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Abstract

We present an algorithm to accelerate resolution independent curve
rendering on mobile GPUs. The bottleneck for certain platform in-
dependent GPU implementations is in generating grayscale textures
on the CPU containing the amount that each pixel is covered by the
curve. In this paper, we demonstrate that generating a compressed
grayscale texture prior to uploading it to the GPU creates faster ren-
dering times in addition to the memory savings. We implement a
real-time compression technique for coverage masks and compare
our results against the GPU-based implementation of the highly op-
timized Skia rendering library. We observe up to a 2X speed im-
provement over the existing GPU-based methods in addition to up
to a 9:1 improvement in GPU memory gains. We demonstrate the
performance on multiple mobile platforms.

CR Categories: I.4.2 [Image Processing and Computer Vi-
sion]: Compression (Coding)—Approximate methods I.3.3 [Com-
puter Graphics]: Picture/Image Generation—Bitmap and Frame-
buffer Operations I.3.4 [Computer Graphics]: Graphics Utilities—
Software Support

Keywords: texture compression, coverage masks, 2D path render-
ing

1 Introduction

One of the main problems in computer graphics is the discretization
of continuous functions used to display objects at a finite resolution.
Improper discretization may lead to aliasing artifacts from insuffi-
cient sampling. In order to alleviate these artifacts, different tech-
niques have emerged for computing proper discretizations [Barros
and Fuchs 1979][Lane and M. Rarick 1983]. When rasterizing ge-
ometric objects, the main difficulty is determining what percentage
of a pixel is covered by the screen-space projection of the object.
This information, once calculated, can be stored in an image known
as a coverage mask. Coverage masks are usually stored as eight-bit
grayscale images and can be used in a variety of different ways
in order to speed up the rendering of geometric primitives, includ-
ing caching [Fiume et al. 1983] and GPU based rendering of 2D
curves [Google 2014].

Pixel coverage remains an instrumental part of computer graphics.
There are many applications where coverage masks are useful, from
culling [Zhang et al. 1997] to visibility determination for more ef-
ficient lighting [Kautz et al. 2004]. In this paper, we mainly focus
on coverage masks used in rendering non-convex piece-wise two-
dimensional cubic and quadratic curves, or paths, with anti-aliasing
(Figure 1). These curves are used in a majority of vector graphics
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Figure 1: (Top left) The piece-wise anti-aliased cubic curve used
as input. (Bottom Left) The final rendered curve. (Top right) The
uncompressed coverage mask passed to the GPU to determine the
amount each pixel is covered by the curve. (Bottom right) The com-
pressed coverage mask using our method. On the far right is a
zoomed in comparison of the compressed and uncompressed masks.
Although only a few pixels differ, using our method, these masks are
compressed in real time and save time and memory during the ras-
terization of these curves.

data, most importantly as the basis for resolution-independent text
rendering using different fonts and sizes. These coverage masks,
generated at run-time from network data such as web pages, are
used billions of times on a daily basis [StatCounter 1999-2014].
From a sampling of over 750,000 web pages, we have observed that
51% draw arbitrary paths of which 19% are anti-aliased requiring
dynamically generated textures. Of the paths that require coverage
information, most of the web page rendering time is spent drawing
the coverage mask of the path on the CPU prior to uploading it to
the GPU.

