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Abstract

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder that has 

recently seen serious increase in the number of affected subjects. In the last decade, neuroimaging 

has been shown to be a useful tool to understand AD and its prodromal stage, amnestic mild 

cognitive impairment (MCI). The majority of AD/MCI studies have focused on disease diagnosis, 

by formulating the problem as classification with a binary outcome of AD/MCI or healthy 

controls. There have recently emerged studies that associate image scans with continuous clinical 

scores that are expected to contain richer information than a binary outcome. However, very few 

studies aim at modeling multiple clinical scores simultaneously, even though it is commonly 

conceived that multivariate outcomes provide correlated and complementary information about the 

disease pathology. In this article, we propose a sparse multi-response tensor regression method to 

model multiple outcomes jointly as well as to model multiple voxels of an image jointly. The 

proposed method is particularly useful to both infer clinical scores and thus disease diagnosis, and 

to identify brain subregions that are highly relevant to the disease outcomes. We conducted 

experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and showed that 

the proposed method enhances the performance and clearly outperforms the competing solutions.
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I. Introduction

Alzheimer's disease (AD), characterized by progressive impairment of cognitive and 

memory functions, is an irreversible neurodegenerative disorder and the leading form of 

dementia in elderly subjects. The number of affected subjects increases significantly every 

year, and is projected to be 1 in 85 by the year 2050 [1]. Amnestic mild cognitive 

impairment (MCI) is often a prodromal stage to AD, and individuals with MCI may convert 

to AD at an annual rate of as high as 15% [2]. There has been a vast body of literatures 

studying AD and MCI using one or more neuroimaging technologies (modalities), including 

magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), 

positron emission tomography (PET), diffusion tensor imaging (DTI), among many others.

The majority of AD/MCI studies have been concentrating on differentiating AD and MCI 

subjects from the general population, because an accurate diagnosis of AD and MCI is 

particularly important for timely therapy and possible delay of the disease. This can be 

formulated as a classification problem, and a variety of statistical machine learning 

techniques have been employed for imaging-based diagnosis. See [3]–[5] for some excellent 

reviews. Moreover, in addition to classifying a binary or categorical disease outcome given 

brain image scans, there were studies establishing associations between image activity 

patterns and a continuous clinical outcome. A variety of cognitive and memory scores have 

been used as the response, including the Mini-Mental State Examination (MMSE) [6]–[9], 

Boston Naming Testing [9], Dementia Rating Scale, Alzheimer's Disease Assessment Scale-

Cognitive Subscale (ADAS-Cog), and Auditory Verbal Learning Test [8].

More recently, there have emerged studies that associate image scans with multiple clinical 

outcomes [10], [11]. Our motivating data example consists of 194 subjects from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI), among which 93 are AD patients and 

101 healthy controls. For each subject, the collected data include a 32 × 32 × 32 MRI scan, 

after proper preprocessing and downsizing, and two clinical scores. One is the MMSE, 

which examines orientation to time and place, immediate and delayed recall of three words, 

attention and calculation, language and visuo-constructional functions [12]. The other is 

ADAS-Cog, which is a global measure encompassing the core symptoms of AD [13]. The 

ADAS-Cog is usually more sensitive, but requires more than 30 minutes for participants to 

complete all tasks. In contrast, the administration of MMSE takes only 10–15 minutes and 

thus is often used for fast screening for dementia. While both can be used to measure the 

severity of cognitive impairment, the scores of MMSE and ADAS-Cog carry, respectively, 

“local” and “global” information with respect to the cognitive capability, given the fact that 

the examination in MMSE is conducted on more specific tasks than in ADAS-Cog. 

Furthermore, recent studies have shown that the two scores are correlated, as they reflect on 

similar cognitive aspects such as orientation and memory [8], [14]. In these regards, it is 

beneficiary to jointly consider these scores in AD/MCI studies. Our aim in this article is to 

jointly model multiple clinical outcomes given brain structural patterns, under the belief that 

the multivariate scores provide correlated and complementary information.

Whereas there is an enormous body of statistics literature on modeling multivariate 

predictors, there have been much fewer works on modeling multivariate responses. Some 
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popular multi-response solutions include partial least squares [15]–[17], canonical 

correlations [18], reduced-rank regressions [19]–[21], sparse regressions with various 

penalties [22]–[24], and sparse reduced-rank regressions [25]. All existing multi-response 

modeling methods universally treat the predictors as a vector and estimate a corresponding 

vector of coefficients. However, in neuroimaging analysis, the predictors take a more 

complex form of multi-dimensional array, a.k.a. tensor. Naively turning an array into a 

vector would result in extremely high dimensionality. For instance, a 32 × 32 × 32 MRI 

image would imply 323 = 32,768 parameters. Moreover, vectorizing an array would also 

destroy all the inherent spatial structural information of the image.

