86 (0.80–0.93) 1.1E–04 0.01

rs34698726 BCL3 intergenic T/A 0.32 0.91 1.16 (1.07–1.25) 1.3E–04 0.02

rs10700835 PAICS intergenic ACT/A 0.51 1.01 1.12 (1.05–1.20) 1.0E–03 0.04

ER-positive breast cancer

rs114723899 ERCC6 3′ UTR C/T 0.04 0.95 0.62 (0.49–0.78) 4.3E–05 0.005

rs10700835 PAICS intergenic ACT/A 0.51 1.01 1.15 (1.07–1.25) 4.4E–04 0.02

rs190770932 CYP2R1 intronic A/G 0.03 0.94 1.55 (1.21–1.99) 4.8E–04 0.02

rs34698726 BCL3 intergenic T/A 0.32 0.92 1.19 (1.09–1.30) 1.7E–04 0.02

rs13431410 REV1 intergenic A/G 0.26 0.97 0.84 (0.77–0.93) 4.8E–04 0.04

ER-negative breast cancer

rs4647707 DDB2 5′ UTR A/G 0.32 1.02 1.26 (1.13–1.41) 4.3E–05 0.003

rs112907967 DCT intronic T/C 0.11 1.00 1.34 (1.14–1.57) 3.0E–04 0.04

ER-negative vs. positive breast 
cancer

rs112594756 CASR intronic G/C 0.34 0.89 1.27 (1.13–1.43) 7.3E–05 0.01

rs6799828 CASR intronic G/T 0.56 0.94 1.24 (1.11–1.39) 1.5E–04 0.03

rs3837536 DCT intronic G/GA 0.60 1.00 1.23 (1.11–1.38) 1.8E–04 0.03

Footnote: A1 and A2 indicate risk and reference alleles, respectively. p values corrected for multiple comparison using simpleM approach. OR, 
odds ratio for the risk allele. CI, confidence interval.
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