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Summary

A complex relationship between the microbiota and the host emerges

early at birth and continues throughout life. The microbiota includes the

prokaryotes, viruses and eukaryotes living among us, all of which interact

to different extents with various organs and tissues in the body, including

the immune system. Although the microbiota is most dense in the lower

intestine, its influence on host immunity extends beyond the gastrointesti-

nal tract. These interactions with the immune system operate through the

actions of various microbial structures and metabolites, with outcomes

ranging from beneficial to deleterious for the host. These differential out-

comes are dictated by host factors, environment, and the type of microbes

or products present in a specific ecosystem. It is also becoming clear that

the microbes are in turn affected and respond to the host immune sys-

tem. Disruption of this complex dialogue between host and microbiota

can lead to immune pathologies such as inflammatory bowel diseases, dia-

betes and obesity. This review will discuss recent advances regarding the

ways in which the host immune system and microbiota interact and com-

municate with one another.
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Introduction

The microbiota refers to the population of microbes

(prokaryotes, viruses and eukaryotes) living among us,

outnumbering host cells by a factor of 10.1,2 The host

immune system encompasses both the innate and adap-

tive immune systems, which work together to determine

the class of microbial threat and direct the type and

degree of immune response to the exposure.3 The

immune system and microbiota develop and mature

together, beginning at birth, or even potentially in the

womb.4 This early coexistence is probably essential in

shaping the immune system response to avoid unwanted

immune reactions to intestinal microbial components. An

inappropriate response to indigenous bacteria could have

deleterious consequences for the host as seen with inflam-

matory bowel diseases (IBD).

The importance of the microbiota in shaping host

immunity is best appreciated in germ-free (GF) models.

Germ-free housing conditions maintain a microorganism-

free environment and are a powerful system within which

to dissect various aspects of host–microbe interactions.

Germ-free mice display an ‘underdeveloped’ innate and

adaptive immune system: reduced expression of antimicro-

bial peptides, reduced IgA production, fewer T-cell types

and increased susceptibility to microbial infections.5 The

deficits of GF mice highlight the key role of microbes in

bringing the immune system into a ‘combat ready’ mode.

Studies comparing monozygotic and dizygotic twins sug-

gest that non-heritable influences from the environment,

Abbreviations: AIEC, adherent invasive Escherichia coli; AhR, aryl hydrocarbon receptor; DC, dendritic cell; DSS, dextran
sulphate sodium; GF, germ-free; GPRs, G protein-coupled receptors; IBD, inflammatory bowel diseases; IECs, intestinal epithelial
cells; IELs, intraepithelial lymphocytes; IL-17, interleukin-17; ILCs, innate lymphoid cells; ILC3, group 3 innate lymphoid cell;
iNKT, invariant natural killer T cell; MHCII, major histocompatibility complex class II; MyD88, myeloid differentiation primary
response protein 88; NLRs, nod-like receptors; NLRP3, NLR family, pyrin domain containing 3; OMVs, outer membrane vesi-
cles; PRRs, pattern recognition receptors; PSA, polysaccharide A from Bacteroides fragilis; SCFAs, short chain fatty acids; SFB,
segmented filamentous bacteria; Th17, T helper 17 lymphocyte; TIGIT, T cell Immunoreceptor with Ig and ITIM domains;
TLRs, Toll-like receptors; TRAF6, tumour necrosis factor receptor associated factor 6; Treg, T regulatory lymphocyte; TRIF,
Toll–interleukin receptor domain-containing adaptor protein inducing interferon-b
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including the microbiota, determine much of the immune

variation seen in humans.6 Alterations in the microbiota,

referred to as dysbiosis, have been implicated as risk factors

for IBD, cancers, multiple sclerosis, asthma and type I dia-

betes; reinforcing the impact of the microbiota on host

health. Diet also has profound effects on microbiota com-

position and metabolite production, both of which influ-

ence host immunity but this element will not be discussed

here (for reviews, see refs 5,7). This review will focus on

recent advances in understanding how microbes and

microbial components interact with host immunity and

how these interactions influence host health.

