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Abstract—The physical world consists of spatially varying media, such as the atmosphere and the ocean, in which light and
sound propagates along non-linear trajectories. This presents a challenge to existing ray-tracing based methods, which are widely
adopted to simulate propagation due to their efficiency and flexibility, but assume linear rays. We present a novel algorithm that
traces analytic ray curves computed from local media gradients, and utilizes the closed-form solutions of both the intersections of
the ray curves with planar surfaces, and the travel distance. By constructing an adaptive unstructured mesh, our algorithm is able
to model general media profiles that vary in three dimensions with complex boundaries consisting of terrains and other scene
objects such as buildings. We trace the analytic ray curves using the adaptive unstructured mesh, which considerably improves
the efficiency over prior methods. We highlight the algorithm’s application on simulation of sound and visual propagation in
outdoor scenes.
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1 INTRODUCTION

Non-linear media is ubiquitous in the physical world.
The atmosphere, even under stable conditions, has
spatially varying temperature, pressure, and humidity
[1]. There can be wind field or other weather patterns
that affect the atmosphere [2], [3], [4]. Similarly, the
ocean displays spatial variations in its key proper-
ties such as temperature, pressure, and salinity [5].
The propagation speed of sound or light wave at
a particular location is determined by the spatially
varying properties of the media. Refraction refers to
the change of propagation direction of a sound or
light wave because of a speed gradient; propagation
no longer follows linear paths under refraction. Such
refractive media is therefore also known as non-linear
media, and simulating propagation of light and sound
in non-linear media remains a challenging problem.

Non-linear media in outdoor environments lead to
significant acoustic effects [6]. Take the diurnal change
of sound propagation as an example: during the
day, when the temperature is typically higher closer
to the ground, sound waves are refracted upward,
creating a shadow zone with very low level received
sound (Figure 1a); when the temperature gradient is
inverted at night, sound waves are refracted down-
ward, intensifying the acoustic signals received by
the listener. Downward refraction combined with a
reflective ground creates a set of concentric circular
patterns in the sound field around a source (Figure
1e). Outdoor acoustic applications such as noise re-
duction, urban planning, and outdoor virtual reality
for military training require the propagation simula-
tion to account for those phenomena [7], [8].

Because the light speed is much larger than sound

speed, the non-linear propagation of light in outdoor
scenes only becomes apparent under certain condi-
tions (e.g. the extreme temperature gradients that pro-
duce mirages [9], [10], [11].) However, for applications
with high accuracy requirements, such as satellite
laser range-finding [12], [13], [14] and solar radiation
modeling [15], simulating the non-linear propagation
paths becomes critical.

Ray tracing is a powerful tool for simulating sound
and light propagation. Traditionally, most ray tracing
algorithms focus on linear propagation paths that
change directions only at boundary surfaces [16].
Many previous works (See Section 2.1) adapt the
linear ray tracer for non-linear propagation by tak-
ing piecewise linear ray steps, effectively assuming a
constant media within each linear step. The size of the
ray steps therefore becomes seriously limited by the
magnitude of variations within the media, hindering
the performance of propagating in nonlinear media
over long distance. Cao et al. [17] applied analytic ray
formulation from geometric optics to visual rendering
based on a locally constant refractive index, which
shows promising performance advantage over ray
stepping. However, their work does not target large
scale general media like the atmosphere, neither has it
fully explored the challenges of efficient propagation
of both light and sound in complex outdoor scenes.

Some of the prior models and simulator for acoustic
propagation [18], [5], [6] rely on the assumption of a
stratified media, or a media profile that only varies
in height and range, reducing the dimension of the
problem and making the computation more practical.
Given such assumptions, the propagation can even be
confined to a 2D plane to reduce the computational
overhead, if the media boundary can also be kept
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simple, i.e. no complex 3D objects to reflect the sound
waves off the propagation plane. In reality the media
profiles vary in a general manner, and are often al-
tered significantly by complex-shaped 3D objects like
buildings or terrains (Figure 1(b-d,f-h)).
Main Results: In this paper, we present a fast al-
gorithm that traces analytic ray curves for propaga-
tion in non-linear media. Compared to the existing
methods, our algorithm achieves improvements in the
following ways:
• We trace analytic ray curves as path primitives,

which overcomes the step size limitations with
linear rays. This is essentially an extension of
the idea in [17], but we use different ray curve
formulations that were derived in the fields of
acoustics and optics (see Section 2.3 for a full
review).

• We utilize the ray curve formulations (resulting in
parabolic or circular rays) to perform closed-form
intersections with complex 3D objects, enabling
fast propagation in large outdoor scenes with
many obstacles.

• We construct adaptive unstructured tetrahedral
mesh based on the underlying media profiles,
and we make the media mesh conform to bound-
aries of scene objects, both of which improve the
efficiency of ray curve traversal.

With this algorithm we are able to trace nonlinear
sound and light propagation paths for simulation of
large and complex outdoor scenes with a general me-
dia profiles. We achieve interactive performance on a
single CPU core (See Section 6.2), and therefore avoid
making simplifying assumptions about the media or
the scene as made by previous methods for the sake
of computational tractability.

2 PRIOR WORK

The literature on ray tracing and its acceleration is
vast because of its wide range of applications, in-
cluding photorealistic rendering, geometric acoustics,
and scientific visualization. We divide the discussion
along two challenges for propagation in non-linear
media: (1) computing the curved propagation paths,
and (2) characterizing the spatially varying media. In
addition, we give an overview of prior work that used
closed-form ray curves.

2.1 Piecewise linear propagation paths
Early works in computer graphics [9], [10] simulated
atmospheric phenomena by modeling the atmosphere
with discrete layers. More general media is handled
by effectively tracing linear ray segments at each
step of a numerical solution of the differential ray
equation, derived from either Eikonal equation [19],
[20] or Fermat’s principle [21], [22]. Similar methods
[23], [24] have been proposed for modeling gravita-
tional fields and dynamic systems. Piecewise linear

approximation of curved paths are also at the heart
of techniques such as non-linear photon mapping [25],
explicit wavefront tracking [26], [11], and voxel-based
ray marching [27]. Acceleration has been achieved by
parallelism [28], [11], [26], and spatial and temporal
caching [29].

However, the step size of linear ray tracing is inher-
ently limited by the magnitude of media variations,
hindering the scalability of these methods with phys-
ical size and complexity of the media and the scenes.
Higher order numerical methods like the fourth-order
Runge-Kutta are adopted to improve the efficiency
[21], [22], [23], [24], [25], but the step size is still lim-
ited by the underlying media profiles. Furthermore,
each advancement of the ray step with higher order
numerical methods can no longer be assumed to be a
straight line, making intersection tests with the scenes
more complex.

In atmospheric and underwater acoustics, seismic
modeling, and related fields, similar techniques for
tracing piece-wise linear paths have been proposed
(see [6], [5] for a comprehensive survey) and adopted
in practical tools [18]. Just as in computer graphics,
the small ray step size becomes a bottleneck; with
some of the widely-used software (e.g. BELLHOP)
[18], simplifying assumptions like a 2D variation of
the media (media profiles only vary with height and
range), or 2D objects (e.g. conical hills) are often made
to keep computation costs feasible.

2.2 Data structures for non-linear media

Traditional ray tracing acceleration focuses on build-
ing and updating tight-fitting hierarchical structures
to enclose only the surfaces in the scenes (see surveys
[16], [30]), given a homogeneous media assumption.
A noted exception is the use of constrained Delaunay
tetrahedralization (CDT) by Lagae and Dutré [31],
which adapts to the density of surfaces in the scene
without being hierarchical. In contrast, development
of efficient techniques for participating media faces
the same challenge as that of simulating non-linear
media: both must characterize volumetric media in
addition to surfaces (see surveys [32], [33]). Adaptive
structures such as kd-trees [34], [35], adaptive grids
[36], and manually-graded tetrahedral mesh [37] have
been used to facilitate ray marching and/or sampling
of scattering events through the media.