In this paper, we show that coverage masks generated at run-time
by the CPU can be compressed efficiently for GPU-based rendering
with little loss in rendering fidelity. We present a way to augment
the scan conversion process of non-convex path rendering to di-
rectly output compressed textures for use on the GPU. We demon-
strate encoding into a variety of different compression formats in
order to show applicability to a widespread range of commodity
graphics hardware. In particular, we show that even with general
32-bit hardware, efficient coverage mask compression can be per-
formed to target the DXTn, ETC, and ASTC texture compression
formats [Iourcha et al. 1999][Ström and Pettersson 2007][Nystad
et al. 2012]. Finally, we demonstrate a speedup of up to 2X in ren-
dering speed using compressed coverage masks on current mobile
platforms (e.g. tablets and smart phones). This savings in rendering
speed is in addition to the GPU memory gains of 2X up to 9X de-
pending on the compression format. Our method is integrated into
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the Skia1 two-dimensional rendering library [Google 2014]. This
library is the rendering backbone in the popular Google Chrome
and Mozilla Firefox web browsers currently being used by billions
of people [StatCounter 1999-2014]. Additionally, we test our re-
sults against a suite of benchmarks, correctness tests, and web-page
data. Overall, our approach aligns well with the current hardware
and software trends. The mobile GPU market is growing at a con-
siderable rate with more than a billion sales per year [Shebanow
2014]. To address this trend and develop higher performance on
mobile GPUs, hardware vendors are developing more aggressive
compression formats that are designed specifically for GPUs [Nys-
tad et al. 2012]. In particular, energy savings during rendering are
becoming more important. Using a few extra CPU operations in or-
der to decrease the texture bandwidth by 2-3X likely produces sig-
nificant energy savings for texture-heavy mobile applications. Tex-
ture memory accesses are almost three orders of magnitude more
expensive than standard ALU operations [Shebanow 2014]. Our
method for compressing coverage masks leverages these trends and
becomes increasingly useful as hardware advances.

The rest of the paper is organized as follows. Section 2 gives an
overview of recent work in coverage masks and compression for-
mats. Section 3 presents our scan conversion algorithm used dur-
ing rasterization, and the various compression formats used to store
grayscale coverage information. We highlight the performance of
our algorithm on various mobile devices in Section 4. Finally, we
present conclusions, limitations, and future work in Section 5.

2 Background

In this section, we give a brief overview of prior work on coverage
masks, GPU-based vector graphics, and texture compression.

2.1 Coverage Masks

One of the major problems in computer graphics has been to deter-
mine the amount that geometry covers a given pixel during rasteri-
zation [Barros and Fuchs 1979][Fiume et al. 1983]. This problem,
also known as pixel coverage, is used to reduce aliasing artifacts
caused by the discrete nature of our display devices and memory
layouts. More recently, coverage masks have been used for more
than simply anti-aliased rasterization. Zhang et. al. [1997] use oc-
clusion maps, a variation of coverage masks, to quickly cull ge-
ometry during the rendering of large scenes. Kautz et. al. [2004]
use coverage masks to cache hemispherical visibility information
in order to perform efficient self-shadowing of objects. Coverage
information has also been used to accelerate shading operations in
the GPU pipeline, although these methods are more suited to hard-
ware implementations than software [Aila et al. 2003][Fatahalian
et al. 2010].

Coverage masks are used extensively to render 2D images from ge-
ometric primitives. In particular, coverage information is necessary
when rasterizing anti-aliased polygons independent of the color and
shading information. In order to render these polygons, first the
pixel coverage mask is generated, and then the color of the poly-
gon is modulated by the intensity of the pixel in the coverage mask.
This technique is used in the 2D rendering library Skia [Google
2014] for GPU rasterization of non-convex anti-aliased paths.

2.2 GPU-based Vector Graphics

Resolution-independent rendering is important for many objects in
graphics such as the arbitrary cubic and quadratic curves used to

1https://sites.google.com/site/skiadocs/home

Figure 2: A piece-wise quadratic curve is filled with green using
the Loop-Blinn method. The pixels (pink) whose centers are not
covered by the triangles circumscribing the curve will not be drawn
if the GPU is not using a hardware anti-aliasing method. For power
constrained GPUs, such as those on mobile devices, MSAA is pro-
hibitively expensive due to the large number of fragment shader
invocations. When the curve is non-convex, it is often more cor-
rect to default to software rendering of the pixel coverage in these
situations.

represent glyphs in most modern fonts. Until recently, these curves
have been rendered using software rasterization algorithms. Given
the recent advances in GPU development, there has been consid-
erable groundbreaking work to use GPUs to perform resolution-
independent rasterization [Loop and Blinn 2005][Kilgard and Bolz
2012][Qin 2009]. As pioneers in this work, Loop and Blinn [2005]
devised a method to rasterize Bézier curves by assigning values to
the texture coordinates of triangles derived from the control points
of the curve. These values were used to calculate the distance from
the curve in the given triangle, which was used for proper anti-
aliasing. Kokojima [2006] improved the efficiency of this method
by exploiting the stencil buffer. Qin [2009] presented a method to
exploit the texture storage of a graphics processor to store curve
information using approximate circular arcs. Finally, Kilgard and
Bolz [2012] describe an approach that transmits control points di-
rectly to the GPU to render the curve. Although this method renders
vector graphics very quickly, it requires additional proprietary hard-
ware features. Further approaches using signed distance fields have
been used by Green [2007] for artist generated vector graphics.