In this article, we propose a sparse multi-response tensor regression model to simultaneously 

infer multiple outcome variables and to identify brain subregions that are highly relevant to 

the clinical outcomes. A schematic overview of our proposed method is given in Fig. 1. The 

new method enjoys a number of appealing features. First, it models the multiple responses 

jointly rather than separately, by employing a penalty function accounting for correlated 

multivariate responses while inducing group sparsity. Second, the new method models brain 

image predictor in the form of a tensor rather than a vector. This is achieved by extending 

and generalizing a recent proposal of tensor predictor regression [26]. Directly modeling a 

tensor image predictor takes into account spatial correlations among the voxels, and is 

intuitively superior than the one-voxel-at-a-time modeling solution that ignores such 

correlations. This extension, however, is far from trivial, since [26] only considered a 

univariate response, and our proposal for multi-response requires a new form of penalty and 

a new optimization algorithm. Third, our method offers a competitive alternative to the 

common modeling strategy in neuroimaging literature that first groups individual voxels by 

predefined regions of interest (ROI) and then extracts a vector of useful features from ROIs. 

By contrast, our solution does not rely on any prior knowledge of ROIs but derives highly 

relevant features suggested directly by the data. Moreover, instead of conducting feature 

extraction and association modeling at two separate steps, our method simultaneously 

derives relevant features and builds their association with the outcomes. Last but not least, 

we develop a highly scalable computational algorithm that makes our method applicable to a 

range of massive imaging data.

II. Materials

A. Subjects

We analyzed a dataset from the ADNI database (http://adni.loni.usc.edu/). The data included 

93 subjects with mild AD and 101 normal controls (NC), and each subject had both MMSE 

and ADAS-Cog scores recorded. The subjects were in the age between 55 and 90, with a 

study partner, who provided an independent evaluation of functioning. All of 194 subjects 

met the following general inclusion criteria: (a) NC subjects: an MMSE between 25 and 30 

(inclusive), a clinical dementia rating (CDR) of 0, non-depressed, non-MCI, and non-

demented; (b) mild AD subjects: an MMSE score between 18 and 27 (inclusive), a CDR of 

0.5 or 1.0, and met the National Institute of Neurological and Communicative Disorders and 

Stroke and the Alzheimer's Disease and Related Disorders Association (NINCDS/ADRDA) 

criteria for probable AD. The AD and NC groups were matched in age (with the two-sample 
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t-test p-value = 0.68) and gender (with the two-sample proportion test p-value = 1.00). Table 

I presents the demographic characteristics of the subjects.

B. Preprocessing

All anatomical MRI data in this study were acquired using 1.5T scanners. The baseline MRI 

data were downloaded from ADNI in the neuroimaging informatics technology initiative 

(NIfTI) format, which had already been processed for spatial distortion correction caused by 

gradient nonlinearity and B1 field inhomogeneity. We further performed prevalent 

preprocessing procedures on all images, including Anterior Commissure-Posterior 

Commissure (AC-PC) correction, skull-stripping, and cerebellum removal. Specifically, for 

the AC-PC correction, we used MIPAV software to resample images to 256 × 256 × 256, and 

applied N3 algorithm [27] for non-uniform tissue intensity correction. Skull-stripping [28] 

was then performed, followed by cerebellum removal. We visually checked the skull-

stripped images to ensure clean and dura removal. We next employed FAST of the FSL 

package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) to segment the MR images into three tissue 

types: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). We used 

HAMMER [29] to spatially normalized all three tissues onto a standard space, based on a 

brain atlas aligned with the MNI coordinate space. Next, we generated the regional 

volumetric maps, called RAVENS maps, using a tissue preserving image warping method 

[30]. In this study, we considered only the spatially normalized GM densities (GMD), due to 

its relatively high relevance to AD compared to WM and CSF [31]. Finally, we downsized 

the GMD maps to 32 × 32 × 32 voxels. Downsizing is for estimation and computational 

convenience, as it would considerably reduce the number of unknown parameters and save 

computation time and cost. It is a tradeoff and admittedly does lose some image information; 

however, our results and previous studies [32] suggest that the sacrifice in prediction is 

relatively limited.

