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Abstract

Optical coherence tomography (OCT) has gained widespread application for many biomedical 

applications, yet the traditional array of contrast agents used in incoherent imaging modalities do 

not provide contrast in OCT. Owing to the high biocompatibility of iron oxides and noble metals, 

magnetic and plasmonic nanoparticles, respectively, have been developed as OCT contrast agents 

to enable a range of biological and pre-clinical studies. Here we provide a review of these 

developments within the past decade, including an overview of the physical contrast mechanisms 

and classes of OCT system hardware addons needed for magnetic and plasmonic nanoparticle 

contrast. A comparison of the wide variety of nanoparticle systems is also presented, where the 

figures of merit depend strongly upon the choice of biological application.

Index Terms

Contrast agents; optical coherence tomography; plasmonic nanoparticles; superparamagnetic iron 
oxides; magnetomotive

 I. Introduction

OPTICAL coherence tomography (OCT), first reported in 1991 [1], has become widely 

adapted particularly for retinal imaging [2] and other ophthalmic applications [3], with 

emerging applications in coronary artery imaging [4], surgical guidance [5], and endoscopic 

imaging of the gastro-intestinal tract [6, 7] and upper airways [8]. OCT operates on the 
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principle of low-coherence gating to provide a depth-resolved image of light scattering 

within biological tissue [9]. Light scattering, in general, is caused by refractive index 

heterogeneities on the scale of the wavelength of the probing light (λ), which means that 

cells and subcellular objects such as nuclei and mitochondria tend to provide OCT contrast 

[10]. This mechanism of contrast allows one to distinguish different cell layers within the 

human retina [11], sites of atherosclerotic plaque within the coronary artery [12], as well as 

blood flow for angiography [13]. However, it is also somewhat limited for applications such 

as cancer detection, where the speckled features of normal and cancer tissue can appear very 

similar [14].

In order to widen the application space of OCT, there has been much effort to develop 

contrast agents and associated imaging methods [15, 16]. Because OCT only senses 

coherently backscattered light, it cannot detect light from traditional incoherent (fluorescent) 

probes used widely in microscopy. To develop an effective contrast agent probe for OCT, it 

must provide a signal that is distinct from that of the tissue surrounding it. In this paper, we 

discuss two highly successful classes of contrast agents: magnetic contrast agents that, when 

interrogated with a magnetic field, provide a unique motion signal, and plasmon-resonant 

contrast agents that exhibit extremely high optical cross-sections, offering a variety of 

optical effects that can be exploited for sensing within tissue. In many applications such as 

cancer diagnostics, effective targeting of these agents by bioconjugation or the enhanced 

permeability and retention effect is needed, and the reader is directed to reviews for more 

detailed information about targeting moieties [17, 18]. Also, magnetic and plasmonic 

nanoparticles are by no means the only methods for OCT contrast enhancement, and the 

reader is directed to review articles that cover a broader range of development [16, 19, 20].

 II. Magnetomotive OCT: Theory and Practice

The magnetic volume susceptibility at zero magnetic field, χ(B=0), quantifies the rate of 

change in the magnetization of a material as the magnetic flux density, B, is increased. 

Biological tissues are relatively non-magnetic, that is, χ is on the order of −10−5, and is 

dominated by that of water [21]. In comparison, magnetic iron oxides (MIOs) can exhibit χ 

~ 1, or 105 stronger than that of tissue. Thus, χ can provide an effective contrast mechanism 

for magnetic particle imaging. Because OCT is particularly sensitive to motion, with phase-

resolved OCT providing displacement resolution in the picometer range [22], 

magnetomotive OCT (MMOCT) exploits the motion of magnetic nanoparticles induced by 

an applied magnetic field (Fig. 1). This is known as the magnetic gradient force effect:

(1)

where F is the force acting on the MIO with susceptibility χ within its surrounding medium, 

χmed, B is the magnetic flux density, V is the MIO volume, and μ0 is the vacuum 

permeability. Interestingly, the force acting on particles with χ>0 (paramagnetic) always 

points toward the electromagnet, irrespective of the polarity of the B field.
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Magnetic iron oxides are a natural choice as MMOCT contrast agents because iron is 

already metabolized within the human body in large quantities, and iron oxide nanoparticles 

have already been in use as MRI contrast agents with few side effects [23]. There are two 

magnetic crystalline forms of iron oxide: γ-Fe2O3 (maghemite) and Fe3O4 (magnetite), 

which can often be produced by the same synthesis methods and can be difficult to 

distinguish between due to similar X-ray diffraction and magnetic properties [24]. 

Thermodynamically, magnetite slowly oxides to maghemite, then eventually to hematite (α-

Fe2O3, or rust) [25].

