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Summary

This paper presents a coordinated and semi-adaptive closed-loop control
approach to the infusion of 2 interacting medications. The proposed approach
consists of an upper-level coordination controller and a lower-level semi-
adaptive controller. The coordination controller recursively adjusts the refer-
ence targets based on the estimated dose-response relationship of a patient
to ensure that they can be achieved by the patient. The semi-adaptive con-
troller drives the patient outputs to the reference targets while estimating
the patient's dose-response relationship online. In this way, the controller is
resilient to unachievable caregiver-specified reference targets and responsive to
the medication needs of individual patients. To establish the proposed approach,
we developed the following: (1) a linear two-input–two-output dose-response
model; (2) a two-input–two-output semi-adaptive controller to regulate the
patient outputs while adapting high-sensitivity parameters in the patient model;
and (3) a coordination controller to adjust the reference targets that recon-
cile caregiver inputs and medication use. The proposed approach was applied
to an example scenario in which cardiac output and respiratory rate are reg-
ulated via infusion of propofol and remifentanil in an in silico simulation
setting. The results show that the coordinated semi-adaptive control could (1)
track achievable reference targets with consistent transient and steady-state
performance and (2) resiliently adjust the unachievable reference targets to
achievable ones.
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1 INTRODUCTION

There is an increasing interest in computerized closed-loop control of medication infusion for critically ill patients by
virtue of its potential for delivery and continuous monitoring of high-quality treatment1-3 and alleviation of caregivers'
workload.4,5 Indeed, closed-loop control of anesthesia,6-8 vasopressor infusion,9 and fluid resuscitation10-12 has been an
active area of research for a few decades. However, there are still at least two opportunities to further innovate and improve
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closed-loop control of medication infusion as follows: (1) control design approaches for simultaneous infusion of multiple
(and often synergistically interacting) medications and (2) coordination of reference targets.

Generally, multiple medications must be infused during the care of critically ill patients to achieve a multitude of
treatment goals. However, the majority of prior art has focused on the infusion of a single medication, eg, propofol,13-15

remifentanil,16,17 and fluid,18,19 whereas there is only limited volume of work reported on the closed-loop control for
infusion of multiple medications to track multiple reference targets (see, for example, previous works20-22).

In addition to closed-loop control design, the coordination of reference targets also presents a challenge. In real clin-
ical scenarios, reference targets are empirically specified by caregivers, eg, based on population norms and caregivers'
experience. These ad hoc reference targets are not always achievable in all patients due to the interindividual variabil-
ity in dose-response relationships and the bounds on medication dose to ensure patients' safety. In fact, inappropriate
coordination of reference targets that cannot be achieved in a patient may potentially harm the patient via overdosing/
underdosing. A critical challenge is that it is not possible to specify achievable reference targets for a patient before the
treatment, since the dose-response relationship of the patient is typically not known a priori. Therefore, targets must
be recursively adjusted by estimating the patient's dose-response relationship online while respecting the caregivers'
therapeutic intent.

Existing well-known techniques for the adjustment of reference targets are reference governors and their variants, ie,
add-on schemes used to avoid the violation of state and input constraints in a closed-loop control system by adjusting
the reference targets during the transients.23-25 However, these techniques are not appropriate to address the challenge
at hand for at least two reasons. Most importantly, the primary goal of a reference governor is to keep the adjusted ref-
erence targets as close as possible to the original ones and ideally to ultimately bring them back to the original ones. In
contrast, our goal is to adjust inherently unachievable reference targets to achievable ones so that the system (the patient
in our case) can converge to the adjusted reference targets, while accounting for additional safety-critical considerations
such as minimizing the total medication doses. Furthermore, a reference governor can only reduce the reference targets,
whereas our goal is to adjust (ie, increase or decrease) reference targets according to the sensitivity of each patient to med-
ications and their synergy. Therefore, novel approaches for coordinated adjustment of reference targets may be beneficial
in providing closed-loop medication infusion control systems with resilience to inappropriate reference targets specified
by caregivers, ultimately improving the safety of patients receiving medication treatments.