In volume rendering for scientific visualization,
polyhedral meshes are commonly used with either
ray casting [38], [39], [40], [41] or particle tracing [42].
Polyhedral meshes provide smooth interpolation of
the underlying volumetric field [43] with its continu-
ous structure, in contrast to structures like octrees that
can have neighboring cells with different resolutions.
Unstructured polyhedral mesh also provides the flex-
ibility of adaptive cell sizes, which can either be
constructed using a global scheme [44] that varies cell
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(a) upward refraction (b) hot spot (2D view) (c) upwind over hill (2D view) (d) downwind over hill (2D view)

(e) downward refraction (f) hot spot (3D view) (g) upwind over hill (3D view) (h) downwind over hill (3D view)

Fig. 1: Acoustic propagation. Curved ray trajectories under different atmospheric conditions. The media
profiles are generated from physically-based models (see Section 6.1 for details), including (a) Upward
refraction (A-LU) (typical day-time condition), (e) Downward refraction (A-LD) (typical night-time condition),
(b,f) Hot spot (A-HS) (the sphere shows the location and influence region of a heat source), (c,g) Up-
wind propagation (A-UW) and (d,h) Downwind propagation over a hill (A-DW). The acoustic propagation
trajectories deviate significantly from linear paths, and we show the out-of-plane propagation for A-HS, A-
UW, and A-DW each from two different views. The 3D varying media profiles lead to complex acoustic fields.
Our curved ray tracer computes those paths accurately at 10× the speed of linear ray stepping.

sizes in the entire mesh, or can be built dynamically
using a top-down or bottom-up approach, resulting
in a multi-resolution representation [45], [46]. Our
algorithm uses a global approach similar to [44] to
construct the tetrahedral mesh as a pre-process before
ray traversal, while the latter methods can be useful
for modeling dynamic media. A key difference be-
tween our approach and the methods proposed in the
context of visualization is that, although the under-
lying volumetric function often represents density or
other physical properties similar to our media profiles,
volumetric ray casting generally does not account for
the non-linear refractive paths that the light follows.

In the separate context of meteorology and Earth
circulation modeling, unstructured mesh is advanta-
geous due to its adaptive nature and its flexibility in
terms of handling irregular domains. Consequently
unstructured meshes have been increasingly adopted
to replace regular grids in more recent operational
models [47], [48]. Models like [47], [48] compute at-
mospheric flow fields at high resolution, which can
provide detailed media profiles to serve as initial
conditions for propagation. Therefore, adopting the
unstructured mesh in propagation algorithms opens
the possibility of seamless coupling between the at-
mospheric flow model and subsequent propagation
within the resulting flow field.

2.3 Analytic trajectories

Analytic light paths have been derived in the context
of geometric optics for simple profiles of refractive
index [49], [50], [51]. Cao et al. [17] is perhaps the
first work in visual rendering to use the analytic ray
formulation for constant gradient of the refractive
index, based on the derivation in Qiao [52]. Cao et
al. [17] demonstrated the performance advantage over
piecewise linear ray tracing, and used octrees for fur-
ther acceleration. However, their ray formulation does
not have a closed-form solution for intersections with
planar surfaces; instead they used bisection methods.

Analytic rays with a polynomial formulation is
proposed in [53] for artist-controlled lighting with
curved rays. The light paths are not physically-based
and cannot be easily extended to more realistic kinds
of light bending from refraction. Grave et al. [54]
visualize the effects of general relativity using an
analytic solution derived for the Gödel universe.

In computational acoustics, closed-form ray trajec-
tories have been derived for constant gradient con-
dition in the propagation speed, and for constant
gradient condition in the squared refractive index.
The term cell method refers to acoustic ray tracing that
subdivides media into cells and assumes closed-form
ray paths in each cell, but it has only been used for
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2D varying media modeled by regular triangular grid
with no obstacles [55], [56]. Our algorithm can be seen
as an extension of cell methods to a more general
propagation algorithm that can handle 3D varying
media and complex scene objects. Furthermore, we
improve the efficiency based on closed-form ray inter-
sections and use of an adaptive unstructured mesh.

3 BACKGROUND

In this section, we present background material on
non-linear media and how it affects light and sound
propagation.

3.1 Non-linear media properties

The two most prominent non-linear media in out-
door scenes: the atmosphere and the ocean, are often
studied separately. They are in fact tightly connected
by heat flow and general circulation of the water
component [48]. We hereby focus our discussion on
atmospheric properties, but we would like to point
out that media properties and propagation in the
ocean are analogous.

A standard profile of atmospheric temperature and
pressure is available with the 1976 USA Standard
Atmosphere [1], which is a simple layered model
based on averaged empirical measurements. On the
other hand, atmospheric properties at any particular
time and location deviate from the above Standard
under different conditions. For example, atmospheric
temperature has diurnal and seasonal variations, is
affected by short-term weather patterns, and can
fluctuate from heat sources nearby including human
constructions and activities in an urban setting. The
destandardized media profiles can be obtained from
measurements, empirical models, or detailed simula-
tions of atmospheric flow.

3.1.1 Properties affecting light propagation
Light propagation paths are governed by the spatial
profile of refractive index, which can in turn be com-
puted from atmospheric density and wavelength of
the light.

Starting from an atmospheric profile for a spatial
location x, density is computed from temperature and
pressure using the Perfect Gas Law:

ρ(x) =
P (x)M

RT (x)
, (1)

where T is temperature, P is pressure, M and R are
constants with typical values of 28.96 × 10−3kg/mol
and 8.3145J/mol · K respectively. The Cauchy’s for-
mula [49] relates index of refraction with wavelength
as: n(λ) = a · (1 + b

λ2 ) + 1, where a and b are con-
stants with typical values of a = 2879 × 10−5 and
b = 567 × 10−5 for air. The Gladstone-Dale Law [57]
then represents n(λ,x) as a function of both density
ρ(x) and n(λ): n(x, λ) = ρ(x)(n(λ)− 1) + 1.

3.1.2 Properties affecting sound propagation

The atmospheric speed of sound is governed by the
temperature as

c =
√
γRdTv, (2)

where γ = cp/cv is the ratio of the specific heats,
Rd is the gas constant of dry air, Tv is the virtual
temperature considering humidity, and can typically
be approximated by the absolute temperature T when
the humidity effects are ignored.

For sound propagation, the wind profile plays a
role that is as important as the temperature. Within
the surface layer close to the ground, a common wind
profile based on the Monin-Obukhov similarity theory
[2] computes the mean wind velocity as following a
logarithmic law depending on the height. The same
theory prescribes wind profiles for altitude beyond
the surface layer with parameters representing stable
and unstable atmospheric conditions [4]. The wind
profile can be incorporated into the effective sound speed
profile by combining the temperature-based sound
speed and the wind velocity [58], [59].

The above profile requires detailed measured data
for a particular location, time, and atmospheric con-
dition. Alternatively, we can generate a representative
media profile from physically-based empirical models
of the atmosphere [6]. The acoustic index of refrac-
tion in the atmosphere n = c0/c, where c0 is the
reference sound speed, is modeled with a stratified
component nstr and a fluctuation component nflu, so
that n = nstr +nflu. The stratified component follows
a logarithmic profile of the altitude z:

nstr(z) = c0/(c0 + b ln

(
z

zg
+ 1

)
), (3)

with parameters n0, b, and zg . c0 is the sound speed
at the ground surface, taken as the reference sound
speed, and zg is the roughness length of the ground
surface. Typical values for parameter b are 1 m/s for
a downward-refracting atmosphere and −1 m/s for
an upward-refracting atmosphere.

The fluctuation component models the random
temperature and wind speed turbulence in the atmo-
sphere. The value at position x can be computed as

nflu(x) =
∑
i

G(ki) cos(ki · x + ϕi), (4)

where ki is the wave vector describing the spatial
frequency of the fluctuation, ϕi is a random angle
between [0, 2π], and G(ki) is a normalization factor.
The stratified-plus-fluctuation model is widely used
in atmospheric acoustics [6], and we adopted this
model to generate realistic atmospheric benchmarks
for our acoustic propagation in Section 6.