Broad influence of microbiota on host immunity

Microbiota: intestinal effects

The establishment of a mature microbiota is a dynamic

process during the first 2 years of life5 and coincides with

the development of the immune system. Throughout the

early developmental period innate immune components

play key roles in protecting the infant from pathogens and

shaping microbiota assembly. IgA is found in breast milk

and can prevent immune activation in infants by binding

microbial antigens. Similarly, secretory IgA produced along

the intestinal tract continues to be important for maintain-

ing mucosal homeostasis through adulthood.8 The devel-

opment of the mature microbiota is regulated by host

immune system components, which can also be influenced

by members of the microbiota. Recent work with gnotobi-

otic mice suggests that proteobacteria, the dominant phy-

lum in newborns, triggers a proteobacteria-specific IgA

response in mice that plays a key role in controlling pro-

teobacteria levels in the adult microbiota.9 Faecal IgA levels

(low versus high) are partly controlled by members of the

microbiota; a phenotype that is vertically transmissible and

independent of host genetic factors.10 16S rRNA sequenc-

ing revealed that Sutterella species are partly responsible for

variable IgA levels, most probably by degrading IgA secre-

tory component10 (Fig. 1). Noteably, expansion of pro-

teobacteria/Enterobacteriaceae abundance is observed in

patients with IBD and in pre-clinical models.11 Whether

this bloom of microorganisms is related to microbe-

mediated faecal IgA levels is unknown.

The microbiota continues to affect immune function

well after development. Studies of Paneth cells using orga-

noids generated from mice reveal that degranulation (re-

lease of antimicrobial products) is controlled by immune-

cell-derived interferon-c, which may be induced in vivo

during viral or bacterial challenge.12 Thymic and induced T

regulatory (Treg) lymphocytes prevent autoimmunity and

maintain tolerance to the microbiota, and a recent study

suggests that most colonic Treg cells are thymic Treg cells

that recognize bacterial antigens, including antigens from

Clostridiales, Bacteroides and Lactobacillus. Importantly,

antibiotic-induced alterations in the microbiota, which

decrease Clostridiales members among others, reduce

intestinal Treg cells and alter colonic thymic Treg T-cell

receptor repertoire, suggesting that microbial composition

influences the dynamic response of Treg cells.13

One of the most studied immunomodulatory microbes

are segmented filamentous bacteria (SFB), which colonize

the terminal ileum in mice, induce IgA production and

increase effector T cells, particularly T helper type 17

(Th17) cells.1 Work from several groups suggests that

SFB induction of Th17 cells occurs in the intestinal lam-

ina propria rather than in Peyer’s patches or the mesen-

teric lymph nodes.14–16 Further studies revealed that

MHC class II (MHCII) -dependent antigen presentation

by intestinal dendritic cells (DCs) is essential for SFB-

induced Th17 cells.15,16 Additionally, Goto et al. provide

evidence that MHCII presentation by innate lymphoid

cells (ILCs) may constrain Th17 cell differentiation.15 The

SFB also stimulate expansion of germinal centres and

induce IgA-secreting cells in Peyer’s patches, isolated lym-

phoid follicles and tertiary lymphoid tissue.14 Recently,

Schnupf et al. cultured SFB in vitro and provided evi-

dence that SFB attachment in vivo is required to elicit

ileal epithelial responses.17 Future studies examining the

specific structural component(s) of SFB responsible for

stimulating IgA production and inducing Th17 cells could

be aided by the in vitro culture system. Although SFB

have not yet been isolated from the human gastrointesti-

nal tract, human cell lines support SFB growth17 and

SFB-specific 16S rRNA has been detected within human

stool samples.18 Gram-stained human ileal–caecal biopsies
from a small set of patients with IBD and non-inflamed

patients suggest that SFB is present in patients with ulcer-

ative colitis but absent in those with Crohn’s disease.19

Hence, future studies may reveal a role for SFB or SFB-

related bacteria in human immune development and IBD.

In addition to interactions with the immune system,

microbes interact with other microorganisms. Although

many symbionts have beneficial immune properties, some

bacteria facilitate host infection by viruses. For example,

human norovirus probably binds to histo-blood group

antigen-expressing bacteria such as Enterobacter cloacae,

which promotes attachment and infection of B cells.20

Conversely, treating mice with the bacterial product, flag-

ellin, prevents rotavirus infection by modulating host

innate immune signalling.21 Hence, microbiota composi-

tion can promote or inhibit viral infection depending on

the type of virus.

Microbiota effects on extra-intestinal immunity

The effects of the microbiota on host immunity extend

beyond the intestine. Germ-free zebrafish have fewer and

less active neutrophils compared with zebrafish colonized

with a normal microbiota, as well as impaired neutrophil
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recruitment in a tail-fin injury model; a phenomenon

linked to microbial induction of serum amyloid A.22

Neonatal mice that are GF or born from antibiotic-trea-

ted dams have fewer circulating and bone marrow neu-

trophils and are more susceptible to Escherichia coli K1

and Klebsiella pneumoniae sepsis, probably through

microbiota induction of granulocytosis.23 Hence, the

microbiota contributes to neutrophil development, home-

ostasis and function in both mice and zebrafish.22,23 The

GF mice have increased invariant natural killer T (iNKT)

cells in the lung and colon due to enhanced CXCL16

expression, making them more susceptible to an ovalbu-

min-driven model of allergic asthma.24 These studies also

suggest that early exposure to microbes is important, as

the iNKT cell levels returned to low levels when GF mice

were exposed to specific pathogen-free conditions upon

birth but not as adults.24 Consequently, the intestinal

microbiota has both local and systemic effects on innate

and adaptive immunity (Fig. 1).