This paper presents a coordinated and semi-adaptive closed-loop control approach to the infusion of 2 interacting
medications. The proposed approach consists of an upper-level coordination controller and a lower-level semi-adaptive
controller. The coordination controller recursively adjusts the reference targets based on the estimated dose-response
relationship of a patient to ensure that they can be achieved by the patient. The semi-adaptive controller drives the
patient outputs to the reference targets while estimating the patient's dose-response relationship online. In this way, the
controller is resilient to unachievable caregiver-specified reference targets and responsive to the medication needs of
individual patients. To establish the proposed approach, we developed the following: (1) a linear two-input–two-output
dose-response model; (2) a two-input–two-output semi-adaptive controller to regulate the patient outputs while adapt-
ing high-sensitivity parameters in the patient model; and (3) a coordination controller to adjust the reference targets
that reconcile caregiver inputs and medication use. The proposed approach was applied to an example scenario in
which cardiac output and respiratory rate are regulated via infusion of propofol and remifentanil in an in silico
simulation setting.

This paper is organized as follows. Section 2 presents a control-oriented dose-response model for 2 interacting medica-
tions. Section 3 describes control architecture and design in detail. Section 4 presents and discusses in silico simulation
testing. Section 5 concludes the paper with potential future directions.

2 DOSE-RESPONSE MODEL FOR TWO INTERACTING MEDICATIONS

We developed a dose-response model for 2 interacting medications by combining a low-order mixing model reported in
our previous works16,26 and a response surface model reported in Minto et al27 (see Figure 1). First, the low-order mixing
model represents the relationship between the intravenous infusion rate and the (hypothetical) infusion rate at the site
of action of a medication and is described as follows:

ẋ1 = −ke1x1 + ke1u1

ẋ2 = −ke2x2 + ke2u2,

(1)
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FIGURE 1 The dose-response model for 2 interacting medications consisting of a low-order mixing model and a response surface model
[Colour figure can be viewed at wileyonlinelibrary.com]

where u1 and u2 are the intravenous infusion rates associated with the 2 medications M1 and M2, x1 and x2 are the corre-
sponding infusion rates at the sites of action, and ke1 and ke2 are the equilibration constants. Second, the response surface
model relates the 2 infusion rates to the system outputs (ie, clinical endpoints) and is described as follows:

y1 = y10
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(2)

where y1 and y2 are the system outputs, y10 and y20 are the baseline system outputs before the infusion starts, I50, ij, i, j= 1, 2,
is the infusion rate of medication Mj associated with 50% change in the system output i, and γ1 and γ2 are the cooperativity
constants. The functions ϕ1 and ϕ2 denote the relative dominance of the infusion rates associated with the 2 medications
(ϕ1 =ϕ2 = 1 if only M1 is infused and ϕ1 =ϕ2 = 0 if only M2 is infused). The parameters β1 and β2 represent the degree
of synergistic interaction between the medications associated with the outputs y1 and y2 (0< β1, β2 < 4, where 0 and 4
correspond to zero and maximum interactions, respectively).

To derive a control-oriented input-output model relating y1 and y2 directly to u1 and u2, we transform Equation 2
as follows:

qi ≜

(
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yi

) 1
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=
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, i = 1, 2, (3)

which exhibits a large nonlinearity. To facilitate the control design, linearizing Equation 3 around an operating point
(x10, x20) yields the following:
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(4)
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Assuming M1 and M2 are primary and secondary medications, respectively, Equation 4 reduces to the following at
(x10, x20)= (x10, 0):

q1 = x1

I50,11
+ (1 + β1)

x2

I50,12
= x1

I50,11
+ ρ1

x2

I50,12
≜

x1

λ11
+ x2

λ12

q2 = x1

I50,21
+ (1 + β2)

x2

I50,22
= x1

I50,21
+ ρ2

x2

I50,22
≜

x1

λ21
+ x2

λ22
.

(5)

Therefore, x1 and x2 can be expressed by q1 and q2 as follows:

x1 = λ11λ21

λ12λ21 − λ11λ22
(λ12q1 − λ22q2)

x2 = λ12λ22

λ11λ22 − λ12λ21
(λ11q1 − λ21q2) .

(6)

Now, differentiating Equation 5 in time yields the following:

q̇1 = 1
λ11

(−ke1x1 + ke1u1) +
1
λ12

(−ke2x2 + ke2u2)

q̇2 = 1
λ21

(−ke1x1 + ke1u1) +
1
λ22

(−ke2x2 + ke2u2) .
(7)

Finally, substituting Equation 6 into Equation 7 yields the following input-output model between q1 and q2 versus u1 and
u2 for control design, where Δ≜ λ12λ21 −λ11λ22:

q̇1 = 1
Δ
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λ11
u1 +

1
Δ

(ke1λ22λ21 − ke2λ21λ22) q2 +
ke2
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Δ
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1
Δ
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ke2

λ22
u2,

(8)

which leads to the following linearly parameterized model:

q̇ =

[
q̇1

q̇2

]
= A

[
q1

q2

]
+ B

[
u1

u2

]
, (9)

where A = 1
Δ

[
−ke1λ12λ21 + ke2λ11λ22 ke1λ22λ21 − ke2λ21λ22
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]
and B =

⎡⎢⎢⎣
ke1
λ11

ke2
λ12

ke1
λ21

ke2
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⎤⎥⎥⎦.

