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Abstract

We introduce a novel optimization-based motion planner, Stochastic Extended LQR (SELQR), 

which computes a trajectory and associated linear control policy with the objective of minimizing 

the expected value of a user-defined cost function. SELQR applies to robotic systems that have 

stochastic non-linear dynamics with motion uncertainty modeled by Gaussian distributions that 

can be state- and control-dependent. In each iteration, SELQR uses a combination of forward and 

backward value iteration to estimate the cost-to-come and the cost-to-go for each state along a 

trajectory. SELQR then locally optimizes each state along the trajectory at each iteration to 

minimize the expected total cost, which results in smoothed states that are used for dynamics 

linearization and cost function quadratization. SELQR progressively improves the approximation 

of the expected total cost, resulting in higher quality plans. For applications with imperfect 

sensing, we extend SELQR to plan in the robot's belief space. We show that our iterative approach 

achieves fast and reliable convergence to high-quality plans in multiple simulated scenarios 

involving a car-like robot, a quadrotor, and a medical steerable needle performing a liver biopsy 

procedure.
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I. Introduction

When a robot performs a task, the robot's motion may be affected by uncertainty from a 

variety of sources, including unpredictable external forces or actuation errors. Uncertainty 

arises in a variety of robotics applications, including aerial robots moving in turbulent 

conditions, mobile robots maneuvering on unfamiliar terrain, and robotic steerable needles 

being guided to clinical targets in soft tissue. A deliberative approach that accounts for 

uncertainty during motion planning before task execution can improve the quality of 

computed plans, increasing the chances that the robot will complete the desired motion in a 

manner that avoids obstacles and minimizes costs.
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We introduce an optimization-based motion planner that explicitly considers the impacts of 

motion uncertainty. Recent years have seen the introduction of multiple successful 

optimization-based motion planners, although most have focused on robots with 

deterministic dynamics (e.g., [29], [18], [7]). Compared to commonly used sampling-based 

motion planners [9], optimization-based motion planners produce plans that are smoother 

(without requiring a separate smoothing algorithm) and that are computed faster, albeit 

sometimes with a loss of completeness and global optimality. Prior optimization-based 

motion planners that consider deterministic dynamics can only minimize deterministic cost 

functions (e.g., minimizing path length while avoiding obstacles). In this paper we focus on 

robots with stochastic dynamics, and consequently minimize the a priori expected value of a 

cost function when a plan and corresponding controller are executed. The user-defined cost 

function can be based on path length, control effort, and obstacle collision avoidance.

We first introduce the Stochastic Extended LQR (SELQR) motion planner, a novel 

optimization-based motion planner with fast and reliable convergence that explicitly 

considers robot motion uncertainty. The method is designed for motion planning problems 

involving robotic systems with non-linear (but linearizable) dynamics, any cost function 

with positive (semi)definite Hessians, and motion uncertainty that can be reasonably 

modeled using Gaussian distributions that can be state- and control-dependent. Our approach 

builds on the linear quadratic regulator (LQR), a commonly used linear controller that does 

not explicitly consider obstacle avoidance. As an optimization-based approach, SELQR 

starts motion planning from a start state and returns a high-quality trajectory and an 

associated linear control policy that consider uncertainty and are optimized with respect to 

the given cost function.

To achieve fast performance, our approach in each iteration uses both the stochastic forward 

and inverse dynamics in a manner inspired by an iterated Kalman smoother [2]. In each 

iteration's backward pass, SELQR uses the stochastic dynamics to compute a control policy 

and estimate the cost-to-go of each state, which is the minimum expected future cost 

assuming the robot starts from each state. In each iteration's forward pass, SELQR estimates 

the cost-to-come to each state, which is the minimum cost to reach each state from the initial 

state. SELQR then approximates the expected total cost at each state by summing the cost-

to-come and the cost-to-go. SELQR progressively improves the approximation of the cost-

to-come and cost-to-go and hence improves its estimate of the expected total cost. A key 

insight in SELQR is that we locally optimize each state along a trajectory at each iteration to 

minimize the expected total cost, which results in smoothed states that are cost-informative 

and used for dynamics linearization and cost function quadratization. These smoothed states 

enable the fast and reliable convergence of SELQR.

We next extend SELQR to consider uncertainty in both motion and sensing. Although the 

robot in such cases often cannot directly observe its current state, it can estimate a 

distribution over the set of possible states (i.e., its belief state) based on noisy and partial 

sensor measurements. We introduce B-SELQR, a variant of SELQR that plans in belief 

space rather than state space for robots with both motion and sensing uncertainty, where 

belief states are modeled with Gaussian distributions. For such robots, the motion planning 

problem can be modeled as a Partially Observable Markov Decision Process (POMDP). 
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Exact global optimal solutions to POMDPs are prohibitive for most applications since the 

belief space (over which a control policy is to be computed) is, in the most general 

formulation, the infinite-dimensional space of all possible probability distributions over the 

finite dimensional state space. B-SELQR quickly computes a trajectory and locally-valid 

controller from scratch in belief space.