2.3 Anti-Aliasing Non-Convex Curves

Despite recent advances in using GPUs to accelerate vector graph-
ics rasterization, certain classes of vector graphics still remain slow
on mobile hardware. Of the techniques mentioned in Section 2.2,
the Loop-Blinn method is among the fastest techniques for render-
ing resolution-independent vector graphics from arbitrary path data.
The GPU-based method introduced by Kilgard and Bolz [2012]
builds upon the Loop-Blinn method by implementing a conser-
vative approach to determining coverage information in hardware.
Most notably, as shown in Figure 2, for paths that generate smooth
curves but are comprised of multiple control points, the triangles
that conjoin quadratic and cubic pieces of a curve may not cover all
necessary pixels. When these triangles are rasterized by the GPU,
the centers of some pixels covered by the path may not be covered
by the triangles. For GPUs that do not support hardware-based anti-
aliasing, or where such anti-aliasing is too expensive due to power
constraints, pixels that should have partial coverage from the path
will not be drawn. This can cause aliasing artifacts when rendering
curves whose details are on the order of a single pixel.
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To support many different use-cases, the 2D rendering library Skia
chooses different rendering paths dependent on the path being ren-
dered. For non-convex paths without anti-aliasing, Skia approxi-
mates a path using line segments and then uses their endpoints as
input to a triangle fan drawing both front and back facing triangles.
Using the stencil buffer, pixels can be turned on or off based on
whether they are inside or outside the path. However, line segments
create significant aliasing artifacts during rendering, and this tech-
nique cannot be used for anti-aliased paths.

To perform anti-aliasing, in certain cases Skia uses the Blinn-Phong
method followed by extruding the triangles along the normal to the
path by the amount required to cover all of the pixels covered by the
path. However, for general non-convex paths, this presents artifacts
in areas where the extruded polygons of two different curves over-
lap leading to double-blending and incorrect pixel coverage. As a
result, the GPU-based renderer in Skia draws the coverage informa-
tion in software prior to uploading the resulting grayscale texture to
the GPU for shading. This rendering algorithm used to support the
use of GPUs can become a significant bottleneck during the ren-
dering of anti-aliased concave paths [Google 2014]. In this paper,
we show that the grayscale coverage information can be efficiently
compressed to a texture format (Section 2.4) thereby significantly
increasing the speed at which it is uploaded to the GPU.

2.4 Texture Compression Formats

Over the past few decades, there has been significant research
into texture representations in GPU memory. The main restric-
tions to texture representation formats were outlined by Beers et
al. [1996] as random access and hardware-based decompression.
Real-time decoding is supported in modern GPUs, though the per-
formance of the encoding step remains problematic [Krajcevski
et al. 2013]. Over the years, many new compression formats have
emerged offering quality versus performance trade-offs [Iourcha
et al. 1999][Ström and Pettersson 2007][Nystad et al. 2012].

One of the earliest texture compression formats introduced in com-
modity graphics hardware was the DXTn family of compression
formats [Iourcha et al. 1999]. Variations of this format have been
implemented in hardware to support grayscale textures and tex-
tures with alpha. Subsequently, Ström and Akenine-Moller intro-
duced ETC1, a texture compression format that uses scale and off-
set factors from look-up tables to reconstruct pixel values [Ström
and Akenine-Möller 2005]. A few years later, Ström and Petterson
introduced ETC2, which improved upon ETC1 by allowing invalid
bit combinations to encode a wider range of pixel values [Ström
and Pettersson 2007]. Single channel variations have also been in-
troduced, but their adoption has not reached commodity graphics
hardware [Wennersten and Ström 2009]. Nystad et. al. [2012] re-
cently unveiled ASTC, which allows encoders to choose between
a variety of compression methods and a variable bitrate from eight
bits per pixel down to 0.89 bits per pixel. Although this flexibility in
the compression format allows a large quality versus compression
size trade-off, developing real-time encoders for ASTC remains dif-
ficult.