Although the majority of the microbiota resides within

the intestine, the microbial communities located in extra-

intestinal regions also influence local host immunity.25

Studies comparing GF mice to conventionally raised mice

suggest that the skin microbiota regulates expression of

complement component C5a receptor, which regulates

innate immune defence genes, thereby impacting micro-

biota diversity and composition.26 Certain skin micro-

biota community members, particularly Staphylococcus

epidermidis interactions with CD103+ DCs, can induce

CD8+ T-cell migration to the epidermis, which enhances

barrier function and limits epicutaneous Candida albicans

infection through induction of interleukin-17 (IL-17).27

In a skin wound healing model, wound closure rate was

restored in GF mice conventionalized with microbiota, a

phenomenon associated with increased neutrophil accu-

mulation and lower macrophage infiltration into the

injured region.28 Microbial dysbiosis has also been impli-

cated in extraintestinal diseases, such as increased
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Figure 1. The microbiota affects local and systemic immunity. The intestine (1) contains the greatest number and diversity of microbiota mem-

bers. Proteobacteria, specifically Sutterella, alter faecal IgA levels, likely through degradation of SIgA. SFB also alter IgA levels by promoting the

expansion of germinal centres and inducing IgA-secreting cells in Peyer’s patches, isolated lymphoid follicles, and tertiary lymphoid tissue.

MHCII-dependent SFB antigen presentation on intestinal DCs induces Th17 cell differentiation, while MHCII-dependent SFB antigen presenta-

tion by ILCs constrains Th17 cell differentiation. The intestinal microbiota also influences systemic immunity, including the number and function

of circulating neutrophils (2) as well as constraining iNKT levels in the lung (3) and colon (1). DC, dendritic cell; ILCs, innate lymphoid cells;

iNKT, invariant natural killer T cell; SFB, segmented filamentous bacteria; SIgA, secretory immunoglobulin A; Th17, T helper 17 lymphocyte;

Treg, T regulatory lymphocyte.
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Staphylococcus aureus, which is associated with inflamma-

tory skin conditions.29 Hence, microbes occupying extra-

intestinal niches also influence host immunity, although

the specific organisms and mechanisms responsible for

these responses (Table 1) can differ between regions.

Bacterial components that effect innate and
adaptive immunity

Structures detected by pattern recognition receptors

The innate immune system detects microbial components

or products through several different families of pattern

recognition receptors (PRRs), found on numerous cell

types including macrophages, DCs and epithelial cells.3

Toll-like receptors (TLRs) are a class of transmembrane

PRRs located on either the cell surface or in endosomes.31

One of the most characterized bacterial immunomodula-

tors is Bacteroides fragilis polysaccharide A (PSA), which

is recognized by TLR2 and capable of influencing T-cell

development and homeostasis.32 Recent studies reveal that

PSA activates TLR2 on plasmacytoid DCs rather than

conventional DCs, leading to the induction of IL-10

secretion by CD4+ T cells and mucosal protection during

a 2,4,6-trinitrobenzene sulphonic acid model of colitis.33

PSA–TLR2 activation of pDCs and Treg cell induction

can also mediate protection in extra-intestinal inflamma-

tory diseases such as experimental autoimmune

encephalomyelitis, a multiple sclerosis animal model.33,34

Additional work characterizing PSA-induced Treg cell

activation via MHCII-mediated antigen presentation sug-

gests that the interaction depends on the zwitterionic

(carries positive and negative charges) properties of PSA

and induces a specific clonal expansion of Treg cells.42

Lactobacillus plantarum teichoic acid D-alanylation (com-

ponent of Gram-positive bacterial envelope) also signals

through TLR2 and promotes a pro-inflammatory cytokine

response in DCs, which modulates effector and regulatory

T-cell populations45 (Fig. 2).