3 CONTROL DESIGN AND EVALUATIONS

3.1 Control architecture
The proposed control approach consists of an upper-level coordination controller and a lower-level semi-adaptive con-
troller (see Figure 2). The coordination controller recursively adjusts the reference targets, based on the dose-response
relationship of a patient estimated by the semi-adaptive controller and constraints imposed on the medication use, to
ensure that the reference targets thus derived can be safely achieved by the patient. For given reference targets provided by
the coordination controller, the semi-adaptive controller computes and executes the requisite medication infusion rates to
guide the patient toward the reference targets while estimating the patient's dose-response relationship online and provid-
ing it to the coordination controller. Details on the design of coordination and semi-adaptive controllers are described in
the following.

3.2 Two-input–two-output semi-adaptive control
The model in Equation 9 is formulated in terms of the transformed (by Equation 3) outputs qi rather than the actual ones
yi, i= 1, 2. To derive q1 and q2 from y1 and y2, γ1 and γ2 must be known. In a previous work, we have shown that γi makes
relatively small influence on the system output compared with kei and I50, ij (i, j= 1, 2) and may thus be fixed at a nominal
value.16 With γ1 and γ2 specified a priori, the model (9) is a linearly parameterized control design model with the elements
of matrices A and B as unknowns to be adapted online. As the proposed control approach adapts only a subset of the
plant model parameters (ie, parameters other than γ1 and γ2), it is semi-adaptive rather than fully adaptive.
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FIGURE 2 The architecture of coordinated semi-adaptive control [Colour figure can be viewed at wileyonlinelibrary.com]

Consider the following first-order reference model specifying the ideal endpoint responses of the patient to a reference
target:

q̇m = Amqm + Bmr, (10)

where Am = −
[

am 0
0 am

]
< 𝟎 is a negative definite matrix, Bm = −Am, and r is a bounded reference target, ie, r =

[
r1
r2

]
.

Then, the objective is to formulate an adaptive control law that can guide y to ym asymptotically, ie, limt→∞q (t)−qm (t) = 0.
Consider the following model reference adaptive control (MRAC) law:

u =
[

u1
u2

]
= âq

[
q1
q2

]
+ âr

[
r1
r2

]
+ 𝛈

[
q1 − q1m
q2 − q2m

]
= âqq + âr r + 𝛈e, (11)

where âq and âr are variable feedback gains, 𝛈 = −
[
η1 0
0 η2

]
< 𝟎 is a negative definite constant feedback gain, r1 and

r2 are the reference targets associated with the system outputs, and e is the tracking error. Note that the MRAC law (11)
equipped with âr = ar = B−𝟏Bm and âq = aq = B−𝟏 (Am − A) results in perfect matching of the plant dynamics (9) to the
reference model (10). Then, we have

q̇ = Aq + Bu = Aq + B
[
B−𝟏 (Am − A)q + B−𝟏Bmr + 𝛈e

]
= Amq + Bmr + B𝛈e. (12)

However, the plant model parameters ar and aq are not known a priori in reality. Defining 𝛉≜ [aq ar] and 𝛉̂ ≜
[

âq âr
]
,

the difference between the true versus estimated parameters is defined as follows:

𝛉̃ = 𝛉̂ − 𝛉 =
[

ãq ãr
]
≜
[

âq − aq âr − ar
]
. (13)

Then, the dynamics of the tracking error when the plant (9) is subject to the MRAC law (11) becomes the following:

ė = q̇ − q̇m =
(

A + Bâq
)

q + Bâr r + B𝛈e − Amqm − Bmr
=
(

A + Bâq − Am
)

q +
(

Bâr − Bm
)

r + Ame + B𝛈e
= Bãqq + Bãr r + Ame + B𝛈e

= B
[

ãq ãr
] [ q

r

]
+ Ame + B𝛈e = B𝛉̃𝛙 + Ame + B𝛈e

(14)

where 𝛙 =
[

q
r

]
.