3 Compressed Scan Conversion

In this section we describe our technique for encoding the coverage
information into a GPU-based compressed texture format. Given
a piece-wise two-dimensional curve, or path, we augment the scan
conversion algorithm on the CPU for generating coverage informa-
tion. Our formulation is based on the assumption that the time spent
writing the encoded coverage information into a GPU-specific for-
mat can be recovered during the time it takes to upload the texture
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Figure 3: The different stages in GPU-based rendering of filled 2D
regions using coverage masks. The only part that takes place on
the GPU is the compositing. Our contribution is the stage outlined
in red, where compressed textures are generated directly from the
RLE coverage information. In doing so, we avoid both writing a full
resolution texture into CPU memory and uploading a full resolution
texture to GPU memory, providing savings on both ends.

to the GPU. Even if the time saved by uploading a compressed rep-
resentation is lost during the encoding step, we still gain memory
savings from using compressed textures.

The input to our algorithm is a list of 2D curves defined using
Bézier control points. From this list, our goal is to generate an accu-
rate two-dimensional grid of pixels that best approximate the curve
along with a specified paint. The paint determines the color and
opacity of the pixels that are covered by the curve along with any
other special operations such as anti-aliasing and gradient dither-
ing. For pixels that are partially covered, they will be painted pro-
portional to the amount that they are covered by the path. In a
GPU-based rasterization pipeline, the coverage information is first
generated and then used as a texture along with the paint to write to
the framebuffer.

There are two operations commonly used for rasterizing paths.
First, the path may be filled such that a single color is painted within
the bounds defined by the path. In this case, the coverage informa-
tion in conjunction with the paint opacity is used to determine how
much of that color should be blended with the background color.
If the path is being rendered using the GPU, the coverage informa-
tion must be uploaded as a texture prior to determining the final
color and blending. The other operation, known as stroking, draws
an outline of a given thickness along the path. In this case, the Skia
library computes a new path along the outline of the stroke. Render-
ing this new path filled with the stroke color is identical to rendering
the original stroked path. We restrict our formulation to non-convex
paths. Convex paths can be efficiently drawn on GPUs by using
a triangle fan in conjunction with the stencil buffer in a modified
Loop-Blinn method described in Section 2.2 [Google 2014].

The texture uploaded to the GPU is the image that stores the pixel
coverage information. We proceed by first describing a variety of
compression methods that we use to encode grayscale information
on commodity graphics hardware. We then describe how we aug-
ment the scan conversion process to rows of compressed texture
data.

3.1 Compression Formats

Due to the large schism of hardware support for various texture
compression formats, our goal is to develop an approach that is
portable between different GPUs. Decoding algorithms tend to be
relatively simple because of the necessity of hardware-based im-
plementations of GPU-encoded textures. Our encoding algorithm
exploits this simplicity inherent in all compression formats. As de-
scribed in Section 3.2, neighborhoods of pixels in coverage masks
usually contain either fully transparent or fully opaque pixels. This
allows us to precompute many of the parameters for our compres-
sion formats prior to the actual encoding. However, the reconstruc-
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tion of the coverage information from these formats is necessarily
lossy, due to the nature of the random access constraints. The fol-
lowing is a detailed overview of the algorithm applied to the DXTn,
ETC2, and ASTC families of compression formats.

3.1.1 DXTn

In the DXT family of texture compression formats, introduced by
Iourcha et. al. [1999], 4 × 4 pixel blocks are encoded by stor-
ing two pixel values per block and a two-bit index per pixel. The
two separate pixel values stored in the block generate a palette of
colors from which the per-pixel index selects the final color. The
palette is based on intermediate values chosen by linearly interpo-
lating the two stored pixels. For coverage information, we use the
DXTn format designed specifically for grayscale known as LATC,
or Luminance-Alpha Texture Compression (also known as RGTC,
3DC, and BC4). This format supports two eight-bit grayscale val-
ues and sixteen three-bit index values per pixel for a total of 64 bits
per block, giving a compression ratio of two-to-one for grayscale
images. In order to reach the full range of grayscale values, we store
0 and 255 as endpoints for our coverage mask. Due to the indexing
scheme of DXTn, the mapping of coverage values to interpolation
indices can not be directly taken from the high three bits of each
coverage value. We first quantize each grayscale value to three bits
such that their reconstruction into eight bits by bit replication mini-
mizes the error from the original grayscale value. Once these three
bits are computed, we must use a mapping from the quantized bits
to the proper DXTn indices

0, 1, 2, 3, 4, 5, 6, 7→ 1, 7, 6, 5, 4, 3, 2, 0.