Bacteria flagellin is recognized by TLR5 expressed on

various cells including intestinal epithelial cells (IECs)

and DCs. The IEC-derived TLR5 signalling appears to

influence microbiota composition and host response

because TLR5DIEC mice have an altered microbiota com-

pared with co-housed sibling wild-type controls, develop

low-grade inflammation and metabolic syndrome, and

have delayed clearance of adherent invasive Escherichia

coli (AIEC).46 How TLR5 activation controls composition

of the microbiota is unclear but could involve immune

cell recruitment to clear pathogens in close proximity to

the epithelium, stimulation of epithelial antimicrobial

peptide production, or induction of flagellin-specific

Table 1. Examples of specific bacteria that modulate the host immune system

Bacteria Immunomodulatory effect Mechanism References

AIEC Induce inflammatory cytokines in vitro Activation of NLRP3 in macrophages,

inducing IL-1b production

(55)

Bacteroides

fragilis

Influence Treg cell development and homeostasis

Influence iNKT cell homeostasis

Bacterial PSA/OMVs containing

PSA interactions with TLR2 on pDCs

(32–34, 36,

42, 56)

Bacterial sphingolipids modulate iNKT

development and activation

(37,38)

Bacteroides

thetaiotaomicron

Promote intracellular calcium signaling,

nutritional benefits in IECs Promote colitis

in CD4-dnTgfb2;IL10rb�/� mice

Bacterial OMVs containing inositol phosphatase (40)

Bacterial OMVs containing sulphatase,

degrade mucin glycans

(35)

Clostridium

scindens

Inhibit Clostridium difficile infection Bacterial secondary bile acid synthesis (64)

ETBF Induce Th17 cells, enhance tumorigenesis

in mouse models of CRC

Bacterial toxin-dependent OMVs induce host IECs

to secrete sphingolipids

(56)

Lactobacillus

plantarum

Alter distribution of pro- and anti-inflammatory

T-cell and DC populations

Bacterial teichoic acid D-alanylation signalling

through TLR2

(45)

Proteus mirabilis Induce intestinal inflammation in DSS model Dependent on bacterial haemolysin; activation of NLRP3

inflammasome, inducing IL-1b production

(30,44)

SFB Induce IgA and Th17 Stimulation of germinal centres and induction

of IgA-secreting cells; MHCII presentation by DCs and ILCs

(14–16)

Staphylococcus

epidermidis

Induce CD8+ T cells to the epidermis,

enhance barrier function

Interactions with CD103+ DCs (27)

Sutterella

species

Alter faecal IgA levels Degradation of the secretory component of IgA (10)

AIEC, adherent invasive Escherichia coli; DCs, dendritic cells; ETBF, enterotoxigenic Bacteroides fragilis; IECs, intestinal epithelial cells; IgA,

immunoglobulin A; ILCs, innate lymphoid cells; iNKT, invariant natural killer T cell; OMVs, outer membrane vesicles; pDCs, plasmacytoid den-

dritic cells; PSA, polysaccharide A; SFB, segmented filamentous bacteria; Th17, T helper 17.
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IgA.46 The microbiota also impacts vaccine immunity

through TLR5 signalling in B cells and macrophages,

which is critical for mounting an antibody response to

trivalent inactivated influenza vaccine and the inactivated

polio vaccine.47

Most of the downstream signalling from TLRs occurs

through either myeloid differentiation primary response

protein 88 (MyD88) or Toll–interleukin receptor domain-

containing adaptor protein inducing interferon-b (TRIF)

adaptor proteins, resulting in activation of nuclear factor-

jB or interferon regulatory factors, respectively.48 Lumi-

nal bacteria promote mucus secretion and movement of

monocytes closer to epithelial stem cells through an

epithelial MyD88-signalling pathway. Increased proximity

of monocytes to epithelial stem cells results in increased

crypt cell proliferation and intestinal stem cell numbers,49

which could be beneficial during intestinal injury

response. Studies comparing GF mice to mice colonized

with three strains of bacteria (E. coli K-12, Staphylococcus

xylosus and Enterococcus faecalis) reveal that GF mice have

delayed microbial clearance, reduced inflammatory

responses to intravenous E. coli K12 infection and a

decreased myeloid cell pool size.50 Heat-stable microbial

antigens in the serum are able to restore bone marrow

myeloid cell numbers through MyD88/Toll-interleukin 1

receptor domain-containing adaptor molecule (TICAM)-

dependent TLR signalling.50 MyD88-dependent TLR sig-

nalling also plays a role in microbiota-mediated tolerance

to a non-invasive strain of Salmonella enterica serovar

Typhimurium by preventing CX3CR1
hi mononuclear

phagocyte-mediated transport of luminal bacteria to the

mesenteric lymph nodes.51 Furthermore, tumour necrosis

factor receptor associated factor 6 (TRAF6), a component

of TLR signal transduction, has MyD88-independent
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Figure 2. Bacterial components that affect innate and adaptive immunity in the intestine. Bacterial MAMPS signal through host PRRs. PSA (A)

from Bacteroides fragilis interacts with TLR2 on plasmacytoid pDCs to induce IL-10 production from CD4+ T cells and Treg clonal expansion.