In this work, we provide a refined archival version of the results presented at a conference 

[19] and incorporate several important extensions. We added detail to the method derivation 

and expanded the experiments to include a non-Gaussian noise scenario, different Gaussian 

noise levels for B-SELQR, and a new beacons-based scenario for B-SELQR. We 

demonstrate the speed and effectiveness of SELQR in simulation for a car-like robot, 

quadrotor, and medical steerable needle (see Fig. 1). We also demonstrate B-SELQR for 

scenarios with imperfect sensing.

II. Related Work

Optimization-based motion planners have been studied for a variety of robotics applications 

and typically consider robot dynamics, trajectory smoothness, and obstacle avoidance. 

Optimization-based approaches have been developed that plan from scratch as well as that 

locally optimize a feasible plan created by another motion planner (such as a sampling-based 

motion planner), e.g. [29], [7], [18], [3], [5], [11]. These methods work well for robots with 

deterministic dynamics, whereas SELQR is intended for robots with stochastic dynamics.

Our approach builds on Extended LQR [23], [24], which extends the standard LQR to 

handle non-linear dynamics and non-quadratic cost functions. Extended LQR assumes 

deterministic dynamics, implicitly relying on the fact that the optimal LQR solution is 

independent of the variance of the motion uncertainty. In contrast to Extended LQR, SELQR 

explicitly considers stochastic dynamics and incorporates the stochastic dynamics into 

backward value iteration when computing a control policy, enabling computation of higher 

quality plans. Approximate Inference Control [22] formulates the optimal control problem 

using Kullback-Leibler divergence minimization but focuses on cost functions that are 

quadratic in the control input. Our approach also builds on Iterative Linear Quadratic 

Gaussian (iLQG) [21], which uses a quadratic approximation to handle state- and control-

dependent motion uncertainty but, in its original form, did not implement obstacle 

avoidance. To ensure that the dynamics linearization and cost function quadratization are 

locally valid, iLQG requires special measures such as a line search. Our method does not 

require a line search, enabling faster performance.

For problems with partial or noisy sensing, the planning and control problem can be 

modeled as a POMDP [6]. Solving a POMDP to global optimality has been shown to be 

PSPACE complete. Point-based algorithms (e.g., [14], [8], [1]) have been developed for 

problems with discrete state, action, or observation spaces. Another class of methods [4], 

[16], [25], [13] utilize sampling-based planners to compute candidate trajectories or 

roadmaps in the state space in which paths can be evaluated based on metrics that consider 

stochastic dynamics. These approaches can be highly effective, although the methods [16], 

[4] require the existence of a two-point boundary value problem solver that can connect any 
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two sampled configurations (which for nonholonomic robots may be computationally 

expensive), while the methods [25], [13] focused on cost functions corresponding to 

estimates of collision. Optimization-based approaches have been developed for planning in 

belief space [26], [15], [10], [12] by approximating beliefs as Gaussian distributions and 

computing a value function valid only in local regions of the belief space. Platt et al. [15] 

achieve fast performance by defining deterministic belief system dynamics based on the 

maximum likelihood observation assumption. Methods [10], [12] based on TrajOpt [17] 

effectively generate high quality plans, but they do not compute closed-loop policies, 

meaning they may require replanning at each time step during execution. Van den Berg et al. 

[26] require a feasible plan for initialization and then use iLQG to optimize the plan in belief 

space. We will show that B-SELQR, which considers stochastic dynamics, converges faster 

and more reliably than using iLQG in belief space, generates a local policy, and can plan 

from scratch.

III. Problem Definition

Let  be the n-dimensional state space of the robot and let  be the m-dimensional 

control input space of the robot. We consider robotic systems with differentiable stochastic 

dynamics and state- and control-dependent uncertainty modeled using Gaussian 

distributions. Let τ ∈  denote time, and let us be given a continuous-time stochastic 

dynamics:

(1)

with f :  and , where  and  is a Wiener 

process with . We have .

We assume time is discretized into intervals of duration Δ, and the time step t ∈  starts at 

time τ = tΔ. As we will see in Sec. IV-E, by integrating the continuous time dynamics both 

backward and forward in time, we can construct the stochastic discrete dynamics and the 

deterministic inverse discrete dynamics:

(2)

(3)

where , with  and  as derived in Sec. IV-E. Note 

that gt is the deterministic part of the dynamics; for any x′, x, and u such that x′ = gt(x, u), 

we have gt(ḡt (x′, u), u) = x′ and ḡt(gt(x, u), u) = x.