3.2 Propagation trajectory

In ray tracing for wave propagation, rays are defined
as normal to the wavefront. The Eikonal equation for
ray trajectories is derived from the wave equation as
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Fig. 2: Analytic ray curves in c-linear (circular curves), n-linear, and n2-linear (parabolic curves) media profiles.
Our algorithm uses the circular and the parabolic curves as ray tracing primitives. Red and blue curves
represent different launch angles (60°and 45°, respectively). The dashed curves trace out the ray paths if the
launch angles are flipped around the r-axis. The z-axis represents the direction of the media gradient. The r-z
plane is the ray plane defined in Section 3.2.

follows:
d

ds

(
1

c(x)

dx

ds

)
= − 1

c(x)2
∇c(x), (5a)

d

ds

(
n(x)

dx

ds

)
= ∇n(x), (5b)

where x = {x, y, z} represents the Cartesian coordi-
nates, s is the arc-length along the ray, c(x) is the
propagation speed that is a function of the spatial
location, n(x) = c0/c(x) is the index of refraction, and
c0 is the reference propagation speed.

Real-world media such as the atmosphere tend to
vary smoothly and therefore can be modeled with
continuous functions with locally varying gradients.
Given a local media gradient at location x, we hereby
provide the analytic ray trajectory in a local coordinate
system aligned with the gradient direction.

For a particular ray origin x and direction d, we
place the origin of the local coordinate system at x,
and denote the media gradient direction as the z-axis.
It can be shown that the ray trajectory is a plane
curve that lies in the plane formed by the gradient
direction and the ray direction d, i.e. the ray plane.
We then select the direction within the ray plane that’s
perpendicular to the z-axis as the r-axis. Figure 2 plots
the analytic ray curves in the ray plane.

For the local gradient in propagation speed c, α =
‖∇c‖, the local profile can be written as: c(z) = c0 +
αz, where c0 is c at the ray origin. Let ξ′0 = cosθ0

c0
,

where θ0 is the angle between initial ray direction and
the r axis, the ray trajectory in r-z coordinates can be
derived from Equation (5a) to be:

r(z) =

√
1− ξ′20 c20 −

√
1− ξ′20 (c0 + αz)

2

ξ′0α
, (6)

which is a circular curve in the ray plane. (See Ap-
pendix A for detailed derivations.)

For the local gradient in refractive index n, the ana-
lytic ray curve for ∇n was derived in [17], which does
not have an analytic solution for intersection tests.
For the local gradient ∇n2, however, an analytic ray
trajectory with analytic intersection solution exists. We
establish a similar coordinate system with origin at a
spatial location x, and z-axis parallel with the local

media gradient ∇n2.
For α = ‖∇n2‖, the local profile can be written as:

n2(z) = n20 + αz, where n0 is the value of n at the
ray origin. Let ξ′0 = n0cosθ0, where θ0 is the angle
between initial ray direction and the r axis, the ray
trajectory is:

r(z) =
2ξ′0
α

(√
−ξ′20 + n20 + αz −

√
−ξ′20 + n20

)
, (7)

which is a parabolic curve. (See Appendix A for
detailed derivations.)

Both the circular and the parabolic ray curves have
closed-form solutions in terms of intersections with
planar surfaces, and for travel distance along the ray.
We have plotted the n-linear ray curve used by Cao
et al. [17], and the c-linear and n2-linear ray curves in
Figure 2.

4 ADAPTIVE MEDIA MESH

Our goal is to construct a tetrahedral mesh with
graded cell sizes that adapts to the spatial distribution
of media properties, hereafter referred to as an adaptive
mesh. The cost of computing a ray curve and its inter-
section within each media cell is constant, therefore an
adaptive mesh leads to faster ray traversal. We also
take advantage of the capability of an unstructured
tetrahedral mesh to conform to arbitrary surfaces, and
we embed boundary surfaces that represent scene
objects. There are multiple ways to construct an adap-
tive mesh and to incorporate boundary surfaces into
it. In this section, we give details of the techniques
used in our implementation and also discuss some
alternatives. These discussions are substantiated with
experimental results in Section 6.

4.1 Resample media profiles

We assume that the input media profiles are available
on a three-dimensional uniform grid. The data points
on the grid are generated from real-world measure-
ments or from sampling a characteristic profile. We
will now describe our method of resampling an input
profile to generate a point set distributed according
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Fig. 3: Adaptive meshes. The unstructured meshes we construct (Section 4) have the capability to adapt to
complex spatial media profiles. Here we show two meshes generated for the hot spot (A-HS) and upwind-
over-hill (A-UW) profiles, respectively. (a) Resampled media points (showing half of the points to expose
the sectional view), (b) Input media profiles, (c) Interpolated media profiles from the meshes, (d) Absolute
approximation errors, (e) Adaptive meshes. The input media grid has 6.4 × 106 (200 × 200 × 160) points for
A-HS, and 8× 105 (100× 100× 80) points for A-UW. The meshes are constructed from a resampled 4.3× 104

points for A-HS, and 9.8× 103 points for A-UW. With 100× fewer sample points than the input the adaptive
meshes are able to achieve low approximation errors in the media profiles they represent.

to local magnitude of media variations; tetrahedraliza-
tion on such a point set generates an efficient structure
for both media representation and ray traversal.

We want to vary the cell sizes according to media
variations. To achieve this goal, we want to vary the
spacing between sample points when we resample
the input media profile. For example, given an input
profile of propagation speed c(x) for each grid point
at location x, we can compute the slowness k(x) = 1

c(x) ,
and the gradient of the slowness ∇k(x) on the input
grid by finite difference. We then compute a spacing
d(x) such that σ = 1

4∇kd
2(x), with a global σ that

controls the overall variation allowed in each cell.
After computing the desired spacing d(x) for each

grid point location x in the profile, we use Algo-
rithm 1 to obtain the set of resampled points S from
the profile G, in a manner similar to the Atomic Mesh-
ing process [44]. Basically, a face-centered-cubic (FCC)
lattice is grown from the center of the space outward,
placing each new point away from existing samples
by the spacing d(x). The approximation errors that are
introduced by the resampling process are quantified
in Section 6.3.

4.2 Embed boundary surfaces
During propagation, objects in the scenes (such as ter-
rains, mountains, man-made structures such as build-
ings and sound barriers) affect the propagation paths

of the curved rays. Given the tetrahedral mesh used to
represent the media, surfaces that represent the scene
objects can be incorporated by either embedding them
in the mesh or linking them to the mesh cells that they
overlap.

Unlike axis-aligned data structures, such as octrees,
that are commonly used in ray tracing, tetrahedral
mesh has flexible structures that can embed surfaces
of arbitrary orientations. To embed surfaces, we in-
sert them as boundary constraints and construct a
constrained tetrahedral mesh. When the surfaces are
embedded in the mesh, no separate intersections with
surfaces are computed during the ray traversal, and
Line 7 in Algorithm 2 is merged with Line 3. When a
ray’s exit face from a tetrahedral cell corresponds to
a constrained face (an object’s boundary surface), the
current ray traversal terminates and a secondary ray
is spawned reflecting off the constrained face.

While embedding the boundary surfaces often
brings speedup, because it unifies mesh traversal
with surface intersections and eliminates extra com-
putation during traversal, inserting constrained sur-
faces adds considerable computational overhead to
the mesh construction. We evaluate this trade-off be-
tween construction efficiency and traversal efficiency
individually for each input scene.