This mapping can be performed without branches on commodity
hardware using eight bits per index. If we treat each block row as
four 8-bit grayscale values, we can store an entire block row in a
single 32-bit register. Furthermore, 32-bit integer operations can be
used to perform byte-wise SIMD computations without requiring
special SIMD hardware.

3.1.2 ETC2

One variant of the ETC2 compression format is a table-based com-
pression algorithm that takes 4 × 4 blocks of grayscale pixels, and
reconstructs 11-bit grayscale values from 64-bit encoded data, giv-
ing a two-to-one compression ratio similar to DXTn. The procedure
by which the coverage value for pixel ci is reconstructed is

ci = b× 8 + 4 + (Tv)ti × 8,

where the encoded data stores an 8-bit base codeword b, a 4-bit
multiplier m, a 4-bit modulation index v, and sixteen 3-bit indices
ti. T is a table containing sets of modulation values constant across
all the encodings. This table has sixteen entries, indexed by v. Each
ti selects a final modulation value from the set Tv . The result ci is
then clamped to the range [0, 2047].

To compress the grayscale coverage information, we first fix val-
ues for v, b, and m such that they generate the tightest bounds to
the entire range of grayscale values. We compute these values by
performing an exhaustive search through all possible combinations
of v, b, and m offline. In order to compress the coverage informa-
tion, we perform a quantization to three bits as described in Sec-
tion 3.1.1. However, due to the indexing method of ETC2, we must
use a different mapping

0, 1, 2, 3, 4, 5, 6, 7→ 3, 2, 1, 0, 4, 5, 6, 7.

This mapping is also admits the same implementation advantages
as DXTn.

3.1.3 ASTC

Finally, we demonstrate fast compression of our coverage informa-
tion using the ASTC format introduced by Nystad et. al [2012].
This format has a variable block size that must be chosen prior to
compression, and we have noticed that even at the highest com-
pression rate, 12 × 12, rendering artifacts were negligible. This
is possible due to the high compressibility resulting from the low
entropy of the coverage mask described in Section 3.2.

ASTC encoded blocks may choose from many different compres-
sion options. One such option is whether or not to partition the
block into separate subsets of pixels with different compression pa-
rameters. Similar to DXTn and ETC2, ASTC uses per-pixel indices
to reconstruct the block of pixels. However, there may be fewer
indices than pixels, in which case the indices are stored in a grid
and interpolated across the block. Finally, similar to DXTn, ASTC
reconstructs pixels by using generated indices to lookup palette en-
tries. However, ASTC allows the block encoding to choose how
many bits are allocated towards endpoint representation versus in-
dex representation.

In order to maximize the fidelity of the ASTC compressed coverage
mask, we outline a list of the choices that we made for each 12×12
block of pixels. The main insight is to maximize the number of
pixel index values and their bit depth. We are able to maximize
the index size because the endpoints must cover the full range of
grayscale values and hence require very few bits. For this reason,
we are able to generate a valid ASTC encoding using the following
choices:

• 6 × 5 texel index grid to maximize the number of samples in
a 12× 12 pixel block

• Three bits per texel index

• Single plane encoding (redundant due to single-channel in-
put). This is chosen because we do not use multi-channel pix-
els

• Only one color endpoint mode: direct luminance

• Single partition encoding with two 8-bit endpoints: 0, 255

Using these constants for all coverage information, there is no spe-
cial need for the base-three and base-five integer sequences sup-
ported by ASTC [Nystad et al. 2012]. Since we know the dimen-
sions of the grid versus the dimensions of the block size, we can
precompute the amount that each pixel contributes to each index,
and store this in a look-up table. During compression, for each
texel grid index we store the top three bits of a weighted average
of the pixels that are affected by the index. The final result is 144
grayscale pixels compressed into 128 bits, providing a compression
ratio of nine to one. Although compression of ASTC is slower than
DXTn and ETC2, the generated compressed textures are signifi-
cantly faster to load into GPU memory.