Let the control objective be defined by a cost function that can incorporate metrics such as 

path length, control effort, and obstacle avoidance:
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(4)

where  is the given time horizon and cl :  and  are user-defined local cost 

functions. The expectation is taken because the dynamics are stochastic. We assume the 

local cost functions are twice differentiable and have positive (semi)definite Hessians: 

, , . The objective is to compute a control policy π 
(defined by πt :  for all t ∈ [0, l)) such that selecting the controls ut = πt(xt) minimizes Eq. 

(4) subject to the stochastic discrete-time dynamics. This problem is addressed in Sec. IV.

For robotic systems with imperfect (e.g., partial and noisy) sensing, it is often beneficial 

during planning to explicitly consider the sensing uncertainty. We assume sensors provide 

data according to a stochastic observation model:

(5)

where zt is the sensor measurement at step t and the noise is state-dependent and drawn from 

a given Gaussian distribution. We formulate this motion planning problem as a POMDP by 

defining the belief state , which is the distribution of the state xt given all past controls 

and sensor measurements. We approximate belief states using Gaussian distributions. In 

belief space we define the cost function as

(6)

where the local cost functions are defined analogously to Eq. (4). The objective for this 

problem is to compute a control policy π (defined by πt :  for all t ∈ [0, l)) in order to 

minimize Eq. (6) subject to the stochastic discrete-time dynamics. This problem is addressed 

in Sec. V.

IV. Stochastic Extended LQR

SELQR explicitly considers a system's stochastic nature in the planning phase and computes 

a nominal trajectory and an associated linear control policy that consider the impact of 

uncertainty. With the control policy from SELQR, the robot then executes the plan in a 

closed-loop fashion with sensor feedback. As in related methods such as iLQG [21], SELQR 

approximates the value functions quadratically by linearizing the dynamics and quadratizing 

the cost functions. But, as we will show, SELQR uses a novel approach to compute 

promising candidate trajectories around which to linearize the dynamics and quadratize the 

cost functions, enabling faster performance.
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A. Method Overview

To consider non-linear dynamics and any cost function with positive (semi)definite 

Hessians, SELQR uses an iterative approach that linearizes the (stochastic) dynamics and 

locally quadratizes the cost functions in each iteration. As shown in Algorithm 1 and 

described below, each iteration includes both a forward pass and a backward pass, where 

each pass performs value iteration.

As in LQR, SELQR uses backward value iteration to compute a control policy π and, for all 

t, the cost-to-go vt(x), which is the minimum expected future cost that will be accrued 

between time step t (including the cost at time step t) and time step l if the robot starts at x at 

time step t. The backward value iteration, as described in Sec. IV-B, considers stochastic 

dynamics. SELQR also uses forward value iteration to compute the cost-to-come , 

which computes the minimum past cost that was accrued from time step 0 to step t 
(excluding the cost at time step t) assuming the robot's dynamics is deterministic, as 

described in Sec. IV-C. The sum of vt(x) and  provides an estimate of , the 

minimum expected total cost for the entire task execution given that the robot passes through 

state x at step t. Selecting x to minimize  yields a sequence of smoothed states

(7)

At each iteration, SELQR linearizes the (stochastic) dynamics and quadratizes the cost 

function around the smoothed states. With each iteration, SELQR progressively improves 

the estimate of the cost-to-come and cost-to-go at each state along a plan, and hence 

improves its estimate of the minimum expected total cost. With this improved estimate 

comes a better control policy. The algorithm terminates when the estimated total cost 

converges. The output of the motion planner is the control policy πt for all t, where each πt 

is computed during the backward value iteration, which considers the stochastic dynamics. 

During execution, a robot at state x executes control ut = πt(x) at time step t.

SELQR accounts for non-linear dynamics and non-quadratic cost functions in a manner 

inspired in part by the iterated Kalman Smoother [2], which iteratively performs a forward 

pass (filtering) and a backward pass (smoothing) and at each iteration linearizes the non-

linear system around the states from the smoothing pass. Likewise, SELQR consists of a 

backward pass (a backward value iteration) and a forward pass (a forward value iteration). 

The combination of these two passes at each iteration enables us to compute smoothed states 

around which we linearize the (stochastic) dynamics and quadratize the cost functions.

B. Backward Pass

We assume the cost-to-come functions , the inverse control policy , and the 

smoothed state  are available from the previous forward pass. The backward pass 

computes cost-to-go functions vt(x) and control policy πt, using the approach of backward 

value iteration [20] in a backward recursive manner:
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(8)

To make the backward value iteration tractable, SELQR linearizes the stochastic dynamics 

and quadratizes the local cost functions to maintain a quadratic form of the cost-to-go 

function . The backward pass starts from step l by 

quadratizing cl(x) around x̂l (line 11) as

(9)

and constructing quadratic vl(x) by setting Sl = Ql, sl = ql, and sl = ql. Starting from t = l – 1, 

vt+1(x) is available. To proceed to step t, SELQR first computes

(10)

Minimizing the quadratic  with respect to x gives the smoothed states x̂t+1 (line 14). 