Assuming that all the leading principal minors of B are positive, there exists a positive definite matrix P =
[

p1 0
0 p2

]
> 𝟎

such that PB =

[
p1

ke1
λ11

p1
ke2
λ12

p2
ke1
λ21

p2
ke2
λ22

]
> 𝟎 holds. Noting that all the elements in B assume positive values due to the physical

meaning of the parameters kei and λij, i, j= 1, 2, there exist p1 and p2 making PB symmetric, ie, satisfying p1
ke2
λ12

= p2
ke1
λ21

.
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Hence, there exists a matrix S that satisfies PB=STS. Finally, consider the Lyapunov function V = eTPe+𝑡𝑟
[

S𝛉̃𝚪−𝟏𝛉 𝛉̃
TST

]
and the adaptation law ̇̂𝛉T = −𝚪𝛉𝛙eT , where tr[·] is the trace of the argument and 𝚪𝛉 is a positive definite adaptation gain
matrix. Then, the time derivative of the Lyapunov function candidate reduces to the following:

V̇ = ėTPe + eTPė + 𝑡𝑟
[

S ̇̃𝛉𝚪−𝟏𝛉 𝛉̃
TST + S𝛉̃𝚪−1

𝛉
̇̃𝛉TST

]
= 2eTPė + 2𝑡𝑟

[
S𝛉̃𝚪−𝟏𝛉

̇̃𝛉TST
]

= 2eTP
(

B𝛉̃𝛙 + Ame + B𝛈e
)
− 2𝑡𝑟

[
S𝛉̃𝛙eTST

]
= 2eTPB𝛉̃𝛙 + 2eTPAme + 2eTPB𝛈e − 2eTSTS𝛉̃𝛙 = 2eTPAme + 2eTPB𝛈e ≤ 0.

(15)

Since V is positive definite and V̇ is negative semidefinite, V is bounded. Hence, the plant model (9) with the MRAC
law (11) and the adaptation law ̇̂𝛉T = −𝚪−𝟏𝛉 𝛙eT is globally stable, and accordingly, e, ãq and ãr are bounded. Then, ė is
bounded from (14), and V̈ is also bounded from (15). As a consequence, V̇ is uniformly continuous. Therefore, limt→∞V̇ =
0, and limt→∞e (t) = 𝟎.

To prevent the drift in âq and âr while e(t)≅ 0 (which frequently occurs in case the system is regulated at constant set
points), we employed the dead zone,28 a scheme to stop parameter adaptation when e(t)≅ 0. We have

̇̂𝛉T =

{
−𝚪𝛉𝛙eT , |e1 (t)| > ϵe1 or |e2 (t)| > ϵe2

𝟎, otherwise.
(16)

3.3 Coordinated control via recursive reference adjustment
The primary role of the coordinated control is to keep the reference targets achievable by the system driven by the
semi-adaptive control outlined in the previous section. In this paper, we developed a coordinated control scheme based
on a recursive adjustment law for the reference targets by considering constraints on the following: (1) the input magni-
tudes (ie, bounds on the medication infusion rates) and energy (ie, total medication use) and (2) the degree of discrepancy
between the original (ie, specified by the caregiver) versus adjusted reference targets. Details are as follows.

The set of achievable reference targets can be determined by the bounds imposed on the input and by the dis-
crepancy between the originally specified versus adjusted reference targets as follows. First, in case of medication
infusion, the elements of the input u must be positive while limited by an upper bound to ensure patient safety, ie,

, i= 1, 2. Hence, considering (9), the reference targets must satisfy the following inequalities in the steady state:

(17) 

Referring to (8), (17) yields the following pair of inequalities in terms of r1 and r2:

which altogether yields a parallelogram in the (r1, r2) space, as shown in Figure 3 (note that the parallelogram is guaran-
teed to exist because the slopes of the constraints in (18) satisfy λ21

λ11
>

λ22
λ12

given that all the leading principal minors of B
are positive). Second, the discrepancy between the original (ie, caregiver specified) versus adjusted reference targets may
be limited to respect the expertise of the caregiver, which results in the following inequalities in terms of r1 and r2 (note
that these limits may be specified by the caregiver in advance):

ri0 − ϵri ≤ ri ≤ ri0 + ϵri , i = 1, 2, (19)

where ri0 is the originally specified value for ri, i= 1, 2. These constraints altogether yield a rectangle in the (r1, r2) space,
as shown in Figure 3. Finally, the set of achievable reference targets is determined as the intersection between the
parallelogram and the rectangle, as shown in Figure 3.
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FIGURE 3 The set of achievable reference targets specified by the constraints on the input magnitudes and deviation from the original
reference targets [Colour figure can be viewed at wileyonlinelibrary.com]