3.2 Scan conversion

From a given path, coverage information for each pixel is computed
by sampling the path N times per pixel, commonly N = 16 with
the samples arranged in a regular grid (Figure 4). Each sample is
applied a boolean value bi ∈ {0, 1} such that the final coverage for
a given pixel in image I is

I(x, y) =
1

N

N∑
i=1

bi.
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Figure 4: Sparse run length encoded (RLE) buffers. These buffers
are used to store the coverage information for a row of pixels prior
to writing them into the coverage mask. For each pixel row, the
RLE buffer is allocated to contain as many RLE entries as there
are pixels. The scan converter operates on rows of super-sampled
pixels, shown here as a 4 × 4 grid within each pixel, and updates
the corresponding RLE buffer. In this figure, the blue entries con-
tain the number of runs of the corresponding pixel value. Grey en-
tries are uninitialized and never written to nor read. Samples which
contribute to the coverage of the red curve are drawn in blue and
samples that are uncovered are drawn in black.

DXTn

ASTC

ETC2 M = 4

Figure 5: Our scan conversion pipeline augmented to output GPU-
compressed blocks. For M × M compressed block sizes, our
pipeline operates on M sparse RLE buffers in parallel (Figure 4).
OnceM columns are processed, they are compressed into the target
compressed format. For a given column, we read from the entries
in the associated sparse RLE buffers. If any of the row values have
changed, we update the corresponding pixel for the current column
(outlined in red). Otherwise, we simply copy the previous column.
For 8-bit coverage values and 4x4 compressed block sizes, each
column fits in a single 32-bit register.

For a value corresponding to N = 16, this implies that I can take
up to 17 possible values for any (x, y) ∈ N×N.

In a scanline of samples, the edges of the curve can be computed
analytically in order to properly set the corresponding bi. As shown
in Figure 4, the per-pixel coverage information, i.e. the number of
samples covered by the path, is stored in a sparse run-length en-
coded (RLE) buffer. This buffer is updated for each new scanline
of samples within a row of pixels. The sparsity of the buffer pre-
vents unnecessary allocation when an initial scanline of samples
is altered by a subsequent scanline. In this situation, the samples
within a pixel may be identical in the first scanline of samples but
different in the second.

The pixels containing intermediate values, i.e. those that are neither
fully opaque (covered) or transparent (uncovered), are only found
along the boundaries of the 2D path. For this reason, a majority of
the pixels in a coverage mask take extremal values (0 or 255) and
very few, along the edges of the path, tend to have intermediate val-
ues. This means that most of the image can be stored as a binary
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Figure 6: Performance improvements using compressed textures on
a variety of different benchmarks. Two of the tests performed were
on tablet versions of popular websites. The Google Spreadsheets
benchmark data was gathered from the desktop version of the site
using many stroked paths. The other two were the vector images in
Figure 7.

image, producing an entropy close to one [Shannon 1948]. This ex-
tremely low entropy property of coverage masks makes them highly
compressible.

In order to generate compressed textures, we must adhere to the
random access requirements in texture representations. Random
access ensures the renderer that it has access to all pixels regardless
of when they are needed. This requirement implies a fixed block
size for each compression format: 4 × 4 for DXTn and ETC, and
12 × 12 for ASTC. Once a scanline of pixels is computed, it can
be stored in a row of an 8-bit grayscale texture. We generate com-
pressed representations of the grayscale textures by consuming M
rows of run-length encoded data at a time, where M is the dimen-
sion of the (square) block size of the texture compression format.
As shown in Figure 5, we read the leftmost column of grayscale
values and update the corresponding byte as we walk down our M
RLE buffers. At each step, we advance to the column with the ear-
liest ending run length. Once we advance past M columns, we effi-
ciently compute a compressed representation of the M ×M block
that we have read from the RLE buffers, as described in Section 3.1.
For the most common case, M = 4, the four grayscale values are
represented as a 32-bit integer, and we can perform SIMD byte-
wise operations using integer shifts and adds. As an optimization,
if we advance the current column farther than M pixels at once due
to the RLE encoding, we can copy the previous block encoding into
its neighbor to the right.