With the inverse control policy  from the last forward pass, SELQR computes ût and x̂t 
(line 15), around which the stochastic discrete dynamics can be linearized as

(11)

where  denotes the i'th column of matrix Mt, and At, Bt, , , at, and  are given 

matrices and vectors of the appropriate dimension, and the cost function ct can be 

quadratized as

(12)

By substituting the linear stochastic dynamics and quadratic local cost function into Eq. 8, 

expanding the expectation, and then collecting terms, we get a quadratic expression of the 

value function vt(x),

(13)
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where

following the similar derivation in [21]. The minimization on the right-hand side of Eq. (13) 

gives the linear control policy:

(14)

Filling u back into Eq. (13) gives vt(x) as a quadratic function of x with , 

, and  (line 18).

C. Forward Pass

The forward pass recursively computes the cost-to-come functions  and the inverse 

control policy  using for ward value iteration [23]:

(15)

To make the forward value iteration tractable, we linearize the inverse dynamics and 

quadratize the local cost functions so that we can maintain a quadratic form of the cost-to-

come function .

The forward pass starts from time step 0 (line 3) to construct the quadratic  by setting 

S ̄
0 = 0, s̄0 = 0, and s̄0 = 0. At time step t, we assume  and vt(x) are available. To 

proceed to step t + 1, SELQR first computes the smoothed state x̂t by minimizing the sum of 

vt(x) and  (line 5) which are quadratic. (We note that in our implementation of matrix 

inversion for St + S̄
t in line 5, we add a small positive regularization ηI,  to zero 

matrices to avoid computing the inverse of a zero matrix and so x̂0 = 0 in the first iteration.) 

Since πt is available, SELQR then computes the ût and x̂t+1 as shown in line 7. Then, the 

deterministic inverse discrete dynamics is linearized around (x̂t+1, ût):

(16)
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where Āt, B̄
t, and āt are given matrices and vectors of the appropriate dimension, and the 

local cost function ct is quadratized around (x̂t, ût) to get the quadratic form as in Eq. (12).

Substituting the linearized inverse dynamics and quadratic local cost function into Eq. (15), 

expanding the expectation, and then collecting terms, we get a quadratic expression for 

,

(17)

where

following the derivation in [23]. Take derivative of Eq. 17 with respect to u and equal to 

zero, the solution gives the inverse control policy for stage t:

(18)

Plugging ut into Eq. (17) gives  as a quadratic function of x with 

, , and  (line 9).

D. Iterative Forward and Backward Value Iteration

Without any a priori knowledge, SELQR initializes the cost-to-go functions and the control 

policy to 0's (line 1). As shown in Algorithm 1, SELQR starts with a forward pass and then 

iteratively performs backward passes and forward passes until convergence (e.g., v0 stops 

changing significantly). Similar to the iterated Kalman Smoother and to Extended LQR [23], 

SELQR performs Gauss-Newton like updates toward a local optimum.

Informed search methods often achieve speedups in practice by exploring from states that 

minimize a heuristic cost function. Analogously, in SELQR, the cost-to-go provides the 

minimum expected future cost, and the cost-to-come estimates the minimum expected cost 
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that has been already accrued. The forward value iteration uses a deterministic inverse 

dynamics due to the intractability of computing a stochastic discrete inverse dynamics. 

Hence, the function  estimates the minimum total cost assuming the robot passes 

through a given state x at time step t. Previous methods such as iLQG choose states for 

linearization and quadratization by blindly shooting the control policy from the last iteration 

without any information about the cost functions. These methods usually need measures 

such as line search to maintain stability. By computing smoothed states that are informed by 

cost for linearization and quadratization, we show, experimentally, that our method provides 

faster convergence.

E. Discrete-Time Dynamics Implementation

If f(x, u, τ) in Eq. (1) is linear in x and N is not dependent on x, then the distribution of the 

state at any time τ is given by x(τ) , where x̂(τ) and Σ(τ) are defined by 

the following system of differential equations:

For non-linear f and state- and control-dependent N, the equations provide first-order 

approximations. Instead of using an Euler integration [21], we use the Runge-Kutta method 

(RK4) to integrate the differential equations for x̂ and Σ forward in time simultaneously to 

compute gt and Mt in Eq. (2), and integrate the differential equation for x̂ to compute the ḡt 

in Eq. (3).

V. Stochastic Extended LQR in Belief Space

We introduce B-SELQR, a belief-state variant of SELQR for robotic systems with both 

motion and sensing uncertainty, where beliefs are modeled with Gaussian distributions. With 

an imperfect sensing model defined in the form of Eq. (5) and an objective function in the 

form of Eq. (6), the motion planning problem is a POMDP. B-SELQR needs a stochastic 

discrete forward belief dynamics and a deterministic discrete inverse belief dynamics. While 

the stochastic belief dynamics (Sec. V-A) can be modeled by an Extended Kalman Filter 

(EKF) [28] as shown in [26], the key challenge here is to develop the deterministic discrete 

inverse belief dynamics. We will show in Sec. V-B that the inverse belief dynamics can be 

derived by inverting the EKF.