III. Method

A. Model

Let Y = (Y1, …, Yq)⊤ ∈ ℝq denote a vector of q responses. For our AD data, q = 2, and Y = 

(Y1, Y2)⊤, where Y1 = MMSE and Y2 = ADAS-Cog. Let X ∈ ℝp1 × ⋯ × pD denote a D-way 

tensor predictor. For our AD data, D = 3, p1 = p2 = p3 = 32, and X denotes MRI scan. We 

propose the following multivariate tensor regression model,

(1)

where Bj ∈ ℝp1 × ⋯ × pD, j = 1, …, q, denotes the tensor coefficient that captures association 
between the tensor predictor X and the jth response Yj. The inner product 〈Bj, X〉 between 

two tensors Bj and X is defined as

Li et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/


where vec(X) denotes a tensor operator that stacks the entries of X into a column vector, and 

βji1, …, iD, xi1, …, iD denotes the (i1, …, iD)th element of Bj and X, respectively. e = (e1, …, 

eq)⊤ ∈ ℝq denotes a vector of q errors, each of which follows a normal distribution with 

zero mean and constant variance. Without loss of generality, we omit the intercept term in 

(1).

The tensor coefficients  in (1) are the parameters of interest and require estimation 

given the observed data. If imposing no additional constraint, the total number of unknown 

parameters in Bj, which equals , is prohibitive. For instance, for our AD data, there 

are 323 = 32,768 parameters to estimate for each Bj, j = 1, 2, while the sample size is only n 
= 194. To alleviate the extremely high dimensionality, [26] introduced a low-rank structure 

on the coefficient tensor Bj that substantially reduces the number of unknown parameters. 

Specifically, a D-way tensor Bj ∈ ℝp1× ⋯ × pD is said to follow a rank-R CANDECOMP/

PARAFAC (CP) decomposition [33], if

(2)

where  are all column vectors, d = 1, …, D, r = 1, …, R, and ◦ denotes an outer 

product among vectors. For convenience, the CP decomposition is often represented by a 

shorthand, Bj = 〚Bj1, …, BjD〛, where  for d = 1, …, D. 

With this low-rank decomposition, the number of unknown parameters in Bj decreases 

substantially from the order of  to that of . For the 32 × 32 × 32 MRI 

image in the AD example, the dimensionality reduces from 32,768 to the order of 96 for a 

rank-1 model, and 288 for a rank-3 model.

Introducing this CP decomposition to , model (1) becomes

(3)

This is our base model for multivariate responses and tensor predictors, upon which the 

subsequent regularization and estimation are built.

To help concretize model (3), we consider one of its special cases when q = 2, D = 2, R = 1. 

That is, there are two response variables Y = (Y1, Y2)⊤, a matrix-valued predictor X, and Bj 
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is assumed to follow a rank-1 CP structure such that Bj = 〚βj1, βj2〛 = βj1 ◦ βj2, j = 1, 2. 

Then (3) reduces to

(4)

where ⊗ denotes the Kronecker product. The first equality in (4) comes from the fact that 

〈Bj, X〉 = 〈(βj2 ◦ βj1), vec(X)〉, when the matrix Bj admits a rank-1 CP decomposition (2). 

Furthermore, the Kronecker product equals the outer product when βj1 and βj2 are both 

column vectors. The second equality in (4) holds because 

, j = 1, 2. Examining model (4), we see that 

our proposed multivariate response tensor regression model in this special case essentially 

postulates that the relation between the jth response variable Yj and the matrix predictor X is 

in the form of left multiplying a coefficient vector  then right multiplying another 

coefficient vector βj2 with the matrix image X. This relation is a natural extension of the 

classical linear model when X is a vector and the response-predictor relation is governed by 

β⊤ X.

B. Penalized Likelihood

Imposing the CP low-rank structure on the coefficient tensor Bj substantially reduces the 

ultrahigh dimensionality of model (1) to a manageable level, leading to feasible estimation 

and prediction. However, the resulting number of unknown parameters can still be much 

larger than the available sample size. For instance, for our AD example, imposing a rank-3 

CP structure yields 576 = 2 × 3 × (32 + 32 + 32) parameters, and the sample size is merely n 
= 194. Moreover, model (3) itself treats the components of multivariate response Y1, …, Yq 

separately, while it is commonly conceived that the multivariate outcomes, i.e., MMSE and 

ADAS-Cog in this work, are correlated and often provide complementary information. 

Regularization through penalized estimation is particularly useful to both handle the small-

n-large-p challenge and to incorporate potential correlations among the response variables. 

Therefore, we further introduce regularization into our multivariate response tensor 

regression model (3), and propose penalized likelihood estimation.

Given n independent and identically distributed sample observations {(X1, Y1), …, (Xn, 

Yn)}, we propose to minimize the following objective function over ,

(5)

In this function, the first component L is the usual negative log likelihood after imposing the 

CP structure, i.e.,
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where Yij is the jth response variable of subject i. The second component J in the objective 

(5) is a penalty function, which could have multiple choices. Here, we choose the group 
lasso penalty [34], which, in our context, takes the form,

(6)

where  is the kth element of  in the CP decomposition (2). By imposing such a 

penalty, the individual coefficients  that correspond to same subregion in an image but 

across different response variables are penalized as a group. As such, (6) encourages a 

subregion to drop out as a group if it is not associated with any of the multivariate response 

variables, which in effect takes into account potentially correlated responses. To further 

illustrate how the low-rank structure works and how the sparsity is imposed by this group 

penalty function, we consider a special case when q = 2, D = 2, R = 1, and p1 = p2 = 4. Fig. 