If the current pair of reference targets (r1, r2) is not achievable, one (and perhaps the easiest) way to make it achiev-
able is to adjust it toward the nearest achievable pair of reference targets. From Figure 3, the nearest achievable
pair can be found as the intersection between the side of the parallelogram having the smallest distance from the
current pair of reference targets and the line perpendicular to the side that passes through the current pair of refer-
ence targets (eg, the pair “A” is adjusted toward “B”). However, this approach is not ideal in terms of input energy
(ie, medication use) because the adjusted reference targets will be on a side of the parallelogram, at which ui = 0 or

, i= 1, 2, and the synergistic interaction between the 2 medications is not exploited to minimize the medication
use. Hence, it may be sensible to penalize the medication use in determining the direction of adjustment of the reference
targets to minimize the medication use. The optimal direction of adjustment, obtained by considering both the smallest
distance to the set of achievable reference targets and input energy, may not be strictly perpendicular to the side of the
parallelogram. Regardless, considering that all the sides of the parallelogram have positive slopes, adjusting r1 and r2 in the
opposite direction (ie, if one is increased, the other must be decreased) is a viable requirement in adjusting the reference
targets to effectively reach the achievable reference targets (eg, adjusting the pair “A” toward “C” is more effective than
adjusting toward “D”). Hence, this can be enforced in the course of reference targets adjustment.

Summarizing the above considerations, we developed a coordinated control scheme based on a recursive adjust-
ment law for the reference targets using the model predictive control formalism as follows. Consider a simple recursive
adjustment law for r1 and r2 given by the following:

ṙ (t) =
[

̇r1 (t)
̇r2 (t)

]
= 𝚪r

[
v1 (t)
v2 (t)

]
= 𝚪rv (t) , (20)

where 𝚪r =
[
γr1 0
0 γr2

]
is a positive definite adaptation gain matrix and v(t) is the adjustment policy that is to be designed.

Then, the dynamics of the plant (9), reference model (10), MRAC law (11), and reference target adjustment law (20)
combined all together is given in the discrete-time domain by

q(n + 1) = q(n) + Ts

{(
Â(n) + B̂(n)âq(n) + B̂(n)𝛈

)
q(n) − B̂(n)𝛈qm(n) + B̂(n)âr (n)r(n)

}
𝛉̂

T
(n + 1) =

[
âq

T

âr
T

]
= 𝛉̂

T
(n) − Ts

{
𝚪𝛉

[
q (n)
r (n)

] [
q (n) − qm (n)

]T
}

qm (n + 1) = qm (n) + Ts
{

Amqm (n) + Bmr (n)
}

r (n + 1) = r (n) + Ts𝚪rv (n) ,

(21)

with B̂ (n) = Bmâr
−𝟏 and Â (n) = Am − Bmâr

−𝟏âq. To reconcile constraints on the input magnitudes (18) and energy
(ie, total medication use) and the degree of discrepancy between the original versus adjusted reference target (19), v(n),
t≤n≤ t + Nc is determined by minimizing the following cost function, where Nc and Np denote the control and prediction
horizons, respectively:

J (n) =
t+Np∑
n=t

[
ρ1(r1 (n) − r10 (n))2 + ρ2(r2 (n) − r20 (n))2 + ρ3u2

1 (n) + ρ4u2
2 (n)

]
(22)
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subject to the linear inequality constraints (18) and (19), and the following nonlinear inequality constraints to ensure that
r1 and r2 are adjusted in the opposite direction:

δmin ≤
v2 (n)
v1 (n)

≤ δmax →

{
v1 (n) [v2 (n) − δminv1 (n)] ≥ 0
v1 (n) [v2 (n) − δmaxv1 (n)] ≤ 0

, t ≤ n ≤ t + Nc, (23)

where δmin < δmax < 0.
At each sampling time step, the coordinated control problem is solved to yield v(n), t≤n≤ t + Nc that minimizes (22)

subject to the dynamics (21) with the dose-response model parameters âq and âr adapted in the previous sampling time
step as well as the constraints (18), (19), and (23). Then, v(t) is applied to the system to adjust the reference targets, which
are tracked by the semi-adaptive controller while the patient's dose-response model parameters are adapted. This process
is repeated at each sampling time step to guide the patient outputs to the (recursively adjusted) reference targets.