Lactobacillus plantarum D-alanylated teichoic acid (D) also signals through TLR2 on DCs to modulate effector and regulatory T-cell populations.

Flagellin activation of TLR5 on epithelial cells alters microbiota composition. Luminal bacteria promote mucus secretion and movement of

monocytes closer to epithelial stem cells through a MyD88-dependent signalling pathway. Sphingolipid metabolites from B. fragilis promote iNKT

activation in adults. SCFA metabolites from bacteria impact immunity through multiple mechanisms: activation of GPRs, inhibition of HDACs,

and regulation of autophagy. Butyrate exerts anti-inflammatory effects on macrophages through HDAC inhibition and promotes barrier function

in IECs through stabilization of HIF. Lactobacilli produce an AhR ligand, indole-3-aldehyde, which induces IL-22, promoting AMP expression

and mucosal homeostasis. AhR signalling on ILC3s also inhibits Th17 cell expansion. AhR, aryl hydrocarbon receptor; AMPs, antimicrobial pep-

tides; GPRs, G protein-coupled receptors; HIF, hypoxia-inducible factor; I, indole-3-aldehyde, an AhR ligand; IECs, intestinal epithelial cells,

ILC3, group 3 innate lymphoid cell; MAMPS, microbe-associated molecular patterns; MyD88, myeloid differentiation primary response protein

88; PRRs, pattern recognition receptors; pDCs, plasmacytoid dendritic cells; PSA, polysaccharide A from Bacteroides fragilis; SCFAs, short-chain

fatty acids; TLRs, Toll-like receptors.
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effects on immune and microbiota homeostasis. Mice

with TRAF6-deficient DCs develop Th2-driven small

intestine inflammation and have decreased Treg cells,

both of which are microbiota-dependent.52

Nod-like receptors (NLRs) are a class of cytosolic PRRs

that act as intracellular sensors.3 Nod2 recognizes bacte-

rial peptidoglycan through muramyl dipeptide. Studies

using Nod2�/� mice reveal reduced intraepithelial lym-

phocytes (IELS) and administering muramyl dipeptide to

antibiotic-treated mice restored IEL numbers through up-

regulation of IL-15, suggesting that Nod2-mediated recog-

nition of the microbiota affects IEL homeostasis.53 Nod2

has also been implicated in preventing goblet cell dys-

function and restricting expansion of Bacteroides vulgatus

in the small intestine, which prevents piroxicam-induced

intestinal inflammation in mice.54 The NLRs also have

extra-intestinal effects, as NLR ligands have been impli-

cated in innate immunity in the lung, which is important

for Klebsiella pneumoniae clearance.43

Inflammation or injury can cause members of the

microbiota to become pathogenic and stimulate the

immune system to induce inflammation. In the context

of a dextran sulphate sodium (DSS) mouse model, Pro-

teus mirabilis can induce IL-1b production via NLR

family, pyrin domain containing 3 (NLRP3) inflamma-

some activation in recruited inflammatory monocytes,

promoting intestinal inflammation.44 After comparing

different strains, the authors determined that Proteus mir-

abilis HpmA haemolysin induces K+ efflux, which is

required for NLRP3-induced inflammasome

activation.30,44 In vitro studies show that AIEC isolated

from patients with IBD are also able to induce IL-1b
through NLRP3 activation in macrophages.55