In our benchmarks, the distribution of surface prim-
itives is always compatible with media variation,
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1 Given the set of grid points of the media profile
G, initialize a flag array that marks each point in
G as false;

2 Initialize an empty list of points for output S,
and a queue of points T with just the center
point in the grid xi in it;

3 while T is not empty do
4 dequeue xi;
5 if xi lies within the bounds of the profile then
6 compute a spherical region with center xi

and radius d(xi);
7 if all samples in the spherical region are

marked false then
8 mark all such samples true;
9 add xi to S; compute ideal sites of xi

with spacing d(xi) and enqueue all in
T ;

10 end
11 end
12 end

Algorithm 1: Media sample redistribution for mesh
construction. We adjust spacing for a given input
profile on a regular grid. The ideal sites are the
locations of neighbors in a FCC lattice [44].

leading to the fast traversal of a constrained mesh.
However, if there are over-tessellated objects or ob-
jects whose resolution doesn’t match with the media
variation, the constrained mesh generation algorithm
chooses smaller cell sizes close to the objects’ surfaces
and this affects the traversal performance.

To compensate for scenarios like this, there are two
options. We could treat the object boundaries as im-
plicit surfaces instead of explicit triangles. In this case,
we can construct a tetrahedral mesh that conforms to
these implicit surfaces, effectively re-tessellating it, as
in [60]. This method keeps the performance benefit of
a unified traversal while maintaining proper cell size,
i.e. the cell size based on media variations instead of
object tessellations. Or we could link each tetrahedral
cell to a list of the boundary faces that it overlaps with,
similar to [17]; in this case, the ray traversal of each
cell needs to iterate through this list of boundary faces
to compute the surface intersections. This approach
has the benefit of simplicity, but might not provide
optimal traversal performance. Furthermore, gener-
ating those links comes with its own computational
overhead. We report the experimental results of the
performance of both construction and traversal of
the meshes when embedding or linking boundary
surfaces (See Section 6.5).

4.3 Tetrahedralization
Given a point set S on a lattice with proper spac-
ing (extracted from the media profile as described
in Section 4.1), and given the optional constrained

surfaces of the objects (P ) in the scene (discussed in
Section 4.2), we use these two sets of constraints to
compute a Constrained Delaunay Tetrahedralization
(CDT).

We use the method proposed by Si and Gadrtner
[61] and implemented in the TetGen software package,
to build a CDT with S and P . The resulting CDTs have
adaptively graded cell sizes due to resampling of the
input profile, and we observe well-shaped tetrahedral
mesh with a maximum radius-edge ratio below 2.0
in our benchmarks. The CDT construction process
can potentially insert additional points into the mesh;
we obtain the inserted points’ media properties by
querying and interpolating the original input profile.
The set of boundary surfaces (P ) becomes constrained
faces of the constructed CDT, which are stored as face
markers with each tetrahedral cell in the mesh.

5 TRAVERSAL OF RAY CURVES

After we construct an adaptive tetrahedral mesh
based on the input media profile, propagation
through this media can be simulated by computing
ray curves from media gradients estimated over the
mesh and traversing those ray curves using the mesh
connectivity.

5.1 Gradient estimation
Given the spatial decomposition of the media profile
with our tetrahedral mesh, we need accurate estima-
tion of the media gradient within each tetrahedral cell
to compute the analytic ray trajectories entering that
cell. Our method is based on the assumption that the
per-cell local gradient captures the media variation
within that cell, and we adopted a cell-centered linear
regression-based gradient estimation method.

For media property m (e.g. c or n2) defined over
the domain, and a cell C in the mesh with centroid
x0, the cell gradient ∇m should satisfy the equation
system:

(x1 − x0)ᵀ

(x2 − x0)ᵀ

(x3 − x0)ᵀ

(x4 − x0)ᵀ

∇m =


m(x1)−m(x0)
m(x2)−m(x0)
m(x3)−m(x0)
m(x4)−m(x0)

 , (8)

where xk, k = 1, ..., 4 are the centroids of the 4
neighbors of C, m(xk) is the media property values
at those centroids. Written in matrix form:

X∇m = b, (9)
Optionally, different weights can be assigned to each
neighbor of the cell, to take into consideration of the
irregular shapes of the mesh:

WX∇m = Wb (10)
where W = diag{wi} is a 4 × 4 diagonal matrix
containing the weights of neighbor k of cell C. This
can be solved with linear least square (See Appendix
B for the explicit solution of the estimated gradient).

Although average-based gradient estimation
method is faster to compute, and has been used
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in prior work [17], the regression-based method,
especially the weighted version with inverse centroid
distance, has been shown to provide better accuracy
for irregular shaped mesh elements, and adapts
well to lower-quality meshes [62], [63]. Accuracy
of the estimated gradient is particularly important
for outdoor propagation, when artifacts such as
false caustics have been shown to happen with
discontinuous gradients [64]. We estimate the
gradient as a preprocess right after adaptive mesh
construction, and we compare the results with
the Green-Gauss method used by [17], which
is essentially volume-weighted averaging-based
method (Section 6.4).

5.2 Curved ray traversal

The pseudo-code for the traversal of curved rays
through a tetrahedral mesh is given in Algorithm 2.

Given a ray origin, we first locate the tetrahedral
cell that contains the origin. This step is commonly
referred to as point location, and it can be relatively
expensive for complex models when there are a large
number of tetrahedral cells. However, in most scenar-
ios, each primary ray originates from the same point
(light or sound source), and each secondary ray (after
interacting with boundary surfaces) originates from
the same cell where its predecessor (the primary ray
that spawned it) ends. The point-location query is
performed once per frame, and the cost is amortized
over all the rays.

1 Point Location for ray origin P , yields
tetrahedron T ;

2 Compute analytic ray trajectory from media
property of T ;

3 Intersect ray curve with T to find exit face F ;
4 if T contains boundary surfaces then
5 surface interaction;
6 go to 2 with T unchanged;
7 else if there is a tetrahedron T ′ incident to F then
8 T = T ′; Go to Step 2;
9 else

10 ray exits the scene;
11 end

Algorithm 2: Curved Ray Traversal of tetrahedral
meshes.

Once the initial tetrahedron is located, we retrieve
the interpolated media properties ∇m, which have
been precomputed and stored in the tetrahedral cell.
The direction of ∇m and the initial location and
direction of a ray are used to define the ray plane, and
we can compute the curved trajectory within the cell
for any entering ray, as described in Equation 26 or
32 (Line 2 in Algorithm 2).

The ray curves we used have closed-form intersec-
tion solutions with planar surfaces, e.g. the four faces

of the tetrahedral cell. The intersection point closest
to the ray origin is chosen as the exit point from the
cell, and the neighboring cell incident to the exit face
is taken as the next cell in the traversal. We use its
media properties to compute the next segment of the
curved ray path (Line 9 in Algorithm 2).

5.3 Boundary and media interactions
Unstructured tetrahedral mesh has the capability
to conform to irregular boundary surfaces, and we
choose to leverage this capability to embed surfaces
in the mesh, as mentioned in Section 4.2. In this case,
the ray encounters boundary faces when it traverses
those tetrahedra in which the boundary surfaces are
embedded.

Given the ray trajectories in Equation 6 and 7, the
tangent direction of the ray at arbitrary point (e.g.
an intersection point) along the ray curve can be
evaluated analytically for the circular curve:

dr

dz
=

(ξ′0(αz + c0))√
1− ξ′20 (αx+ c0)2

, (11)

and for the parabolic curve:
dr

dz
=

ξ′0√
−ξ′20 + αx+ n20

. (12)

With the incident location and direction of the ray
at a boundary surface, perfect reflection, Snell’s law
refraction, or BRDF-based sampling can be employed
to generate the direction of the next ray along the
propagation path. The new ray will be computed
based on the media property of either the current cell
(for reflecting surfaces) or the neighboring cell (for the
refracting surfaces) and the new direction (Line 7 in
Algorithm 2).

Furthermore, the circular and parabolic ray curves
both have closed-form arc length, which can be used
to compute attenuation of propagated energy due
to absorption for light (e.g. [65]) and sound ([5]). A
closed-form arc length is also convenient for free path
sampling to simulate media scattering [34], [36]. While
our ray formulation is compatible with more com-
plex surface interactions and media participation, we
do not perform BRDF sampling or media scattering
in our benchmark results but focus on the refrac-
tive characteristics of non-linear media and specular
boundary reflections.