To prevent the drift in r1 and r2, we employed a dead-zone scheme to the coordinated controller, so that the adjustment
of the reference targets are made only when v1 and v2 are sufficiently large. We have

ri (n + 1) =

{
ri (n) + Tsγri vi (n) , |v1 (n)| > ϵv1 or |v2 (n)| > ϵv2

ri (n) , otherwise,
(24)

which, together with the dead-zone scheme employed in the adaptation law (16), helps to avoid unnecessary drift in the
reference targets.

3.4 In silico evaluation
To evaluate the proposed coordinated semi-adaptive control approach, we considered an example scenario in which car-
diac output (y1; r1(0)=2.0 Lpm) and respiratory rate (y2; r2(0)=15 bpm) are regulated via infusion of propofol (M1) and
remifentanil (M2) in an in silico simulation setting. We used the nonlinear dose-response model in (1)-(3) to simulate
the dose-response relationships of a patient (note that our control design was performed based on the linear model (9),
and the controller is subject to the structural uncertainty due to the modeling error originating from linearization). We
specifically simulated pediatric patients based on the available dose-response data, by first setting the ranges of the model
parameters and then creating a cohort of random patients. Details are as follows.

For the parameters associated with the dose-response relationships for propofol, we derived the ranges of ke1, I50, 11,
and γ1 by analyzing the experimental data we obtained from swine subjects with body weight ranging 25 to 30 kg.
Then, we derived the ranges of the remaining parameters associated with propofol by assuming that these ranges trans-
late to pediatric patients of comparable body weight and (2) I50, 11 ≈ I50, 21.29 The selected ranges for the parameters were
0.02≤ ke1 ≤ 0.10 minutes−1, 1≤ γ1 ≤ 5, 0.2≤ I50, 11 ≤ 0.6 mg/kg/min, and 0.2≤ I50, 21 ≤ 0.6 mg/kg/min.

For the parameters associated with the dose-response relationships for remifentanil, we derived the ranges of ke2, I50, 22,
and γ2 from our previous work,16 while we assumed that the influence of remifentanil on cardiac output is relatively
small (translating to a large I50, 12). The selected ranges for the parameters were 0.10≤ ke2 ≤ 0.50 minutes−1, 1≤ γ2 ≤ 5,
0.12≤ I50, 12 ≤ 0.36 mcg/kg/min, and 0.04≤ I50, 22 ≤ 0.12 mcg/kg/min.

For the parameters associated with the intermedication interaction (ie, β1 and β2), we simply selected a wide range to
simulate diverse intermedication interaction, ie, 0.5≤ β1, β2 ≤ 2.

Based on the ranges of the model parameters selected above and assuming that all the model parameters exhibit uniform
distributions within the selected ranges, we created 40 in silico patients by selecting a random value for each parameter
from the respective range. We created these patients so that 20 of them can achieve the reference targets specified for the
in silico simulation (ie, satisfy (18) with r1(0)=2.0 Lpm and r2(0)=15 bpm), whereas the remaining 20 patients cannot
achieve them.

The weights in the cost function (22) were selected based on the in silico simulation result in an average patient, so that
(1) the cost associated with the discrepancy between the original versus adjusted reference targets is 1000 times larger
than the cost associated with the total medication use; (2) the costs associated with the 2 reference targets are equal; and
(3) the costs associated with the 2 medications are equal.
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In summary, the parameters associated with the coordinated semi-adaptive control were as follows: Am=
[
−0.8 0

0 −0.8

]
=

−Bm, 𝜼 =
[
−5 0
0 −5

]
, 𝚪𝛉 = I4× 4, ϵe1 = 0.01, ϵe2 = 0.01, 𝚪r =

[
60 0
0 60

]
, Nc = 2, Np = 20, ρ1 = 1000, ρ2 = 825.5, ρ3 = 1, ρ4 = 40,

mg/kg/min,  mcg/kg/min, ϵr1 = 0.3, ϵr2 = 0.3, δmin = − 2, δmax = − 0.5, ϵv1 = 0.02, ϵv2 = 0.02.
In the in silico evaluation, nominal cardiac output and respiratory rate before medication infusion were set at 3.0 Lpm

and 25 bpm. The initial model parameter values in the controller were set at the respective average values from
all the patients. For control computation, a sampling rate of 1 Hz was used. Considering that higher infusion rates
(eg, bolus infusion) are required for reference target tracking during the initial transients, we allowed higher propo-
fol (4 mg/kg/min) and remifentanil (0.36 mcg/kg/min) infusion rates during the first 10 minutes after the control
action started.