Outer membrane vesicles

Outer membrane vesicles (OMVs) are produced by

Gram-negative bacteria and contain various bacterial

components, many of which activate PRRs.39 The OMVs

can promote immune homeostasis or enhance bacterial

pathogenesis; effects that probably depend on the type of

bacteria, OMV content and host environment.39 For

example, Bacteroides thetaiotaomicron OMVs containing

homologues of mammalian inositol phosphatase interact

with IECs in vitro to promote intracellular calcium sig-

nalling.40 This signalling confers nutritional benefits and

potentially anti-carcinogenic properties, as dietary inositol

hexaphosphate administration reduces tumorigenesis in

carcinogen (1,2-dimethylhydrazine or azoxymethane) -

induced cancers in rats and mice.40 On the other hand,

spontaneous colitis-prone CD4-dnTgfb2;IL10rb�/� mice

exposed to B. thetaiotaomicron develop inflammation due

to OMVs containing sulphatase activity, which degrades

mucin glycans and allows B. thetaiotaomicron to interact

with host macrophages.35 Bacterodies fragilis PSA is also

released in OMVs, which can be detected by TLR2.36,56

Some bacteria produce OMVs that have adverse effects

on host immunity. For example, enterotoxigenic B. frag-

ilis secrete B. fragilis toxin-dependent particles that can

induce host IECs to secrete sphingolipids (specifically,

sphingosine-1-phosphate) in exosome-like particles,

which induce Th17 cells and enhance tumorigenesis in

multiple colon cancer mouse models.56

Metabolites

Besides structural components, bacteria also generate a

wide spectrum of metabolites that have the capacity to

engage and trigger numerous host responses (Fig. 2).

Multiple intestinal Bacteroides species are able to synthe-

size sphingolipids, which are structurally similar to host

lipid agonists of iNKT cells. Bacteroides fragilis sphin-

golipids have been shown to modulate cellular homeosta-

sis by both promoting iNKT cell activation37 and

inhibiting activation and expansion of iNKT cells during

mouse neonatal development, which protects against oxa-

zolone-induced colitis in adulthood.38

Short-chain fatty acids (SCFAs) are bacterial metabolites

generated as by-products of dietary fibre fermentation.

Butyrate, propionate and acetate are the most common

intestinal SCFAs and are normally present in the millimo-

lar range in the gut. The mechanisms by which SCFAs

impact immunity include activation of G protein-coupled

receptors (GPRs), inhibition of histone deacetylases, and

regulation of autophagy.57 Levels of SCFAs depend on two

interdependent factors: dietary fibre and microbiota com-

position. The SCFAs may modulate protection against

chemically induced DSS colitis through GPR43 and

GPR109A receptor interactions, which are dependent on

the NLRP3 inflammasome in non-haematopoietic cells.58

Butyrate exerts anti-inflammatory effects on bone mar-

row-derived and colonic macrophages via histone deacety-

lase inhibition. However, gavaging mice with butyrate does

not impact the outcome of DSS colitis, suggesting that

butyrate promotes bacterial tolerance rather than tissue

repair.59 Additionally, butyrate has been shown to increase

barrier function by stimulating epithelial metabolism in

the colon to promote oxygen depletion, stabilizing hypox-

ia-inducible factor and inducing hypoxia-inducible factor-

dependent target genes that promote barrier function.60

SCFAs from the microbiota can also have systemic effects.

In a mouse model of allergic inflammation in the lung,

high levels of propionate are protective, probably through

GPR41 signalling, which results in DCs with high phago-

cytic capability and an impaired capacity to induce Th2

differentiation.41

In addition, microbial metabolites can influence host

immune responses through an indirect route. For exam-

ple, SCFAs augment 5-hydroxytryptamine (serotonin)

production from intestinal enterochromaffin cells through
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up-regulation of the rate-limiting biosynthetic enzyme

tryptophan hydroxylase.61 The wide impact of serotonin

on host biological response including immunity62 suggests

that microbes could shape immune responses through

complex mechanisms. SCFAs also directly impact innate

immune cells in the brain and central nervous system.

Germ-free mice have defects in microglial (tissue macro-

phages of the brain) maturation, differentiation and func-

tion with a diminished response to lipopolysaccharides

and viral challenges, while administering a mixture of

propionate, butyrate and acetate to the drinking water

restores microglial maturation.63 Indigenous bacteria

metabolites may have key roles in inhibiting colonization

of specific pathogens. For instance, Clostridium scindens

inhibition of Clostridium difficile is associated with sec-

ondary bile acid synthesis.64

Tryptophan catabolites from the microbiota expand lac-

tobacilli that produce an aryl hydrocarbon receptor (AhR)

ligand, indole-3-aldehyde. Activation of AhR results in IL-

22 transcription that promotes antimicrobial peptide

expression and mucosal homeostasis, providing coloniza-

tion resistance against gastrointestinal or vaginal Candida

albicans infection and DSS colitis models.65 Group 3 ILCs

also rely on AhR signalling to inhibit Th17 cell expansion

and regulate SFB levels, which could play a role in IBD

because ~ 40% of mice that lack AhR signalling abilities in

ILCs develop spontaneous colitis between 12 and 20 weeks

of age and have exacerbated inflammation in a CD45RBhi

T-cell transfer model of colitis.66 In summary, bacterial

components and metabolites affect both innate and adap-

tive immunity in the intestine (Fig. 2).