2 shows that, for each response variable and its associated coefficient Bj, j = 1, 2, element-

wise sparsity in the column vectors , j = 1, 2, d = 1, 2 translates into region-wise sparsity 

in the coefficient matrix Bj. Meanwhile, the group penalty (6) encourages that the subset of 

elements in , d = 1, 2, that correspond to the same region but across different 

response variables would enter or drop from the model simultaneously. A similar group 

penalty was also used in the classical multi-response model [23]. It encourages identification 

of the same subregions of the coefficient images  across different responses. 

Meanwhile, it permits different magnitude of , i.e., strength of association, for 

different responses.

Algorithm 1

Algorithm for minimizing ℓ(B1, …, Bq).

Initialize Bjd ∈ IRpd × R as a random matrix, j = 1, …, q, d = 1, …, D.

repeat

  for d = 1, …, D do

    Update , given .

  end for

  for j = 1, …, q do
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    Update ,

    given .

  end for

until  converges.

C. Estimation

Next, we investigate optimization of the objective function ℓ(B1, …, Bq) in (5). We first 

summarize the optimization procedure in Algorithm 1, then present details for individual 

steps. The optimization is achieved through the variational method [25] based on the 

following result,

when c = |x|−1, x ≠ 0. Consequently, minimizing (5) over B1, …, Bq is equivalent to 

minimizing the following objective function

(7)

over both Bj and , where . Optimization of (7) can then be 

achieved in an alternating fashion, updating iteratively with one set of parameters renewed 

and the others fixed.

Specifically, with Bj fixed, the update of  is simply

With  fixed, the update of Bj is achieved through a block relaxation algorithm [26]. That 

is, by imposing the CP structure on Bj = 〚Bj1, …, BjD〛, the first part of (7) can be written 

as

where Xi(d) denotes the mode-d matricization that maps tensor Xi into a pd × ∏d′ ≠ d matrix 

such that the (i1, …, iD)th element of Xi maps to the (id, 1 + ∑d′ ≠ d(id′ − 1) ∏d″ < d′, d″ ≠ d 
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pd″)th element of Xi(d), and ⊙ denotes the Khatri-Rao product [35]. This reformulation 

allows one to focus the estimation Bjd on while keeping all the other parameters fixed. 

Meanwhile, the second part of (7) can be written as

Therefore, the objective in (7) is essentially a quadratic function of individual Bjd when all 

the other parameters are fixed. There is a closed form solution for Bjd, such that vec(Bjd) 

equals

where

We make a few remarks about the above optimization procedure. First, although the 

objective value decreases monotonically through iterations, the convergence to a global 

optimum is not guaranteed, since (5) involves a nonconvex optimization and there exist 

potentially multiple local minima. We adopt the common practice of using multiple starting 

values. In our setup, the stability of the algorithm with respect to initial values depends on 

several factors. A large sample size, a stronger signal strength, and a low-rank true image 

signal would all foster fast convergence and increase the chance to locate the global 

optimum from different initializations. In Section IV-B, we report the numerical 

convergence behavior of our algorithm with multiple starting values. Second, the 

computation of our method is fast, since both steps of iterations have closed form solutions. 

Actually the computational complexity for each iteration is O(np2q + p3q) for D ≤ 2, and 

O(npDq) for D > 2, when p1 = ⋯ = pD = p. In addition, since X̃
ijd only depends on Bjd′, d′ ≠ 

d, {B1d, …, Bqd} can be updated simultaneously within each iteration. Again in Section IV-

B, we report the computation time in simulations. Third, we note that the variational method 

rarely produces estimates that are exactly zero in practice. Consequently, we set a 

thresholding value for  to achieve the desired sparsity, which is a common practice in 

the applications of the variational method [25]. Last but not least, in addition to the 

variational method, one may also consider using the alternating direction method of 

multipliers (ADMM) for solving the optimization of (5). We have experimented with 

ADMM, and found it produced similar results as the variational method, but was slower. 

This is partly due to that, within each block update, our problem simplifies into minimizing 

a quadratic function plus a group lasso penalty. The variational method can further simplify 

the problem by optimization over {B1d, …, Bqd} separately, whereas ADMM cannot and 
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has to construct relatively large matrices involving {B1d, …, Bqd} jointly. For that reason, 

we choose the variational method as our optimization solution.