A. Stochastic Discrete Belief Dynamics

Let us be given the belief of the robot's state at time step t as  and a control 

input ut that the robot will execute at time step t. The EKF is used to model the stochastic 

forward belief dynamics [26] by

(19)
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where

(20)

(21)

(22)

(23)

We refer readers to [26] for details of the derivation. Defining the belief bt = (x̂t, Σt), the 

stochastic belief dynamics is given by

(24)

where  and Φ(bt, ut) stands for the deterministic part of 

Eq. 19. The dynamics is stochastic since the observation is treated as a random variable.

B. Deterministic Inverse Discrete Belief Dynamics

The deterministic inverse discrete belief dynamics takes belief bt+1 at time step t + 1 and 

control ut as input, and outputs belief bt.

Proposition V.1—(Deterministic Inverse Discrete Belief Dynamics) Given bt+1 = (x̂t+1, 

Σt+1) and the control input ut applied at time step t, there exists a belief bt = (x̂t, Σt) such that 
bt+1 = Φ(bt, ut) and bt is represented by

(25)

(26)

where
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(27)

(28)

(29)

Proof—We show the proposition by substituting Eq. (25) and Eq. (26) into Φ(bt, u) 

(deterministic part of Eq. (19)) and proving the equality to bt+1.

First, substitute Eq. (25) into g(x̂t, ut), we get

(30)

which proves the correctness of Eq. (25).

Hence, substituting Eq. (25) to Eq. (27), we can see that Āt = At and M̄
t = Mt(x̂t, ut). 

Substituting xt̂+1 = g(x̂t, ut) into Eq. (29), we can show that H̄
t = Ht and V̄

t = V(g(x̂t, ut)).

Secondly, substitute Eq. (26) back into Eq. (20), we can see that Γt+1 = . Substitute Γt+1 = 

 into Eq. (22), we get:

(31)

(32)

Substitute Kt (Eq. (32)) and Γt+1 =  into Eq. (19):
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where the second equality follows from Sherman-Morrison-Woodbury Identity and the third 

equality follows from Eq. (28). Hence we prove the correctness of Eq. (26).

Eqs. (25) and (26) model the deterministic discrete inverse belief dynamics, which we write 

as . One can show that . With the stochastic 

discrete forward belief dynamics and deterministic inverse belief dynamics, together with 

cost objective Eq. (6) defined over belief space, we can directly apply SELQR to planning in 

belief space.

VI. Experiments

We demonstrate SELQR in simulation for a car-like robot, a quadrotor, and a medical 

steerable needle. Each robot must navigate in an environment with obstacles. We also apply 

B-SELQR to a car-like robot. We implemented the methods in C++ and ran scenarios on a 

PC with an Intel i3 2.4 GHz processor.

In our experiments, we used the local cost functions

(33)

where  is the initial state,  is the goal state, and Q0, Ql, and R are positive definite 

matrices. In our experiments, we use the first term in ct(x, u) to represent control effort 

where each control has independent cost, so assume R is a scaled identity matrix. We also 

set Q0 and Ql to scaled identity matrices, where the scaling parameter is large in order to fix 

the initial state and goal state for planning. We set function f(x) to enforce obstacle 

avoidance. For SELQR we used the same cost term as in [23],

(34)
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where  and di(x) is the signed distance between the robot at state x and the i'th obstacle. 

The parameter q controls the preferred clearance from the obstacles: lower values will result 

in more aggressive motion plans that allow the robot to move close to obstacles, while 

higher values encourage safer plans by heavily penalizing the robot being close to the 

obstacles. Since the Hessian of f(x) is not always positive semidefinite, we regularize the 

Hessian by computing its eigendecomposition and setting the negative eigenvalues to zeros 

[23]. We assume each obstacle is convex. For non-convex obstacles, we apply convex 

decomposition. For B-SELQR, to approximately consider the probability of collision we set 

, where di(b) is the minimum number of standard deviations of the 

mean of the robot's belief distribution needed to move to the obstacle's surface [26].

A. Car-like Robot in a 2-D Environment

We first apply SELQR to a non-holonomic car-like robot that navigates in a 2-D 

environment and can perfectly sense its state. The robot's state x = [x, y, θ, v] consists of its 

position (x, y), orientation θ, and speed v. The control inputs u = [a, ϕ] consist of 

acceleration a and steering wheel angle ϕ. The deterministic continuous dynamics is given 

by

(35)

where d is the length of the car-like robot. We assume the dynamics is corrupted by noise 

from a Wiener process (Eq. 1) and define . For the 

cost functions we set Q0 = Ql = 200I, R = 1.0I, and q = 0.2.