Viral, archaeal and eukaryotic microbiota
members that influence immunity

Part of how the microbiota impacts host immunity is by

limiting pathogen colonization through niche occupation

and resource use. These indirect protective effects may

extend to the viral members of the microbiota, of which

there are an estimated 109 viruses per gram of faeces.

Some of these viruses target mammalian cells but bacte-

riophages, which exclusively infect bacteria, make up the

majority of the virus community.67 Bacteriophages dis-

playing immunoglobulin-like domains on phage capsid

proteins adhere to host intestinal mucus and are able to

reduce microbial colonization in the mucosal niche by

infecting and lysing bacteria.68 Recently, metagenomic

sequencing of the human faecal virome from healthy peo-

ple and patients with IBD revealed an expansion of Cau-

dovirales bacteriophages associated with IBD.69 Hence,

microbiota-associated bacteriophages may impact the

pathogenesis of IBD by targeting microbial members with

protective or deleterious function.

When it comes to immune system development and

function, viral members of the microbiota may be able to

confer some of the same immune benefits as bacteria.

Murine norovirus infection of GF or antibiotic-treated

mice restores intestinal morphology and lymphocyte

function, and suppresses group 2 ILC (ILC2) expansion;

additionally RNA-sequencing revealed transcriptional

changes in the intestine associated with immune develop-

ment and type I interferon signalling.70 Whether viruses

contribute to human immune system development and

homeostasis remains to be determined.

Archaeal members of the microbiota can also activate

host immune cells. Specifically Methanosphaera and

Methanorevibacter have differential capacities to induce

pro-inflammatory cytokine release from human DCs.

Activation requires phagocytosis of the archaea, but

whether induction involves PRRs that recognize compo-

nents of the archaeal cell envelope is still unknown.71

Studies examining the immunomodulatory effects of

the fungal microbiota have mostly focused on one of the

most abundant members, Candida albicans, which can

cause severe infections in immunocompromised people.2

The host uses TLRs as well as C-type lectins, a class of

PRRs, to recognize fungal cell wall components such as

mannans, b-glucans and chitin.2,72 The cell wall compo-

nents of Candida albicans are immunomodulators, with

cell wall glycosylation playing a key role in inducing pro-

inflammatory cytokine expression, proliferation and

apoptosis in epithelial cells.72 Chitin induces secretion of

the anti-inflammatory cytokine IL-10, which is dependent

on NOD2, TLR9, and mannose receptors. Anti-inflamma-

tory cytokines induced by chitin may play a role in

resolving immune homeostasis after pathogen clearance

and eosinophilia, which is a feature of asthma.73

Helminths are parasitic worms that modulate host

immunity by inducing a strong Th2 immune response,

Treg cells and regulatory cytokines such as IL-10 and

transforming growth factor-b.74 Epidemiological evidence

and experimental studies suggest that the helminth-

induced immune response may be therapeutic for treating

allergies and autoimmune diseases.75 Recent research

focused on identifying the helminth immunomodulatory

products has revealed that administering excretory/secre-

tory products from Trichinella spiralis adult worms pro-

tects mice from DSS-induced colitis through up-

regulation of Treg cells and reduction of pro-inflamma-

tory cytokines.74 The Acanthocheilonema viteae product

(AvCystatin) modulates MAPK, p38 and ERK pathways

in macrophages to induce IL-10 secretion. Administration

of AvCystatin-treated macrophages to mice with OVA-

induced airway inflammation or DSS-induced colitis

ameliorates disease by suppressing inflammation.76 How-

ever, in the context of viral infection, the helminth

immune response may be detrimental. Trichinella spiralis-

infected mice induce alternative activation of macro-

phages, which up-regulates genes that impair the T-cell

response to murine norovirus.77
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Bacterial adaptations to host immune
mechanisms