IV. Results

In this section, we first carry out Monte Carlo simulations to investigate the empirical 

performance of our proposed method. We then investigate its stability, convergence and 

computation time. Finally, we analyze the ADNI dataset to illustrate the efficacy of the new 

method.

A. Signal Recovery and Prediciton

We evaluate the empirical performance by two criteria: the prediction accuracy of the 

responses measured by root mean squared error (RMSE), and the estimation accuracy of the 

tensor coefficient shown by a plot. We compare our method with two alternative solutions. 

The first is to fit a tensor regression model for one response at a time. A comparison with 

this method would clearly show the gain of our method that jointly models the multivariate 

responses. The second is to vectorize the image predictor, ignoring all potential correlations 

among the image voxels, then fit a mluti-response linear regression model with a group lasso 

penalty [23]. This comparison would show the gain of our method that respects the image 

tensor structure. For abbreviation, we call our method and the two alternatives as “Multi-

Resp”, “Uni-Resp”, and “Vectorized”, respectively.

The data are simulated from model (3), with a 64 × 64 matrix predictor X whose entries 

independently follow a normal distribution, and q coefficient matrices Bj ∈ ℝ64×64, j = 1, …, 

q, which take the value of 0 or 1 following specified patterns. We consider two scenarios: (i) 

We let all Bj follow the same pattern of “cross”, “triangle”, and “butterfly”, respectively. (ii) 

We let half of Bj's take the shape of “cross”, and the other half “triangle”. Among the three 

patterns, “cross” is of an exact rank 2, while “triangle” and “butterfly” are of infinitely high 

rank, whereas we use a fixed rank 3 to approximate all three patterns. We then generate q 
response variables following (3), with the errors e ∈ ℝq following a normal distribution with 

mean zero and covariance σ2Σ, where Σ ∈ ℝq×q has diagonal elements equal to 1 and off-

diagonals equal to ρ. Consequently, the pairwise correlation among the q responses is 

governed by ρ, while σ2 controls the relative noise level. We examine a series of values of q, 

σ2 and ρ to investigate the empirical performance of different methods under varying 

response correlation strength and noise level. We marginally standardize the response 

variables, by subtracting mean and dividing by standard deviation. The models are fitted on 

a training set of size n = 750, tuned on an independent validation set, and evaluated on 

another independent testing set of the same size.

Table II shows RMSE of prediction of “future” responses in the testing data under 50 Monte 

Carlo replications, whereas Fig. 3 gives a graphical summary of the estimated coefficient 

signal based on one data replication under the scenario (i). Since the underlying true patterns 

are the same for all responses here, we only report the estimator for the first one. We present 

in the table the results when q = 3, 9, σ = 10, 15, 20, and ρ = 0, 0.9, respectively, but in the 

figure omit the results when ρ = 0.9, since they are visually similar to those of ρ = 0. We also 

omit in the figure the case q = 9 for “Uni-Resp”, because it fits each response variable 

Li et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



separately, and thus the coefficient estimate is not affected by the number of responses q. It 

is clearly seen that our proposed method outperforms the univariate solution. The difference 

is more dominant when the signal is relatively more noisy, as one would often encounter in 

real imaging data, and when the number of response variables is large, as they provide more 

complementary information. In addition, both the multivariate and univariate tensor 

regression solutions have produced a much better estimation than the vectorized solution, 

which fails to identify any meaningful patterns.

Similarly, Table III and Fig. 4 provide a summary of the results for the scenario (ii). Again, 

the proposed method clearly outperforms the two competitors. If one assumes the resulting 

criteria from multiple replications are normally distributed, then the two-sample t-test would 

yield significant differences between “Multi-Resp” and “Uni-Resp” (with p-values less than 

0.001) for all combinations of (q, ρ, σ), except for (q, ρ, σ) = (2, 0, 10) (p-value = 0.61) and 

(q, ρ, σ) = (2, 0.9, 10) (p-value = 0.08). Moreover, differences between “Multi-Resp” and 

“Vectorized” are significant for all situations (p-values = 0). It is also noteworthy that, in 

most multi-response literatures, the models are of a similar form as in the scenario (i). This 

does not necessarily imply that all the multiple response variables must admit exactly the 

same association with the predictors. The magnitude of those coefficients could vary. In our 

simulation, for simplicity, we only let the signal Bj take the value of 0 or 1. The proposed 

method works best under the scenario (i), but outperforms the competing solutions under the 

scenario (ii) as well.