Fig. 2(a) shows the environment and the SELQR trajectory (illustrated by the path that 

results from following the control policy computed by SELQR in a simulation with zero 

noise). Consideration of stochastic dynamics is important for good performance. Fig. 2(b) 

shows the deviation from the goal for varying levels of noise α. We compare with Extended 

LQR, which uses deterministic dynamics to compute the control policy, and with simply 

executing the locally optimal trajectory, which is the open-loop execution of SELQR's 

nominal trajectory. We ran each method for 1,000 independent simulated runs. The locally 

optimal trajectory performs poorly since it is executed in an open-loop manner; the use of a 

closed-loop policy is needed for good performance in this scenario. The control policies 

from SELQR result in a smaller deviation from the goal since SELQR explicitly considers 

the control-dependent noise.

In Table I, we show SELQR's fast convergence for different values of Δ. The results are 

averages of 100 independent runs for random instances. In each instance, the initial state 

was chosen by uniformly sampling in the workspace, and the corresponding goal state was 

 (where the origin is the center of the workspace). Compared to iLQG, our method 

achieved approximately equal costs but required substantially less computation time.
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B. Quadrotor in a 3-D Environment

To show that SELQR scales to higher dimensions, we apply it to a simulated quadrotor with 

a 12-D state space. Its state  consists of position p, velocity v, orientation 

r (angle-axis representation), and angular velocity w. Its control input u = [u1, u2, u3, u4] 

consists of the forces exerted by each of the four rotors. We directly adopt the continuous 

dynamics ẋ = f(x, u) with physical parameters of the quadrotor and the environment from 

[23]. The non-linear dynamics are given by

where ei are the standard basis vectors, g = 9.8 m/s2 is the acceleration due to gravity, kv = 

0.15 is a constant relating the velocity to an opposite force related to rotor drag, m = 0.5 kg 

is the mass, J = 0.05I kg m2 is the moment of inertia matrix, ρ = 0.17 m is the distance 

between the center of mass and the center of the rotors, and km = 0.025 is a constant relating 

the force of a rotor to its torque. The notation [a] refers to the skew-symmetric cross product 

matrix of a. We add noise defined by , where .

Fig. 3 shows the SELQR trajectory for two different values of q, where we set α = 2%, Q0 = 

Ql = 500I, and R = 20I. As expected, the trajectory with larger q has larger clearance from 

obstacles. In Table I, we show SELQR's fast convergence for the quadrotor scenario for 

different values of Δ. We conducted randomized runs in a manner analogous to Sec. VI-A. 

For the quadrotor, compared to iLQG, our method achieved slightly better costs while 

requiring substantially less computation time.

C. Medical Needle Steering for Liver Biopsy

We also demonstrate SELQR for steering a flexible bevel-tip needle through liver tissue 

while avoiding critical vasculature modeled by a triangular surface mesh (Fig. 1). We use the 

stochastic needle model introduced in [27], where the kinematics are defined in SE(3). We 

represent the state x by the tip's position p and orientation r (angle-axis). The control input 

is u = [v, w, κ]T, where v is the insertion speed, w is the axial rotation speed, and κ is the 

curvature, which can vary from 0 to a maximum curvature of κ0 using duty-cycling. For the 

cost function, we set u* = [0, 0, 0.5κ0]T . Hence, we penalize large insertion speed, which 

given l and Δ corresponds to penalizing path length. It also penalizes curvatures that are too 

large (close to the kinematic limits of the device) or too small (requiring high-rate duty 

cycling, which may cause tissue damage). For motion noise, we set Mt from Eq. 2 to 

σ∥ut∥2I, where  is a positive constant that controls the size of the noise. The noise is 

proportional to the norm of control input.

Fig. 1 shows the SELQR trajectories for two insertion locations with Δ = 0.1s, l = 30, Q0 = 

Ql = 100I, R = I, q = 0.5, σ = 0.01. Table I shows SELQR's fast convergence for the 

steerable needle for varying Δ. The results are averages of 100 independent runs for random 
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instances. In each instance, the goal state was held constant, and we set the initial state 

such that the needle was inserted into the tissue from a uniformly-sampled point on the left 

(corresponding to the skin surface). Compared to iLQG, our method achieved approximately 

equal costs but required substantially less computation time.

Although SELQR is designed to compute policies for robotic systems with Gaussian noise, 

the policies may in some cases in practice also be effective for robotic systems with non-

Gaussian noise. For the needle steering scenario, we evaluated the computed policy in 

simulation under two different types of noise: (1) Gaussian noise sampled from the Gaussian 

distribution that was used for computing the policy, and (2) uniform noise sampled from a 

6D super-ball with radius σ∥u∥2. Namely, we set the radius of the ball equal to the standard 

deviation of the Gaussian distribution and evaluated the probability of success of the policy 

(i.e., the motion does not collide with obstacles). We conducted 1000 independent simulated 

runs for both types of noise. For α = 0.005, the probability of success was 99.8% for the 

Gaussian distribution and 99.5% for the uniform distribution. For α = 0.007, the probability 

of success was 97.4% for the Gaussian distribution and 97.0% for the uniform distribution. 