4 Results

To test our results, we have integrated our real-time compression
pipeline into the 2D graphics library Skia [2014]. This library is
used as the backbone to many cross-platform 2D programs and op-
erating systems including Android, Google Chrome, and Mozilla
Firefox. In order to maintain performance and regression tests
across all platforms, Skia includes two types of comprehensive
tests. For any given change to the implementation, Skia tests the
new rendered image against existing baseline images. If any pix-
els differ by a significant amount, these tests fail and the change
is invalid. The second test measures performance against a suite
of microbenchmarks and a suite of rendering commands that are
invoked during the rendering of common web pages. In order for
these tests to pass, their running time must be within a small thresh-
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Mobile Platform CPU GPU Uncompressed Compressed Texture
Format

Memory
Benefit

Moto X 1.7 GHz Qualcomm Krait Qualcomm Adreno 320 163ms 137ms ETC2 2:1

Galaxy Note 3 1.9 GHz ARM Cortex-A15 ARM Mali-T628 171ms 161ms ETC2 2:1

HTC One M8 2.3 GHz Qualcomm Krait 400 Qualcomm Adreno 330 114ms 102ms ETC2 2:1

Galaxy Note 10.1 1.9 GHz ARM Cortex-A15 ARM Mali-T628 171ms 136ms ASTC 9:1

Galaxy S5 1.3 GHz ARM Cortex-A7 ARM Mali-T628 311ms 157ms ASTC 9:1

Table 1: The rendering times for the polygon benchmark (Figure 7) from Skia using both compressed and uncompressed texturing on a variety
of CPU/GPU combinations. The polygon benchmark generates a large sequence of thin, concave polygons and stores them as piece-wise
2D paths on the GPU. These polygons are then both stroked and filled to generate a large amount of paths that must be rasterized. From
these results, we notice an increase in rendering speed of the heavily optimized Skia library on all mobile devices. Most importantly, the
increase in memory efficiency from ETC2 (2:1 ratio) to ASTC (9:1 ratio) provides significant improvements in rendering time. These results
were generated from the mean runtime of 100 executions.

old of the previously passed test. In each of our examples, we have
maintained both correctness and performant code with respect to
the existing implementations.

First, we must show that our implementation runs fast on modern
hardware. In Figure 6, we show different classes of benchmarks
that have been run on a variety of different mobile GPUs. In each
case, we see a general increase in the rendering speed of certain web
pages and common vector graphics benchmarks. As we can see, the
desktop GPU does not receive as much of a benefit from the com-
pression routine as the mobile GPUs. The authors speculate that
mobile GPUs are more sensitive to transmitting large amounts of
data from the CPU to the GPU due to power restrictions and hence
receive more benefits. Mobile GPU performance increases are bet-
ter demonstrated in Table 1 where various mobile GPUs render the
polygon image (Figure 7) from the Skia performance tests. From
this table, we observe that both CPU speed (Galaxy Note 10.1 vs
Galaxy S5) and compression ratio (Galaxy Note 10.1 vs Galaxy
Note 3) play a vital role in rendering performance on mobile de-
vices.

In order to test correctness, we perform both a visual comparison
against the reference images (without compression) and measure
the difference using the Peak Signal to Noise Ratio, or PSNR:

PSNR = 10 log10

(
3× 2552 × w × h∑

x,y

(
∆R2

xy + ∆G2
xy + ∆B2

xy

))

In Figure 8, we compare the various use cases of rendered paths and
the difference in their rendering. We observe that only pixels along
the borders of the paths are affected by the compression scheme.
This homogeneity in the coverage masks is the primary reason why
they are highly compressible. From the zoomed in comparisons,
we notice that there is little to no quality loss in the final images.
However, the pixels that differ do so by a non-trivial amount. This
difference causes the relatively low PSNR values calculated for the
images.

From the performance and quality results, we observe a benefit to
compressing coverage masks prior to usage, with little visible loss
in quality. The method described in Section 3 that yields these
results relies heavily on 32-bit integer operations but is otherwise
portable to a wide variety of platforms. These performance met-
rics also do not take into account the possible benefits from multi-
threading approaches. Although these methods are highly paral-
lelizable, the main benefit is reducing the latency of uploading the
coverage masks to the GPU. Hence, any GPU compression method
that would require the data uploaded prior to compression would
lose this benefit. However, if the coverage information is gener-

ated on the GPU, then our method could be used to compress the
mask very quickly using only a handful of low-latency integer op-
erations.