B. Stability, Convergence and Computation Time

We next investigate the stability of the algorithm with respect to the regularization parameter 

λ and the rank R of the CP decomposition. We adopt the setting of scenario (i), the 

“triangle” signal, q = 3, σ = 10, ρ = 0 and n = 750. Fig. 5 shows the results of applying 

different values of λ and R. For all combinations, the method successfully identifies the 

signal region. However, insufficient or excessive penalty would both adversely affect the 

quality of the recovered signal. The rank R of the CP decomposition essentially offers a 

bias-variance tradeoff. A larger rank implies a more flexible model and a smaller bias, but 

also more unknown parameters and thus a larger variation, whereas a smaller rank implies a 

more parsimonious model and a smaller estimation variability, but possibly a larger bias. In 

reality, the true signal tensor is hardly of an exactly low-rank structure. However, given the 

usually limited sample size in imaging studies, a low-rank estimate often provides a 

reasonable approximation to the true tensor regression parameter, even when the true signal 

is of a high rank [26]. In our analysis, we usually fix the rank at R = 3, which offers a good 

balance between model complexity and estimation accuracy.

Fig. 6 shows the convergence behavior of the algorithm, as reflected by the objective value, 

under 100 randomly generated starting values, and the corresponding computation time. We 

see that, although there exist multiple local minima, the algorithm often converges to the 

same or similar point. The run time is recorded on a standard laptop computer with 2.9 GHz 

Inter i7 CPU. For instance, the median run time of fitting a rank-3 model in this example 

takes about 21 seconds.
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C. ADNI Data Analysis

We analyze the ADNI dataset reviewed in Section II. The analysis consists of two parts: 

estimation of clinical scores and identification of brain subregions that are highly relevant to 

the clinical outcomes.

We first aim to infer the clinical scores of MMSE and ADAS-Cog given the MRI scans. 

Such prediction is useful for both disease diagnosis as well as understanding of disease 

progression. The two clinical scores are normalized (subtracted the mean and divided by 

standard deviation) to avoid different response scales. A 10-fold cross-validation is 

performed. The rank of the coefficient tensor is set as R = 3, and the regularization 

parameter λ is optimized based solely on the training set with another nested 10-fold cross-

validation. We then employ the resulting model to estimate the clinical scores on the testing 

data. The RMSE (the smaller the better), and the Pearson correlation coefficient (the larger 

the better), between the predicted and the observed clinical scores on the testing data are 

reported in Table IV. Moreover, we show the scatter plots of the predicted versus observed 

scores for MMSE and ADAS-Cog in Fig. 7.

We also compare our method (“Multi-Resp”) to two sets of alternative solutions. The first 

set consists of the univariate response solution (“Univ-Resp”), and the vectorized solution 

(“Vectorized”), as reported in Section IV-A. Both methods, as well our proposed method, 

directly model an image tensor and jointly incorporate all voxels of an image. The second 

set of alternatives include the multi-task method (“M3T”) comprised of feature selection via 

a group lasso penalty and estimation via support vector regression [10], support vector 

regression with feature selection via lasso (“SVR + lasso”), and without any feature 

selection (“SVR”). It is important to note that, this family of methods do not directly handle 

a tensor image, but a vector of features extracted from an image. As such, we employ the 

Automated Anatomical Labeling (AAL) [36] to partition the image into 90 regions of 

interest (ROI) and then use the average intensity of each ROI as the extracted features. The 

results are again reported in Table IV. We see that, our solution clearly outperforms the one 

that models one response at a time, demonstrating the advantage of jointly modeling the 

multivariate responses that are correlated and complementary. We also see that, after taking 

the standard error into account, our new method performs essentially as well as the best 

solutions in the literature such as “M3T” and “SVR + lasso”. On the other hand, our method 

works without requiring a specific image atlas, and thus avoid its dependence and the choice 

among different atlases.

In addition to the estimation of multiple clinical scores, the proposed method can 

simultaneously serve as a tool to select relevant brain regions. Our multivariate method is 

advantageous, since different clinical scores reflect the same underlying pathology while 

they also offer complementary information [8], [10], [14]. For this data, we use the optimal 

tuning parameter from the cross-validation to fit the full dataset. The voxels selected are 

those with non-zero regression coefficient estimates. To help visualize the selected regions, 

we next partition the brain into 90 ROIs based on the AAL. Then we plot the corresponding 

ROIs with at least 10% of its voxels selected by our method. Ordered by the percentage of 

selected voxels from highest, the identified regions that are relevant to the two clinical scores 

are: amygdala (left and right), hippocampus (left and right), parahippocampal gyrus (right 
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and left), olfactory cortex (left), superior temporal gyrus (left), middle temporal gyrus (left), 

putamen (right and left), and insula (left). These regions have been shown by numerous 

studies to be highly relevant to AD. See Table V for a summary of the associated literatures. 

Moreover, to show the path of region selection, we repeat the same procedure with a 

gradually increasing sparsity tuning parameter λ. We summarize the results in Fig. 8, where 

we map the estimate back to the original high-resolution 256 × 256 × 256 MRI image, and 

Table V. It is worth noting that a smaller tuning parameter would result in a larger number of 

selected regions and the potential problem of overfitting. Conversely, a larger tuning 

parameter would result in a smaller number of selected regions and potentially underfitting.