We examined 3 key aspects related to the performance of the coordinated semi-adaptive control. First, we examined the
performance of semi-adaptive control compared with nonadaptive control. For this purpose, we conducted in silico eval-
uation of semi-adaptive versus nonadaptive controllers using the 20 in silico patients with achievable reference target.
Second, we examined the performance of coordinated semi-adaptive control compared with the same semi-adaptive
control without reference target adjustment. For this purpose, we conducted in silico evaluation of coordinated versus
noncoordinated semi-adaptive controllers using the 20 in silico patients with unachievable reference target. Third, we
examined the detailed behavior of the coordinated controller, especially the way it reconciles the constraints on (1) the
infusion rate limits and total medication use versus (2) the degree of discrepancy between the original versus adjusted
reference targets, as the values of the weights in the cost function (22) vary.

4 RESULTS AND DISCUSSION

4.1 Semi-adaptive control
Figure 4 presents the in silico simulation testing results associated with the semi-adaptive and nonadaptive controllers in
the 20 patients with achievable reference targets. The semi-adaptive controller was superior to its nonadaptive counterpart
both during the transient (0≤ t≤ 5 minutes) and steady state. On the average, the semi-adaptive controller could reduce
the transient reference tracking errors associated with cardiac output and respiratory rate by 15% and 21%, respectively
(in terms of root-mean-squared error), and the steady-state errors (in the absolute sense) by 5% and 83%, respectively. In
addition, the variances associated with all these errors were consistently smaller in the semi-adaptive than nonadaptive
controller. Considering that the main rationale underpinning the development of semi-adaptive control is to ensure robust
performance against large interindividual variability in dose-response relationships, the efficacy of the semi-adaptive
control can be deemed satisfactory if not excellent.
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FIGURE 4 In silico simulation testing results associated with the semi-adaptive and nonadaptive controls in the 20 patients with
achievable reference targets. MRAC, model reference adaptive control [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 The evolution of adjusted reference targets and system outputs associated with the coordinated semi-adaptive control in a
patient with unachievable reference targets. A, Time plots; B, Phase plot [Colour figure can be viewed at wileyonlinelibrary.com]

4.2 Coordinated semi-adaptive control
Figure 5 presents a representative example of the evolution of adjusted reference targets and system outputs associated
with the coordinated semi-adaptive control in a patient with unachievable reference targets. The result demonstrates that
the initially specified unachievable reference targets are adjusted toward the optimal regime (shown in Figure 3) and
the semi-adaptive control guides the patient to these new achievable reference targets as time evolves. In contrast, the
system outputs converge to a point on the parallelogram in case the coordinated control is not employed, which means
that at least one input is saturated with large steady-state error(s). This desired behavior was consistently observed in
all patients.

Overall, the coordinated controller could largely reduce the overall reference tracking errors associated with cardiac
output (60%) and respiratory rate (96%) over the entire in silico simulation (0≤ t≤ 30 minutes) and the steady-state error
associated with respiratory rate (99% in the absolute sense), compared with when the coordinated controller was not
employed to adjust the reference targets (see Figure 6). In addition, the coordinated controller could also decrease propofol
use while increasing remifentanil use, by adjusting the reference targets so that intermedication synergy can be exploited

0

0.05

0.1

0

2

4

6

8

10

12

0

0.02

0.04

0.06

0.08

0.1

0

2

4

6

8

10

12

0

5

10

15

20

0

0.05

0.1

0.15

FIGURE 6 Distribution of the overall reference tracking and steady-state errors and the total medication use associated with
semi-adaptive control in the presence/absence of coordinated control. RMSE, root-mean-squared error [Colour figure can be viewed at
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more effectively (see Figure 6). The steady-state error associated with cardiac output was relatively large with the coor-
dinated controller. This was due to the dead zone implemented for the parameter adaptation law in (16). In the absence
of coordinated controller, the adaptation law was persistently enabled to drive cardiac output error to zero because the
tracking error associated with respiratory rate was large (since its reference target could not be reached) and the dead
zone was never activated. On the other hand, the coordinated controller activated the dead zone by adjusting the refer-
ence targets, thereby allowing the tracking errors to become small. Noting that the dead zone for cardiac output in (16)
was 0.03 Lpm and that the steady-state cardiac output error was consistently smaller than 0.03 Lpm, these errors were
deemed acceptable.