6 RESULTS AND ANALYSIS

In this section, we highlight the applications of our
algorithm on light and sound propagation in outdoor
benchmarks with different atmospheric profiles and
geometric primitives in the scene. The efficiency of
the curved ray tracer enables simulation of general
media with 3D variations interacting with complex
boundaries, which have not been achieved before. We
compare the performance with piece-wise linear ray
stepping, widely used for non-linear media, as well
as [17], the previous work in computer graphics that
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(a) (b)

Fig. 4: Acoustic benchmarks The Desert and Christ-
mas shown here represent complex outdoor acoustic
scenes (details in Table 1). Propagation results for
these benchmarks can be seen in Figure 11 (in the
Appendix), Figure 5, and Table 2.

traces analytic ray curves. We also analyze the approx-
imation errors incurred by the adaptive mesh we con-
struct to represent the underlying media. The other
implementation choices including boundary surface
embedding and regression-based gradient estimation
are also analyzed with experimental results.

6.1 Benchmarks
Propagation in non-linear media is important for both
visual and acoustic applications, therefore we tested
our algorithm on visual benchmarks (Figure 6 and
7 in the Appendix) and acoustic benchmarks (Figure
1, 4, and Figure 11 in the Appendix). Each of the
benchmarks consists of two components: a media
profile, and triangulated geometric representation of
the boundary surfaces.

6.1.1 Media profiles
We generate media profiles that resemble realistic
atmosphere under a set of different conditions, and
we use different techniques for light and sound prop-
agation. Some of these profiles have been used by
previous work to model the atmosphere.

The profiles used for visual benchmarks include:
• Inferior mirage (V-IM)(modeled in [66]), with the

squared refractive index:
n2(z) = µ2

0 + µ2
1(1− exp(−βz)), (13)

where z is the height, µ0 = 1.000233, µ1 =
0.4584, β = 2.303.

• Superior mirage (V-SM) represents atmospheric
condition that is amenable to superior mirages
(modeled in [66]):

n2(z) = µ2
0 + µ2

1exp(−βz), (14)
These two profiles are also used in [17].

The refractive index profile for light waves is gener-
ated using the method described in Section 3.1.1.

The profiles used for acoustic benchmarks include:
• Upward or downward refractive stratified pro-

file (A-LU,A-LD) represents the profile defined
by Equation 3 as described in Section 3.1.2. We
use n0 = 1, c0 = 340 m/s, and zg = 1 m. We take
b = 1m/s for A-LD and b = −1m/s for A-LU.

• Hot spot (A-HS) represents the localized heat
source induced sound speed fluctuations, com-
puted according to Equation 2 and Equation 15,
superimposed on an upward refractive stratified
atmosphere profile (A-LU).

T = T0 + (Ts − T0)exp(−d/d0), (15)
where Ts is the temperature at the hot spot, d is
the distance to the hot spot, T0 = 273K and d0 is
the dropoff length, which is a variable property
of the hot spot.

• Stratified-plus-fluctuation (A-LU+F, A-LD+F)
represents an upward or downward refractive
atmosphere (A-LU or A-LD) superimposed with
fluctuations generated according to Equation 4
and Section 3.1.2.

• Wind over hill (A-UW for upwind, A-DW for
downwind) represents a known wind profile
over an analytic hill shape [67]. According to the
Monin-Obukhov similarity theory [2], the mean
wind velocity follows the logarithmic law with
height z:

u(z) =
u∗
K

ln
z

zg
, (16)

where K is the von-Karmann constant, zg is the
aerodynamic roughness length, and u∗ is the
friction velocity [3], [68].
Above undulating terrains, the wind profile will
be significantly modified based on the shape and
properties of the ground. In particular, Jackson
and Hunt [67] derived closed form solution for a
hill of the shape:

f(
x

L
) =

1

1 + ( xL
2)
, (17)

where x is the horizontal distance of a location
from the apex of the hill, L is the radius of the
base of the hill. The analytic solution for the
horizontal component of the wind velocity over
this particular hill shape, in addition to the mean
velocity u(z), is given as:

∆u = u0(z = L)
h

L

ln( Lz0 )

ln2( l
z0

)
(
1− ( xL )2

1 + ( xL )2
ln(

∆z

z0
)

− (
2(x/L)

(1 + (x/L)2)2
(
∆z − z0

l
) ln(

∆z

z0
)), (18)

where δz is the distance above the hill, and l is
the thickness of the hill’s influence region, where
the flow above the ground is perturbed by the
presence of the hill. u(z)+∆u is then added to or
subtracted from the underlying sound speed, for
upwind or downwind propagation respectively,
to form an effective sound speed profile [6].

6.1.2 Geometric models
The Desert and Christmas models (See Figure 4)
represent large-volume outdoor acoustic scenes that
have complex surface geometry (e.g. varying terrains
and buildings). The details for these models are given
in Table 1, including the surface primitive count, the



10

number of re-sampled media points, and the size of
the adaptive mesh constructed using Algorithm 1.

Scene # surfaces # medium points. # tetrahedra
Elephant 1,500 1,532 5,538

Desert (m) 8,000 23,632 144,976
Desert (h) 16,000 132,742 674,434

Christmas (m) 8,000 44,862 227,851
Christmas (h) 16,000 179,382 1,169,353

TABLE 1: Benchmarks details. Acoustic benchmarks
are tested at a range of different resolutions, and we
show the stats at the median(m) and high(h) ends of
the range.

6.2 Performance of curved ray traversal
We show the performance advantage of tracing an-
alytic curved rays over tracing piece-wise linear ray
steps for visual rendering in an outdoor atmospheric
environment (Figure 7 in the Appendix). All the tim-
ings are collected on a single 3.2GHz CPU core. Under
the V-IM and V-SM profiles, we performed same-
quality comparison by carefully adjusting the step size
of piece-wise linear ray tracing to match the trajectory
produced by curved ray tracing. The performance of
curved ray tracer is an order of magnitude faster un-
der the same-quality comparison, while the piece-wise
linear rays lead to noticeable artifacts when running
at competitive speed (same-speed comparison).

We analyze the performance for sound propaga-
tion in greater detail (Figure 5), as the advantage
of curved ray tracing in that context, unlike visual
rendering [17], has not been sufficiently explored.
We observe significant performance improvement and
better scalability with curved ray tracing . In contrast,
piece-wise linear ray stepping performance decreases
greatly with media variation, and was capped at
media gradient of the magnitude 0.15 to keep the
running time reasonable.

The running time of curved ray traversal scales
sub-linearly with the number of tetrahedral cells in
the mesh, as shown in Figure 5(b,c). The traversal
performance also scales well with increasing numbers
of boundary surfaces (Figure 5(d)), which demon-
strates the culling efficiency of the tetrahedral mesh.
Further discussions about boundary surfaces and per-
formance are given in Section 6.5.

6.3 Error analysis of media interpolation
We perform experiments to evaluate the error in-
troduced in our adaptive mesh construction, which
resamples the media profile G using a smaller set of
points S. Assume that the media profile in refractive
index n is available as input on a regular grid of points
xG, so that the refractive index nG = n(xG). With
Algorithm 1 we compute a set of resampled points
S, their refractive index nS is computed by trilinear
interpolation of nG on the closest grid points.

After we construct a tetrahedral mesh from the
resampled set S, the approximated refractive index
ñ(x) at an arbitrary position x within the domain is
obtained by Barycentric interpolation. The tetrahedral
cell that contains x is located and ñ(x) is interpolated
from n at each vertex of this cell, with Equation 37.
The approximation error is defined as the difference
between the approximated and the original indices of
refraction

E = nG − ñG, (19)

where ñG = ñ(xG). The relative error is

Erel =
‖nG − ñG‖
‖nG‖

, (20)

where ‖ · ‖ denotes a 2-norm. The error is a function
of the size of S, which is controlled by the global σ.