For α = 0.01, we achieved 93.1% for Gaussian distribution and 92.5% for uniform 

distribution. The results show that the computed locally optimal policy can, in some cases, 

handle motion noise from non-Gaussian distributions.

D. Belief Space Planning for a Car-like Robot

We apply B-SELQR to the car-like robot in Sec. VI-A but now with added uncertainty in 

sensing. We consider two environments, discussed below, in which the robot localizes itself 

using noisy measurements from sensors in the environment. The reliability of the 

measurement varies as a function of the robot's position.

For belief space planning we use the cost functions

We set Q0 = 1000I, R = 2I, Qt = 10I, Ql = 500I, and q = 0.1.

1) Light-dark Environment—We first consider the light-dark scenario suggested in [15]. 

The robot receives reliable measurements in the bright region and noisier measurements in 

the darker regions. Formally, the observation model is

(36)

where  is a given constant.

Fig. 4 shows the B-SELQR trajectory (illustrated by the path that results from following the 

control policy computed by B-SELQR in a simulation with zero noise) and associated 
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beliefs along the trajectory for a scenario with and without obstacles with β = 0.01. The 

computed control policies steer the robot to the light region where the measurement noise is 

smallest in order to better localize the robot before proceeding to the goal. We also show the 

convergence of B-SELQR. We compare with iLQG executed for the same cost functions in 

belief space using the method in [26]. The statistics were computed by averaging the results 

of 100 random instances. (For each random instance, we randomly sampled the initial state 

.) On average, B-SELQR requires fewer iterations to reach a desired solution quality.

We also tested B-SELQR under different sensing noise levels. Fig. 5 shows the computed 

trajectories under four different βs. When the noise is small (Fig. 5 (a) and (b)), the robot 

travels less distance in the light domain since it can localize itself more quickly. On the other 

hand, when the noise is larger, the robot usually needs to travel more distance in the light 

domain to better localize itself. For large sensing noise as shown in Fig. 5 (d), the 

uncertainty increase quickly again after the robot leaves the light domain and causes the 

possibility of collision.

2) Environment with Beacons—We also consider a scenario where the car-like robot 

estimates its location using measurements from two beacons, b1 and b2, placed in the 

environment at positions (xb1, yb2) and (xb2, yb2). The strength of the signal decays 

quadratically with the distance to the beacon. The robot also measures its current speed and 

orientation angle. The measurement uncertainty is scaled by a constant matrix N. This gives 

us the non-linear observation model

(37)

where  and . Fig. 6 (left) shows the quadratic decay in the signal strength 

of the beacons in the environment, where white indicates a strong signal and dark gray 

indicates a weak signal.

Fig. 6 shows the B-SELQR trajectory and associated beliefs along the trajectory. The 

computed control policies steer the robot to move in the vicinity of the two beacons in order 

to better localize the robot before proceeding to the goal. We also show the convergence of 

B-SELQR in Fig. 6. We compare with iLQG in belief space executed for the same cost 

functions in belief space using 100 random instances. Again, on average, B-SELQR requires 

fewer iterations to reach a desired solution quality.

VII. Conclusion

We presented Stochastic Extended LQR (SELQR), a novel optimization-based motion 

planner that computes a trajectory and associated linear control policy with the objective of 

minimizing the expected value of a user-defined cost function. SELQR applies to robotic 

systems that have stochastic non-linear dynamics and state- and control-dependent motion 
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uncertainty. We also extended SELQR to applications with imperfect sensing, requiring 

motion planning in belief space. Our approach converges faster and more reliably than 

related methods in both the robot's state space and belief space for multiple simulated 

scenarios, ranging from a mobile robot to a steerable needle.

In future work, we hope to broaden the applicability of the approach. The approach currently 

assumes motion and sensing uncertainty are modeled using Gaussian distributions. While 

this assumption is often appropriate, it is not valid for some problems. Our approach also 

relies on first and second order information, so to improve stability we plan to investigate the 

use of automatic differentiation. We also plan to incorporate a line search into SELQR to 

facilitate formal analysis of the method's convergence properties. We also plan to apply the 

methods to physical robots like steerable needles in order to efficiently account for motion 

and sensing uncertainty.
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Note to Practitioners