V. Discussion

We have proposed a sparse multivariate response tensor regression model in this article. Our 

proposed method models multiple response variables jointly, so as to exploit the correlated 

and complementary information possessed in multivariate responses. It also models multiple 

voxels in an image tensor jointly, so as to account for inherent spatial correlation in image 

covariates. The method is designed to simultaneously infer multiple responses and to 

identify brain subregions highly relevant to the outcomes. As such it is useful for both 

AD/MCI diagnosis, and for locating brain regions contributing to the disease. Our numerical 

analyses have demonstrated that the proposed method outperformed its competitors.

There are some alternative choices within our proposed model formulation. One is to 

consider a different penalty function than the group lasso penalty (6), and the other is an 

alternative tensor regression model formulation than (3). First, an alternative to the group 

lasso penalty (6) for multi-response regression is the L∞ type penalty [22]. In our context, 

the penalty function takes the form,

(8)

This penalty, similar to the group lasso penalty, also induces row-wise sparsity to the 

regression parameters. However, it differs from the group lasso penalty in that, the L∞ 
penalty selects predictors based on their maximum contribution to any of the response 

variables, whereas the group lasso penalty selects predictors based on their joint contribution 

to all of the response variables. As a result, the L∞ penalty tends to select more variables 

than the group lasso penalty. The optimization with the L∞ penalty (8) is a linearly 

constrained quadratic optimization problem, which can be solved by an interior-point 

algorithm [45].

Second, an alternative to the multi-response tensor regression model (3) is the model

(9)
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where B is a (D + 1)-dimensional tensor that is assumed to admit a rank-R CP 

decomposition, and B(D+1) denotes its mode-(D + 1) matricization. That is, B = 〚B1, …, 

BD+1〛 where , for d = 1, …, D, and BD+1 ∈ ℝq×R. To better 

understand this model, we again consider its special case when q = 2, D = 2, R = 1, i.e., two 

response variables with a matrix image predictor. In this case, B is a p1 × p2 × 2 tensor that 

admits a rank-1 decomposition, B = 〚β1, β2, β3〛 = β1 ◦ β2 ◦ β3, and β3 = [β31, β32]⊤. 

Then model (9) becomes

(10)

A few remarks are in order for the comparison of model (10) with model (4), which is a 

special case of model (3) under the same setup of q = 2, D = 2, R = 1. While model (4) 

permits different coefficient vectors β11 ⊗ β12 and β21 ⊗ β22 for different response 

variables Y1 and Y2, model (10) imposes the same coefficient vectors β1 ⊗ β2 except for 

allowing a different scalar β31 and β32 for different Y's. Consequently, model (4) enjoys 

more flexibility, while (10) requires fewer number of parameters and thus induces less 

estimation variability. For our problem, we note that, since the scores of MMSE and ADAS-

Cog carry different levels of information with respect to the cognitive capability, it is more 

reasonable to assign different coefficients in predicting the two clinical scores. This is the 

reason we have primarily focused on model (3).

Finally, an alternative tensor decomposition, the Tucker decomposition [33], can be 

employed in our solution. The Tucker decomposition is more flexible than the CP 

decomposition, by allowing different number of factors along each mode of the tensor. 

However, it may introduce a larger number of unknown parameters than CP and require 

more parameter tunings. As such we have chosen the CP decomposition in this article.
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Fig. 1. 
A schematic overview of the proposed sparse multi-response tensor regression with 

multivariate cognitive assessments.
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Fig. 2. 
An illustration of the low-rank and sparse estimation of the coefficient signal when q = 2, D 
= 2, R = 1 and p1 = p2 = 4. ◦ denotes the outer product. Dotted lines connect the elements 

corresponding to the same region but across different responses, which are encouraged to 

enter or drop from the model simultaneously. Different colors denote different strength of 

association.
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Fig. 3. 
Estimated coefficient images under varying noise level (σ = 10, 15, 20) and number of 

response variables (q = 3, 9). The coefficient patterns are the same for all responses.
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Fig. 4. 
Estimated coefficient images under varying noise level (σ = 10, 15, 20) and number of 

response variables (q = 2, 6). The coefficient patterns are different for different responses. 

One half adopts “cross”, while the other half “triangle”.
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Fig. 5. 
Algorithm stability with respect to the varying regularization parameter λ = 0, 10, 100 and 

varying rank R = 1, 2, 3.
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Fig. 6. 
Convergence behavior with 100 randomly generated starting values and the corresponding 

run time.
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Fig. 7. 
Scatter plots of the predicted MMSE and ADAS-Cog versus the observed scores.
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Fig. 8. 
Regions (red part) selected by the sparse multivariate tensor regression model that are 

relevant to the Alzheimer's disease. The optimal tuning parameter based on cross-validation 

is λ = 100.
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TABLE I

Demographic and Clinical Information of the Subjects.