Figure 8 (in the Appendix) shows the approxima-
tion error with the profile (A-LU+F). We start from
an input grid of 2.09 × 105 points, spanning a space
of 160m×160m×160m with 1.25m grid spacing. By
resampling with σ = 0.001, we obtain the resulting
S with 23, 462 points. We plotted S in 3D, color-
coded by the nS in Figure 8(a), a slice of the original
nG in Figure 8(b), the approximated ñG defined by
S in Figure 8(c), and the error in Figure 8(d). With
100 times fewer points than the input grid, the ap-
proximated ñG is able to capture the features of the
original nG, and the relative error is below 4 × 10−4.
As shown in Figure 8(e), the relative error decreases
with increasing size of S, which is controlled by σ.

Close approximation of the underlying media pro-
file by the adaptive mesh leads to improved accuracy
in the curved ray tracing results. In Figure 9 (in the
Appendix), we quantify the ray tracing accuracy by
measuring the spatial locations of ray hit points and
the travel distance along the ray trajectories, both of
which are crucial for light and sound propagation.
Those measurements are compared against a con-
verged piece-wise linear ray stepping result, which
is used as the ground truth. With adaptively finer
meshes, the approximation errors in ray tracing re-
sults decrease along with the approximation errors in
the media profiles.

In addition, we perform similar error analysis with
two other media profiles (A-HS and A-UW) (see Fig-
ure 3), which illustrate the capability of our adaptive
mesh to capture different profiles with accuracy. The
constructed meshes for those profiles are shown in
Figure 3(e), where finer cells tend to fall in regions of
great variations within the media.

6.4 Comparisons

Besides piece-wise linear ray methods, we also com-
pare our algorithm with [17] on various aspects. By
adopting different ray formulation, and by modeling
general media with adaptive unstructured mesh, we
highlight improvements in performance and accuracy.
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Fig. 5: Performance and scalability of curved ray tracing: (a) Tracing analytic ray curves vs. tracing linear ray
segments, when simulating a sound propagation path to the same accuracy. Curved ray tracing scaled much
better with increasing magnitude of media variations. (b) A close-up view of the ”Ray Curves” line plot in
(a) shows the tracing time (red line) scaling with increasing mesh sizes (green line). The increasing mesh size
is a result of the adaptive mesh construction that keeps the approximation error at the same level, using a
lager number of smaller cells for increased media gradient. (c,d) Curved ray tracing scales sub-linearly with
tetrahedral cell counts and number of boundary surfaces in the mesh. Note that tracing time decreases with
increased number of surface primitives because the average propagation distance before a ray bounces off a
boundary surface is shortened.

We replicate the visual benchmark scenes used in
[17] with the same mesh complexity (see Figure 6 in
the Appendix). Our ray tracer running on a single
thread is able to approach the performance of the GPU
ray tracer reported in [17]. This is because of our ray
formulation’s closed-form intersections with planar
surface, which are faster than the costly bisection
required by the n-linear profile rays used by [17]. The
runtime breakdown in Table 2 shows that bisection
takes up a large portion of the traversal time.

We would also like to point out that our ray formu-
lation has closed-form solution for tangent direction
and arc length at any point along the ray curve. These
are useful for speeding up boundary interactions
as well as absorption and scattering simulation, as
explained in Section 5.3. These are not taken into
consideration in [17].

Moreover, we compare our adaptive mesh with the
octree structure used in [17]. Cao et al. [17] built an
octree on top of their tetrahedral media to provide
the kind of adaptability similar to our tetrahedral
mesh formulation. We construct an octree using the

the method described in [17] for the same test profile
(A-LU+F) used in Section 6.3 and Figure 8 (in the
Appendix). We merge octree nodes according to two
thresholds: δ, the threshold of the differences of the
indices of refraction of the nodes to be merged, and
ε, the threshold of the differences of the gradients.
We vary both these thresholds to generate octrees
with different number of nodes, and we plot how
the relative error changes by reducing the number
of nodes (Figure 10(e) in the Appendix). Overall the
resulting octrees tend to have more nodes when they
can achieve the same level of interpolation error as
tetrahedral meshes. If comparable number of sample
points are used, as the cases plotted in Figure 8 and
10, the interpolated profile from the octree by finite
difference yields visibly less smooth media and larger
errors (see Figure 10(a-d)).

To estimate the media gradient for the purpose
of computing ray curves, we used a regression-
based method while Cao et al. [17] used Green-Gauss
method, as discussed in Section 5.1. Although it was
mentioned as future work in [17] that continuity in
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Benchmark Frame time Compute Curves Tetra Intersect (time) Tetra Intersect (count) Bisection
Elephant 123 0.0175 (0.01%) 110.08 (88.06%) 51 +108.49

Desert (m) 219 0.0658 (0.03%) 211.39 (96.24%) 179 +247.70
Desert (h) 369 0.1033 (0.03%) 361.59 (97.92%) 254 +443.12

Christmas (m) 259 0.1037 (0.04%) 240.96 (92.89%) 188 +220.98
Christmas (h) 443 0.1948 (0.04%) 427.99 (96.64%) 296 +392.73

TABLE 2: Breakdown of curved-ray traversal time, tracing 10K rays to a depth of 3. Tetrahedral cell
intersection dominates the frame time, while ray curve formulation and computation cost is negligible. We
also report the average number of tetrahedra that each ray curve traverses. For comparison with [17], we trace
n-linear rays (shown in Figure 2 (middle)) for the same scene configurations, and report the additional time
that bisection takes in the rightmost column. Our ray formulations avoids the bisection computation due to
their analytic surface intersections. All timings are in milliseconds.

gradient could potentially remove certain visual arti-
facts, this improvement is more important for acoustic
applications than visual ones. A comparison of the
estimated gradient is shown in Figure 13 (in the
Appendix) for acoustic wind profiles A-UW and A-
DW.

6.5 Other considerations

The design choice of whether to embed the boundary
surfaces or not, as discussed in Section 4.2, depends
on whether the resolution of surface tessellations
matches the resolution of media variations. Here we
show this connection with the geometric representa-
tions used for acoustic benchmarks, Christmas and
Desert scenes. We tessellate the boundary surfaces in
these benchmarks to different resolutions, using the
same set of media samples, and construct a different
constrained tetrahedral mesh for each resolution.

As shown in Figure 12(a) (in the Appendix), there
is a particular range of resolution for each scene at
which the surface tessellation and the adaptive media
mesh resolution match each other; other tessellation
levels produce lower-quality mesh with more cells.
This effect is even more apparent when we build
optimized tetrahedral mesh with a quality threshold
measured in the average aspect ratio (Figure 12(b) in
the Appendix).

On the other hand, when we link boundary surfaces
with the media cells they overlap with, rather than
embedding them in the mesh, we can see from 12(c)
and (d) that a mismatch between surface tessellation
and media variation still leads to slower traversal.
Even though the mesh is not affected by the surface
tessellation in this scenario, the number of surface
primitives that overlap each media cell increases
with finer surface tessellation, which slows down the
traversal.

While constrained mesh construction is more ex-
pensive than unconstrained mesh construction, the
linking of surfaces also results in significant cost in
terms of pre-processing, as shown in Figure 12(e) (in
the Appendix). Given a complex media profile with
boundaries tessellated at a compatible resolution, the

lower traversal time for mesh with embedded bound-
ary surfaces may be worth the extra construction cost.

6.6 Applications on outdoor acoustics

Ideally, outdoor acoustic simulations model 3D vary-
ing media profiles based on temperature and wind
profiles, as well as complex natural and man-
made boundaries. Existing outdoor acoustic simula-
tion methods either ignore the non-linear media, or
simplify the media by reducing the dimension in its
variations (e.g. assuming it is simply stratified), or
requires long off-line computations. By accelerating
the ray models with analytic ray curves and a compact
adaptive media mesh, we achieve interactivity with
a fully general media profile and complex boundary
geometry. Figure 1 illustrates the characteristic ray
trajectories that we compute for a set of different
media conditions. We highlight our method applied
to different atmospheric profiles (A-LU,A-LD) and
complex outdoor benchmarks Christmas and Desert
in Figure 11 (in the Appendix). The resulting ray plots
display the complex 3D nature of the propagation
after multiple interactions with the boundaries (Fig-
ure 11) and under wind profiles modified by terrains
(Figure 1 c,d,g, and h). Our method enables fast
generation of those acoustic propagation results.