5 Conclusion, Limitations, and Future Work

In this paper we have shown that coverage masks used for ren-
dering 2D anti-aliased non-convex paths are perfect candidates for
real-time compression. Their low-entropy properties make com-
pression algorithms very efficient and the masks themselves highly
compressible. We have also shown that these masks can be com-
pressed in real-time often speeding up the rendering of 2D curves
and saving valuable GPU memory.

Limitations: Although the coverage masks can be compressed ef-
fectively, GPU-based methods for rendering arbitrary 2D-curves
with anti-aliasing are still inferior to their CPU-based counterparts.
In general, generating the coverage mask is by far the most expen-
sive operation of the rasterization procedure. During CPU-based
rendering, the rasterizer can perform the shading directly from the
RLE buffer discussed in Section 3.2. This limitation can be ob-
served from the time it takes to run the polygon benchmark from
Table 1 on different platforms using the software renderer:

Rendering time for convex path benchmark strokedrects
Platform GPU CPU

Moto X 6.9 µs 37.6 µs

Galaxy Note 10.1 3.76 µs 15.5 µs

Rendering time for non-convex path benchmark polygon
Platform GPU CPU

Uncompressed Compressed
Moto X 163ms 137ms 83ms
Galaxy Note 10.1 171ms 136ms 46ms

However, many of the applications that require 2D rendering op-
erate on many more primitives than non-convex 2D curves. In the
table above, the GPU-based convex path rendering operation still
outperforms its CPU counterpart. For this reason, it is advanta-
geous to use a GPU-based framebuffer. As such, our method pro-
vides benefits to the least efficient aspect of GPU-based resolution
independent graphics rendering.

Future Work: We have shown that coverage masks are very
amenable to compression. Due to the very high fidelity of the
rendered images even at the highest available compression ratios
(12×12 ASTC) there is ample room for even more aggressive com-
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Uncompressed
Image Min Median Mean Max σ

Tiger 95.3ms 96.6ms 97.8ms 109ms 3ms
Chalkboard 358ms 370ms 371ms 473ms 5ms
Car 368ms 385ms 385ms 403ms 2ms
Crown 121ms 127ms 137ms 200ms 15ms
Dragon 92ms 94.3ms 96ms 140ms 7ms
Polygon 149ms 152ms 154ms 208ms 5ms

Compressed
Image Min Median Mean Max σ

Tiger 81ms 83ms 83ms 93ms 2ms
Chalkboard 339ms 349ms 350ms 495ms 5ms
Car 364ms 387ms 386ms 424ms 3ms
Crown 106ms 109ms 111ms 168ms 9ms
Dragon 87ms 92.2ms 101ms 156ms 19ms
Polygon 133ms 134ms 137ms 194ms 7ms

Figure 7: Rendering times and resource use of the following images
on a first generation Moto X (1.7 GHz Qualcomm Krait, Qualcomm
Adreno 320) from 100 runs. From left to right the images are la-
beled Tiger, Chalkboard, Car, Crown, Dragon, Polygon.

pression formats. Encodings that support block dimensions up to 32
or 64 may still produce nice results. The compression algorithms
in Section 3.2 can be extended to support even better compression
ratios, which will increase both the rendering speed and memory
usage. Another direction for research is the ability to generate cov-
erage information on the GPU itself. If such a technique existed, the
compositing procedure using the coverage mask could be done at
the same time as generating the coverage information itself. How-
ever, if the coverage mask were generated on the GPU and then
used as input to a second compositing pass, compressing the GPU-
generated coverage masks using this technique would incur trivial
cost. Due to the random-access restrictions of compressed texture
formats, they are perfect candidates for massively parallel encod-
ing. Furthermore, to combat the original artifacts from the Blinn-
Phong method, conservative rasterization may be used to cover ev-
ery pixel touched by the bounding triangles [Akenine-Möller and
Aila 2005]. Such a solution could eliminate the need for CPU-side
rendering entirely.
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