It is worthwhile to scrutinize the behavior of the system inputs and outputs pertinent to the particular in silico simula-
tion conducted in this paper to glean more insights on the coordinated controller. From our in silico simulation, a large
decrease in the respiratory rate error and a large increase in the remifentanil use were consistently observed. However, the
changes associated with the cardiac output error and propofol were relatively small. We speculate that these observations
may be interpreted as follows. First, the dose-response model parameters we employed in the in silico simulation dictate
that the cardiac output is primarily influenced by propofol, whereas the respiratory rate is influenced by both propofol
and remifentanil. Second, the propofol infusion rate required to achieve the original cardiac output target (r1(0)=2.0 Lpm)
in the steady state leads to steady-state respiratory rate lower than the original respiratory rate target (r2(0)=15 bpm) on
the average. Hence, the coordinated controller increases the reference target for cardiac output (as realized by a decrease
in r1; see Figure 5) and decreases the reference target for respiratory rate (as realized by an increase in r2; see Figure 5)
to decrease the required propofol infusion rate and increase the required remifentanil infusion rate while exploiting the
synergy between the two. In this way, the coordinated controller fulfills the desired objectives of driving unachievable ref-
erence targets to achievable ones and, at the same time, minimizing the total medication use. It is noted that the proposed
control approach exhibited consistent performance regardless of the location of the original reference targets in our in
silico simulation testing.

4.3 Dependence of coordinated semi-adaptive control on cost function weights
On the average, the coordinated controller exhibited intuitively relevant behaviors as the weights in the cost function (22)
were varied, as described in the following (see Figure 7).

First, when the penalty on the control energy terms is increased relative to the discrepancy between the original versus
adjusted reference targets (by simultaneously altering ρ3 and ρ4; see Figure 7A), the coordinated controller decreases
propofol and remifentanil uses. This leads to a decrease in r1 and r2 via an increase in the reference targets for cardiac
output and respiratory rate (note that r1 and r2 are specified in terms of q1 and q2). Then, noting that r1 < r1(0) and

(A) (B) (C) 

FIGURE 7 Dependence of the behavior of coordinated semi-adaptive control on cost function weights. The left and right axes apply to
squares and circles, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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r2 > r2(0) under the nominal weights in our in silico simulation testing (see Figure 5A,B), |r1 − r1(0)| increases while
|r2 − r2(0)| decreases.

Second, when the penalty on the discrepancy between the original versus adjusted cardiac output reference target is
increased relative to other penalties (by altering ρ1; see Figure 7B), the coordinated controller decreases |r1 − r1(0)|. To
still drive the reference targets toward the optimal regime (see Figure 3) while limiting |r1 − r1(0)|, it increases |r2 − r2(0)|.
Since r1 < r1(0) and r2 > r2(0) under the nominal weights in our in silico simulation testing, this leads to a decrease in
cardiac output and respiratory rate reference targets and, accordingly, an increase in propofol and remifentanil uses. The
opposite behavior is observed when ρ2 is altered instead (not shown).

Third, when the penalty on the propofol use is increased relative to the other penalties (by altering ρ3; see Figure 7C),
the coordinated controller decreases propofol use while increases remifentanil use. This leads to a decrease in r1, and
since r1 < r1(0), an increase in |r1 − r1(0)|. In addition, a decrease propofol use, which is relatively large compared with
the increase in remifentanil use, results in the corresponding decrease in r2 and (since r2 > r2(0)) |r2 − r2(0)|. The opposite
behavior is observed when ρ4 is altered instead, though the extent is relatively small (not shown).

The abovementioned intuitive behaviors of the proposed coordinated semi-adaptive control approach may be useful
in tuning the weights in the cost function (22) to customize its performance when applied to other medication infusion
problems.

5 CONCLUSIONS

We have proposed and in silico validated a coordinated semi-adaptive closed-loop control approach to the infusion of
2 interacting medications. We demonstrated that the proposed approach could (1) achieve consistent reference target
tracking in the presence of large interindividual variability in dose-response relationships and (2) adjust unachievable
reference targets to achievable ones while minimizing the medication use by exploiting the intermedication synergy.

This study has ample rooms for future improvements and extensions. First, the proposed approach was validated only
in an in silico scenario with an exemplary medication pair. To examine the generalizability of the approach, a follow-up
work is required on rigorous in silico testing with diverse medication pairs. In addition, efforts toward preclinical and
clinical trials must be made, especially in collaboration with the regulatory sector, before the approach, and closed-loop
medication infusion in general, can be deployed with solid safety guarantee for widespread adoption. Second, the pro-
posed approach, in its current development, is applicable only to control of 2 medications. To maximize its potential, a
follow-up work is required on the extension of the approach to coordinated control of multiple (>2) medications.
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