7 LIMITATIONS AND FUTURE WORK

There are several limitations to our approach. The first
is that the adaptive unstructured mesh is currently
precomputed. Therefore, our current implementation
is limited to static environments. In dynamic scenes,
our approach is limited to the cases where the media
property changes do not invalidate the topology of the
mesh. Secondly, the efficiency of tracing analytic ray
curves depends on the existence of spatial coherence
in media. Conceivably there will be a point when
a chaotic media has little coherence that the valid
range of analytic ray curves reduces to the same with
linear ray steps. However, most natural media used
for visual and acoustic simulation tends to be fairly
coherent and varies smoothly; in these cases tracing
analytic ray curves works quite well.
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As future work, we would like to parallelize this ap-
proach on a multi-core CPUs or many-core GPUs. Just
like linear rays, our analytic ray curves propagates
independently from each other, thererfore curved ray
traversal is just as amenable to parallelism as linear
ray tracing. We would also like to explore modeling of
a dynamic media by dynamically adapting the media
mesh as in [45], [46], which can be useful for scouting
simulation of fluctuating or turbulent media, and of
dynamic scenes. Another avenue for future work is
to combine our method of simulating refractive prop-
agation with complementary methods that simulate
scattering and absorption in participating media.

8 CONCLUSIONS

We addressed the challenge of simulating sound and
light propagation in large outdoor scenes with general
varying media and complex media boundaries. We
developed an efficient ray-tracing based algorithm
that eliminates the need of making simplifying as-
sumptions about the media variations or the scenes.

In particular, we traced analytic ray curves that
overcome the step size limitation of linear ray ap-
proximations, computed closed-form intersections of
the ray curves with the scene objects, and constructed
adaptive media mesh for efficient representation of
the underlying general media profiles. The mesh is
also able to conform to the media/objects bound-
aries, so that surface interactions can be computed
seamlessly with media traversal, and the terrain
or obstacle-following temperature and wind profiles
commonly found in real-world measurements [58],
[59] can be modeled.

We highlight the propagation results on outdoor
benchmarks with realistic 3D varying atmospheric
profiles and complex obstacles, running at near in-
teractive rates on a single CPU core. Our algorithm
enables fast sound simulation in large outdoor scenes
and complex environments that were not feasible with
previous methods.
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APPENDIX A
DERIVATION OF ANALYTIC RAY CURVES
Here we provide the derivation of analytic ray curves
based on a locally constant gradient of the propaga-
tion speed c and of the squared refractive index n. The
analytic solutions in various forms have been derived
in different context including geometric optics [49],
[50], [51] and computational acoustics [5], [6].

A.1 c-linear profile
When the propagation speed c has a local gradient
∇c, we take the direction of ∇c as the z-axis, and the
local media profile can be written as:

c(z) = c0 + αz. (21)
From Equation (5a) we have
d

ds
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We use the following symbols

ξ0 =
1

c

dx

ds
, η0 =

1

c
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, ζ(s) =

1

c

dz

ds
, (23)

and we can see that ξ0 and η0 are constant along the
ray trajectory according to Equation (22). As a result,
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(24)
If we rotate the x-y plane around the z axis until η0
becomes 0 and put the origin of the coordinate system
at the ray origin, the ray becomes a plane curve lying
in the plane formed by the z-axis and the initial ray
direction at the origin (Figure 2 in the paper), which
we call the ray plane. The other axis of the ray plane is
called axis r, and that ξ′0 = 1

c
dr
ds = cosθ0

c0
, where θ0 is

the angle between initial ray direction and the r axis.
In the ray plane, integrating dr

ds along the ray gives

r(st) =

∫ st

s0

dr

ds
ds = ξ′0

∫ st

s0

cds = ξ′0

∫ z

z0

dz

ζ
. (25)

We solve ζ from Equation (24) and plug it into Equa-
tion (25), which gives us a circular curve:

r(z) =

√
1− ξ′20 c20 −

√
1− ξ′20 (c0 + αz)

2

ξ′0α
. (26)

A.2 n2-linear profile
When the squared refractive index n2 has a local gra-
dient ∇n2, we denote the gradient direction direction
as the z-axis, so that:

n2(z) = n20 + αz. (27)
From Equation (5b), and using a derivation analogous
to Equation (22), (23), and (24), we obtain:
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We perform a similar rotation to the ray plane with
axis r and z, and denote ξ′0 = ndrds = n0cosθ0. As in
Equation (25), we obtain:

r(st) =

∫ st

s0

dr

ds
ds = ξ′0

∫ st

s0

ds

n
= ξ′0

∫ z
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ζ
. (31)

We solve ζ from Equation (30) and plug it into Equa-
tion (31) to derive the ray trajectory:

r(z) =
2ξ′0
α

(√
−ξ′20 + n20 + αz −

√
−ξ′20 + n20

)
, (32)

which is a parabolic curve.

APPENDIX B
GRADIENT ESTIMATION SOLUTIONS

With linear least square, the estimated gradient from
solving Equation (10) is:

∇m(x0) =

4∑
k=1

pk(m(xk)−m(x0)) (33)

The coefficients, pk are:

pk =

αk,1 − r12
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 (34)

where
αk,1 =

∆xk
r211

(35a)

αk,2 =
1

r222
(∆yk −

r12
r11

∆xk) (35b)

αk,3 =
1

r233
(∆zk −

r23
r22

∆yk + β∆xk) (35c)

β =
r12r23 − r13r22

r11r22
(35d)

and

r11 =

√√√√ 4∑
k=1

wk(∆xk)2 (36a)

r12 =
1

r11

4∑
k=1

wk∆xk∆yk (36b)

r13 =
1

r11

4∑
k=1

wk∆xk∆zk (36c)

r22 =

√√√√ 4∑
k=1

wk(∆yk)2 − r212 (36d)

r23 =
1

r22
(

4∑
k=1

wk∆yk∆zk −
r12
r11

4∑
k=1

wk∆xk∆zk) (36e)

r33 =

√√√√ 4∑
k=1

wk(∆zk)2 − (r213 − r223) (36f)

where ∆(.) = (.)k − (.)0, and xk, yk, zk are the
Cartesian coordinates of xk.

In contrast, with Green-Gauss gradient estimation
as used in [17], given a tetrahedral cell with media
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(a) (b)

(c) (d)

Fig. 6: Performance comparison with [17] on visual
benchmarks. We replicate the mesh complexity and
scene configuration in Figure 7 of [17]. (a,c) n2-linear
profiles, (b,d) c-linear profiles. The medium gradient
is along the horizontal direction for Bunny, and along
the vertical direction for Elephant. Our curved ray
tracer achieved performance of 15 fps for (a,b), and
8 fps for (c,d). These frame times achieved with a
single CPU thread are within 3× of Cao et al.’s GPU
ray tracer [17]. The key to the efficiency comes from
savings of the bisection cost, which can take up to
50% with the n-linear ray formulation used in [17].
See Table 2 for a breakdown of the running time.

properties m defined on its vertices {mk, k = 1, ..., 4},
the gradient within that cell is given by:

∇m =

4∑
k=1

Akmk

T
Nk, (37)

where T is the volume of the tetrahedral cell, and
Ak, Nk are the area and the normal of the face opposite
to vertex k, respectively.

This Barycentric interpolation leads to C0-
continuity of the media property, m, across shared
faces, edges, and vertices of neighboring cells.
However, there can be discontinuity in the media
gradient between neighboring cells.