Previous sections have examined how microbes direct

immune development and function. However, the

immune system also impacts microbes, which includes

influencing microbiota composition as well as virulence

capacities. Mechanisms by which specific microbes have

adapted to coexist with the host immune system have

begun to emerge (Table 2). For example, B. thetaiotaomi-

cron uses lipid A dephosphorylation to resist host antimi-

crobial peptides that target the lipopolysaccharide portion

of the bacterial outer membrane.78

Part of the immune response to infection can promote

indigenous microbiota colonization through release of

nutrients. TLR agonists induce DC IL-23 production in a

MyD88-dependent manner, which stimulates ILCs to pro-

duce IL-22, resulting in rapid fucosylation of small intes-

tine epithelial cells.79 Work by Goto et al. demonstrated

that bacteria such as SFB, stimulate IL-22 production by

ILC3s, which mediates epithelial fucosylation in the ileum

and protects the host from Salmonella typhimurium infec-

tion.80 Resident bacteria, such as Bacteroides acidifaciens,

have the capacity to cleave fucose, which can subse-

quently be used by other members of the microbiota; a

process that may promote tolerance to intestinal patho-

gens.79 Host IL-22RA1 signalling promotes intestinal

fucosylation in colonic organoids and the mouse caecum,

restoring anaerobic bacterial diversity in the colon to pro-

tect against opportunistic pathogens such as Enterococcus

faecalis and Citrobacter rodentium.81 Hence, fucosylation

seems to be a host response to specific members of the

microbiota or infectious challenge, which bolsters the

microbiota and protects the host from multiple enteric

pathogens. Reinforcing the importance of IL-22 produc-

tion in maintaining colonization resistance against enteric

pathogens, ID2 (a transcriptional regulator of ILCs) pro-

motes colonization resistance against Citrobacter roden-

tium by mediating IL-22 production by ILC3s through an

AhR and IL-23 receptor pathway.82

Some pathogenic bacteria have evolved virulence factors

that allow them to better cope with host immune defence

mechanisms compared with indigenous bacteria. Inter-

leukin-22 is part of the immune response to infection and

leads to induction of lipocalin-2 and calprotectin, which

sequester iron, zinc and manganese ions. Salmonella enterica

serovar Typhimurium overcomes host iron sequestration

with the siderophore salmochelin and zinc sequestration

through a zinc transporter, giving Salmonella a colonization

advantage over resident Enterobacteriaceae that lack addi-

tional siderophores.83 Fusobacterium nucleatum, which has

previously been linked to colon cancer,84 is able to bind to

an inhibitory receptor (TIGIT) on NK and T cells, leading

to inhibition of NK cell-mediated cytotoxicity/T-cell activi-

ties.85 Additionally, the authors demonstrate F. nucleatum

OMVs bind TIGIT suggesting a pro-carcinogenic role for

F. nucleatum OMVs by inhibiting host immune function.85

This bilateral communication between microbes and the

host clearly highlights the intricate and complex nature of

microbe–host interactions.

Conclusions/Perspective

The impact of the microbiota on myriad components of

innate and adaptive immunity has been well established,

especially in the intestine. Recent studies have moved on

to characterizing how members of the microbiota and the

host immune system communicate with one another. It is

likely that the dialogue between microbes and host is a

dynamic phenomenon, taking place from birth and evolv-

ing over time, even though the phylogenic microbial

composition is quite stable for the majority of life. There-

fore, microbial bioactivities rather than composition may

account for most of the host response, including immu-

nity. Clearly, more information is needed on the specific

nature of this dialogue and how communication break-

downs result in disrupted host immune homeostasis. It

will be important to continue detailing the relationship

between microbially derived metabolites and host

immune homeostasis. These studies should include

Table 2. Examples of bacterial adaptations to host immune mechanisms

Bacteria Host Immune component Bacterial response References

Bacteroides thetaiotaomicron Antimicrobial peptides Resistance through outer membrane

lipid A dephosphorylation

(78)

Indigenous bacteria Fucosylation of IECs triggered

by SFB or enteric infection

Metabolic capacity to cleave fucose, use fucose (79–82)

Salmonella enterica

serovar Typhimurium

Induction of lipocalin-2 and calprotectin Additional siderophores and zinc

transporters to overcome host

metal ion sequestration

(83)

Fusobacterium nucleatum NK cytotoxicity and T cell effector functions Binds host inhibitory receptor

(TIGIT) on NK and T cells

(85)

IECs, intestinal epithelial cells; NK, natural killer; SFB, segmented filamentous bacteria; TIGIT, an inhibitory receptor on NK and T cells.
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transcriptomic and metabolomic approaches to better

understand the impact of microbial activities on the host

immune response. The continuous characterization of

microbial communities at the genomic and proteomic

levels, in conjunction with specific culture methods, will

contribute to understanding how specific microbes shape

the immune response. Ahern et al. offer a possible

approach for identifying members of the human micro-

biota that impact the immune system using gnotobiotic

mice.86 The persistent mapping and annotation of micro-

bial genes in conjunction with the establishment of tools

to genetically modify these genes will enable molecular

dissection of the contributions of bacteria to host immu-

nity. Additionally, it is likely that more interactions occur

between members of the microbiota (viruses, prokaryotes

and eukaryotes) that influence host immune health than

are currently known. Continued research focused on the

signalling that occurs between microbiota components

and the immune system may lead to the development of

new or improved strategies to restore or reset altered

communication networks between the host and microbes.
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