Group AD (n = 93) NC (n = 101)

Female/Male 36/57 39/62

Age (Mean ± SD) 75.5 ± 7.4 75.9 ± 4.8

MMSE (Mean ± SD) 23.5 ± 2.1 28.9 ± 1.1

ADAS-Cog (Mean ± SD) 27.7 ± 10.7 10.4 ± 4.2

SD: Standard Deviation
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TABLE IV

Estimation of the two Clinical Scores by Various Methods. Reported are the Average and Standard Error (in 

Parenthesis) of the Root Mean Square Error and the Pearson Correlation Coefficient Between the Predicted 

and the Observed Scores Based on 10-Fold Cross-Validation

Method Correlation coefficient Root-mean-square error

MMSE ADAS-Cog MMSE ADAS-Cog

Multi-Resp 0.55 (0.03) 0.54 (0.04) 2.83 (0.17) 10.13 (0.53)

Uni-Resp 0.27 (0.08) 0.28 (0.10) 3.18 (0.11) 11.12 (0.57)

Vectorized 0.55 (0.05) 0.49 (0.07) 2.83 (0.12) 10.31 (0.57)

M3T 0.56 (0.05) 0.58 (0.06) 2.78 (0.13) 9.94 (0.73)

SVR + lasso 0.58 (0.06) 0.54 (0.06) 2.73 (0.16) 10.14 (0.68)

SVR 0.42 (0.06) 0.49 (0.06) 3.58 (0.20) 11.67(0.52)

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 December 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 30

TA
B

L
E

 V

A
A

L
 R

eg
io

ns
 (

C
ol

or
ed

 C
el

ls
) 

Se
le

ct
ed

 b
y 

th
e 

Sp
ar

se
 M

ul
tiv

ar
ia

te
 T

en
so

r 
R

eg
re

ss
io

n 
M

od
el

 W
ith

 V
ar

yi
ng

 T
un

in
g 

Pa
ra

m
et

er
s,

 A
lo

ng
 W

ith
 T

he
ir

 S
up

po
rt

 

in
 th

e 
L

ite
ra

tu
re

. 1
3 

A
dd

iti
on

al
 R

eg
io

ns
 W

hi
ch

 a
re

 O
nl

y 
Se

le
ct

ed
 W

he
n 
λ

 =
 5

0 
ar

e 
no

t S
ho

w
n 

H
er

e 
in

 th
e 

In
te

re
st

 o
f 

Sp
ac

e.

A
A

L
 R

eg
io

n
λ
 =

 5
0

λ
 =

 1
00

λ
 =

 1
50

λ
 =

 2
00

L
it

er
at

ur
e 

Su
pp

or
t

A
M

Y
G

D
_L

[3
7]

, [
38

]

A
M

Y
G

D
_R

H
IP

PO
_L

[3
7]

, [
39

],
 [

40
]

H
IP

PO
_R

N
L

_L
[4

1]
, [

42
]

N
L

_R

IN
_L

[3
7]

, [
38

]

IN
_R

PA
R

A
_H

IP
PO

_L
[3

9]
, [

43
]

PA
R

A
_H

IP
PO

_R

C
O

B
_L

[4
4]

T
1A

_L
[3

9]

T
1A

_R

T
2_

L
[3

9]

T
2_

R

A
bb

re
vi

at
io

ns
: A

M
Y

G
D

 =
 A

m
yg

da
la

; H
IP

PO
 =

 H
ip

po
ca

m
pu

s;
 N

L
 =

 L
en

tic
ul

ar
 N

uc
le

us
, P

ut
am

en
; I

N
 =

 I
ns

ul
a;

 P
A

R
A

_H
IP

PO
 =

 P
ar

ah
ip

po
ca

m
pa

l G
yr

us
; C

O
B

 =
 O

lf
ac

to
ry

 C
or

te
x;

 T
1A

 =
 T

em
po

ra
l P

ol
e:

 
Su

pe
ri

or
 T

em
po

ra
l G

yr
us

; T
2 

=
 M

id
dl

e 
Te

m
po

ra
l G

yr
us

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 December 13.


	Abstract
	I. Introduction
	II. Materials
	A. Subjects
	B. Preprocessing

	III. Method
	A. Model
	B. Penalized Likelihood

	Algorithm 1
	C. Estimation

	IV. Results
	A. Signal Recovery and Prediciton
	B. Stability, Convergence and Computation Time
	C. ADNI Data Analysis

	V. Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V