APPENDIX C
COMPARISON OF MESHES GENERATED FROM
LOCAL GRADIENTS OF n, c, n2

For any general media profile, whether given in the
propagation speed c or in the refractive index n,
we could transform the input profile into equivalent

profiles of n, c, or n2 based on the relation n = c0/c.
The media gradient in the form of ∇n, ∇c, or ∇n2
can be computed respectively, and a different adaptive
mesh can be constructed using Algorithm 1 for each of
the gradient measures, to be traversed by the n-linear,
c-linear (circular), and n2-linear (parabolic) rays.

In this Appendix we analyze the approximation er-
rors associated with each of the three kinds of meshes,
for the profiles A-LU+F and A-DU+F, in Figure 14
and 15, respectively. Overall the approximations of
the underlying media are at the same accuracy level
across different kinds of meshes with comparable
size (number of cells). One of the meshes may be
better at approximating specific media profiles, but
the differences are small. We therefore recommend
selecting among the three meshes on a per scene
basis, but since the difference is small, c-linear and
n2-linear profiles may be better choices due to their
more efficient boundary intersections.
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(a) ray curves, 7.3 fps (b) ray stepping (size 1.0), 6.92 fps (c) ray stepping (size 0.05), 0.22 fps

(d) photograph of superior mirage (e) diff. between (a) and (b) (f) diff. between (a) and (c)

(g) ray curves, 8.9 fps (h) ray stepping (size 1.0), 8.2 fps (i) ray stepping (size 0.05), 0.35 fps

(j) photograph of inferior mirage (k) diff. between (g) and (h) (l) diff. between (g) and (i)

Fig. 7: Same-quality/same-speed comparisons between curved and linear ray tracing, on visual benchmarks of
superior mirages V-SM (a-f) and inferior mirages V-IM (g-l) (see Section section6-1 for profile definitions). The
atmospheric media is modeled with an adaptive mesh of 28,313 tetrahedral cell, covering a physical volume of
50m×50m×400m. 512× 512 rays are traced from the viewer position for each image. (a,g) curved ray tracing
results, (d,j) photographs of similar phenomena, (b,h) same-speed comparison, the size of ray steps is chosen
to match the performance of curved ray tracing, (e,k) difference images, (c,i) same-quality comparison, the
size of ray steps is chosen to match the rendering quality of curved ray tracing, (f,l) difference images. The
curved ray tracer is more efficient than ray stepping when rendering at comparable quality. With same speed
comparison the artifacts from ray stepping are most visible in areas hit by curved trajectories. All frame rates
are measured with single CPU thread.
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Fig. 8: Approximation error of adaptive meshes. Approximating the stratified-plus-fluctuation (A-LU+F)
atmospheric profile using re-sampled points S containing 100× fewer points than the input profile, and the
unstructured mesh that we constructs (Section 4). (a) The positions of S color-coded by the index of refraction.
(b,c) The original and approximated index of refraction nG, ñG on a slice, respectively. (d) Absolute error,
|nG− ñG|. (e) Relative error Erel = ‖nG− ñG‖/‖nG‖ versus the number of resampled points in S. The original
grid has 2.09× 105 (128× 128× 128)points.

Fig. 9: Approximation error in ray tracing results. Given the same media profile (A-LU+F) and mesh in Figure
8, we visualize the resulting errors in ray hit point locations and travel distances along the ray. We use ray
stepping with decreasing step size until the ray tracing results converge, and we take the converged results
as ground truth.(a) 3D ray curves that we trace, (b) Absolute errors in ray hit point locations, (c) Absolute
errors in ray travel distances, (d) the relative error of travel distances decreasing with increasing number of
sample points in the adaptive mesh, similar to Figure 8(e).

Fig. 10: Compare to approximation error using octree. We approximate the stratified-plus-fluctuation (A-
LU+F) profile using octree, in comparison to the adaptive mesh approximation of our method, analyzed in
Figure 8. We build an octree given the same input media profile on a regular grid of 128× 128× 128 points,
using the same method as [17]. For the particular octree in (a-d) we use the threshold for differences in indices
of refraction δ = 0.003 and the threshold for differences in index gradients ε = 0.0003, to get similar numbers
of samples (26,923) as in the re-sampled points S. (a) The positions of centers of each octree cell, color-coded
by the index of refraction. (b,c) The original and approximated index of refraction nG, ñG on a slice. (d)
Absolute error, |nG − ñG|. (e) Relative error Erel = ‖nG − ñG‖/‖nG‖ versus the number of octree cells. The
original grid has 2.09× 105 points.
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Fig. 11: Acoustic propagation. We compute curved ray trajectories for Christmas and Desert benchmarks.
Both upward (A-LU+F) and downward refractive (A-LD+F) atmosphere are simulated. We trace 10K rays for
up to 3 surface reflections at 4.5 fps for Desert(m) and 3.8 fps for Christmas(m), respectively. Here we show
a representative set of ray paths for each scene and condition. The detailed performance results are listed in
Table 2.

(a) (b)

(c) (d) (e)

Fig. 12: Comparison between embedding and linking boundary surfaces with regard to the resulting meshes
and construction and traversal costs. (a) tessellation of surfaces impacts the sizes and quality of the constrained
mesh, the mesh quality reaches a high point (low mean aspect ratio) for surface tessellation that matches the
surrounding media sample density. (b) tessellation of surfaces impacts the sizes of quality meshes, which are
constrained meshes that are optimized to achieve a quality threshold. With quality constraints, the size of
the mesh is most compact when the surface tessellation matches the surrounding media sample density. (c)
tessellation of surfaces impacts the number of surfaces overlapping with each tetrahedral cell, which need to
be linked to those mesh cells. (d) average number of surface links in turn impacts the traversal performance.
(e) tessellation of surfaces impacts the construction time of both embedding and linking.
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(a) upwind over hill, gradient direction, Green-Gauss (b) upwind over hill, gradient direction, regression

(c) downwind over hill, gradient direction, Green-Gauss (d) downwind over hill, gradient direction, regression

(e) upwind, gradient magnitude,
regression

(f) diff. from Green-Gauss (g) downwind, gradient magni-
tude, regression

(h) diff. from Green-Gauss

Fig. 13: Gradient estimation. We adopted the regression-based gradient estimation method, which provides
better accuracy than Green-Gauss method such as used in [17]. For acoustic propagation, this additional
accuracy is important to avoid artifacts such as false caustics. Here we show side-by-side comparison between
the two methods of gradient estimation, applied on the A-UW and A-DW profiles (defined in Section 6.1 in the
paper). The regression method generally produces smoother gradients than Green-Guass in the comparison,
computed over the same mesh.
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(a)

(b)

(c)

Fig. 14: Comparisons of 3 analytic ray profiles: upward refractive atmosphere. With the A-LU+F profile
(defined in Section 6.1), we compute the same media profile in terms of c(sound speed), n(acoustic refractive
index, with reference c0 = 340m/s), and n2, visualized in the leftmost column of a,b,c, respectively. The
adaptive meshes constructed according to Algorithm 1 are shown in the rightmost column of a,b,c, with the
control parameters σ = 0.001, 0.35, 0.023, respectively. The control parameters are selected to achieve similar
level of approximation error (measured in n and visualized in the second column from right) in the interpolated
profiles over the three meshes. The resulting meshes have cell counts of 153867, 138965, 119670 respectively,
which are roughly on the same level, with the n2-linear profile producing slightly more compact mesh than
the other profiles.
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(a)

(b)

(c)

Fig. 15: Comparisons of 3 analytic ray profiles: downward refractive atmosphere. With the profile A-LD+F
defined in Section 6.1, we repeat the experiment in Figure 14. The equivalent media profiles in terms of n,
c, and n2 are shown in leftmost column in a,b,c, respectively. The adaptive meshes shown in the rightmost
column of a,b,c are constructed with the control parameter σ = 0.001, 0.3, 0.002 respectively, achieving similar
level of approximation error. The resulting meshes have cell counts of 133735, 177958, 130759 respectively. With
this downward refracting profile, the mesh sizes are still on the same level, with n2-linear profile producing
slightly more compact mesh than the other profiles.
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