The motion of a robot cannot be predicted with certainty in a variety of robotics 

applications, including aerial robots moving in turbulent conditions, mobile robots 

maneuvering on unfamiliar terrain, and robotic steerable needles being guided to clinical 

targets in soft tissue. Explicitly considering uncertainty during motion planning before 

task execution can improve the quality of computed plans. We introduce a novel 

optimization-based motion planner, Stochastic Extended LQR (SELQR), which 

computes a trajectory and associated linear control policy with the objective of 

minimizing the expected value of a user-defined cost function. For applications that 

include both motion uncertainty and imperfect sensing, we extend SELQR to plan in the 

space of the robot's beliefs, i.e., distributions over the set of possible states. We 

demonstrate the speed and effectiveness of SELQR in simulation for a variety of robotics 

applications.
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Fig. 1. 
We show plans computed by SELQR for needle steering for a liver biopsy with motion 

uncertainty. The objective is to access the tumor (yellow) while avoiding the hepatic arteries 

(red), hepatic veins (blue), portal veins (pink), and bile ducts (green). The smooth 

trajectories explicitly consider uncertainty and minimize the a priori expected value of a cost 

function that considers obstacle avoidance and path length.
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Fig. 2. 
(a) The SELQR trajectory for a car-like robot moving to a green goal while avoiding red 

obstacles. (b) Mean and standard deviations for the deviation from the goal over 1,000 

simulations for SELQR and related methods with different noise levels.
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Fig. 3. 
SELQR trajectories for a quadrotor in an 8 cylindirical obstacle environment.
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Fig. 4. 
(a) B-SELQR trajectory for a car-like robot navigating to a goal (green) in a 2-D light-dark 

environment (adapted from [15]). (b) B-SELQR trajectory for the environment with 

obstacles (red circles). The blue ellipsoids show 3 standard deviations of the belief 

distributions. B-SELQR converges faster than iLQG in belief space in both scenarios.
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Fig. 5. 
B-SELQR trajectories under different sensing noise levels
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Fig. 6. 
B-SELQR trajectories for a car-like robot navigating to a goal (green) in an environment 

where two beacons are used for localization (adapted from [26]) while avoiding obstacles 

(red). (b) Comparison between B-SELQR and iLQG in belief space in terms of the number 

of iterations for convergence.
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TABLE I

Quantitative Comparison of SELQR and iLQG. Results averaged over 100 independent runs.

Scenario Δ (s)
SELQR iLQG

Average Cost Average Time (s) Average # Iterations Average Cost Average Time (s) Average # Iterations

Car-like robot

0.05 79.4 0.4 5.7 80.5 1.1 13.4

0.1 55.5 1.0 16.0 53.4 2.5 43.2

0.2 50.8 1.2 18.4 51.7 2.0 35.4

Quadrotor

0.025 552.1 30.3 7.7 798.0 52.7 23.4

0.05 272.7 50.1 14.4 292.1 113.7 51.6

0.1 191.1 66.3 20.0 197.1 163.9 76.4

Steerable needle

0.075 53.6 0.79 5.3 58.3 1.2 12.5

0.1 42.6 0.95 6.36 44.5 1.4 14.6

0.125 39.1 1.3 10.1 40.0 1.5 15.6
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Algorithm 1

SELQR

Input: stochastic continuous-time dynamics (Eq. (1)); ct: local cost functions for 0 ≤ t ≤ l; Δ: time step duration; l: number of time steps

Data: x̂: smoothed states; π: control policy; π‒: inverse control policy; vt: cost-to-go function; v̄t: cost-to-come function

1 πt = 0, St = 0, st = 0, st = 0

2 repeat

3     S̄
0 := 0, s̄0 := 0, s̄0 := 0

4     for t := 0; t < l; t := t + 1 do

5         x̂t = –(St + S̄t)–1 (st + s̄t) (smoothed states)

6         ût = πt(x̂t), x̂t+1 = g(x̂t, ût)

7         Linearize inverse discrete dynamics around (x̂t+1, ût) (Eq. (16))

8         Quadratize ct around (x̂t, ūt) (Eq. (12))

9         Compute S̄t+1, s̄t+1, s̄t+1, v̄t+1, π‒t (forward value iteration in Sec. IV-C)

10         end

11     Quadratize cl around xl̂ in the form of Eq. (12) to compute Ql, ql, and ql

12     Sl := Ql, sl := ql, and sl := ql.

13     for t := l – 1; t ≥ 0; t := t – 1 do

14         x̂t+1 = –(St+1 + S̄t+1)–1(st+1 + s̄t+1) (smoothed states)

15         ut = π‒t xt + 1 , xt̂ = ḡ(x̂t+1, ût)

16         Linearize stochastic discrete dynamics around (x̂t, ût) (Eq. (11))

17         Quadratize ct around (x̂t, ût) (Eq. (12))

18         Compute St, st, st, vt, πt (backward value iteration in Sec. IV-B)

19         end

20 until Converged (e.g., v0 stops changing significantly);

21 return πt for 0 ≤ t ≤ l
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