Interestingly, the figures of merit for an OCT contrast agent are different than for MRI 

contrast. In MRI, MIOs must be small in order to maximize surface area contact with 

adjacent water molecules, whose magnetic resonance is shifted by the local particle 

magnetization [26]. In OCT, MIOs must maximize their motion via Eqn. (1), which suggests 

a large particle volume, V. However, there are two practical limits to the size of MNPs: a) if 

particles are too large to be administered to the imaging target (e.g., into small capillaries or 

by diffusion through tissue), and b) if particles become significantly ferromagnetic such that 

they irreversibly aggregate under an applied magnetic field. Superparamagnetic iron oxides 

(SPIOs) are typically desired because they maintain strong magnetic susceptibility while 

lacking remanent magnetization. Thus, MMOCT contrast agents tend to have MIO cores 

between ~10-50nm, although larger particle clusters [27] or novel ferrofluid-filled 

microspheres [28] have been developed for certain applications.

Importantly, MIOs are optically absorbing, appearing almost completely black in color. 

Thus, it is not possible to use OCT to directly sense their magnetic gradient-driven motion 

(magnetomotion). It is only in their coupling with adjacent light scattering structures within 

the tissue that they can be detected (Fig. 1). MIOs free in solution (such as a blood vessel) 

will exhibit little OCT motion contrast in comparison to MNPs elastically bound to a target 

within the tissue (such as a targeted cell receptor, or by being internalized into a subcellular 

compartment). Tissue elasticity also provides an important restoring force when the B-field 

is switched off, returning the tissue to its original state of deformation. This allows for the 

application of modulated B-fields to be used to measure several cycles of repeated 

deformation, improving the signal-to-noise ratio (SNR), analogous to lock-in detection.

Despite the ability to attain arbitrarily large SNR with repeated measurements, there is a 

fundamental sensitivity limit to MMOCT given by the ratio of the medium to the particle 

magnetic susceptibility [29]:

(2)

which corresponds to an MIO density on the order of ρ = 8μg/g for a typical MIO. This is 

the MIO concentration where the force from the diamagnetic components of the tissue 

(which push away from the magnet) exactly balance the force on the particles, and there is 

no net motion. Below this limit, the tissue is actually pushed away from the magnet, which 

can be seen particularly if the magnetic field being used is too high. In fact, in [29, 30], it 
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has been shown that there is a decreasing effect of MMOCT contrast with increasing 

magnetic field if the field is above that needed for the MIOs to reach their saturation 

magnetization. This is somewhat counter-intuitive, and can be understood by the fact that the 

diamagnetic tissue magnetization (which is negative) continues to grow with B even after the 

MIO are saturated, eventually cancelling out the MIO magnetization. In the other extreme, if 

the B-field is too low, the MIO motion will be too minute to detect; thus, a sweet spot should 

be determined depending upon the target MIO concentration for the given application and 

phase noise of the OCT system; this sweet spot is typically just a little below the saturation 

field, which for MIOs is ~0.1 T.

The most challenging aspect of an MMOCT system is constructing an appropriate magnetic 

field delivery system. While some researchers have opted for commercially-available 

pointed-core solenoids which provide an extremely strong B field gradient at their tip, this 

requires illuminating the sample from the opposite direction, limiting studies to thin 

samples. In comparison, open-air designs such as in Fig. 1 permit an arbitrarily thick sample 

to be assessed, although do require higher currents to compensate for the lack of a solenoid 

core material, and thus will need to be water-jacketed to dissipate heat. The most expensive 

component is typically the programmable power supply (~100-250W), although a unipolar 

supply can save cost since MNPs will always be pulled in the same direction irrespective of 

polarity (Eq. 1).

Tissue mechanics play an important role in determining the MMOCT sensitivity and 

imaging speed. The displacement is inversely proportional to the tissue elastic modulus, and 

thus stiffer tissues will provide lower MMOCT contrast. At the same time, tissue 

viscoelasticity will slow the response time between the application of the force and the 

resulting displacement, limiting the maximum frequency that the B-field can be modulated 

(in practice, typically <100 Hz). Use of these lower frequencies avoids heating that occurs in 

techniques such as magnetic hyperthermia, where MIOs are modulated typically at >100 

kHz to achieve significant heating effects [31]. In sinusoidally modulated MMOCT where 

the B-field is modulated several cycles per transverse position, this limits the accessible 

imaging acquisition time to several seconds. The new generation of high frame rate OCT 

systems (>100 fps) are currently allowing for MMOCT to be performed by collecting 

several frames (or volumes [32]) per B-field cycle, and thus frame rates nearing video rate 

are now possible.

It should be noted that there are a variety methods for performing MMOCT that are not 

necessarily subject to all of the discussion above, such as a two-coil system for MNP 

contrast in fluids [33], and the use of pulsed, rather than sinusoidal, B-fields [34]. Also, 

related platforms for imaging, including optical Doppler tomography (ODT), optical 

coherence elastography (OCE), and optical coherence microscopy (OCM) have been 

employed with magnetomotive contrast. These will be discussed in more detail in Section V.

 III. Plasmonic Nanoparticle-based contrast with OCT: Theory and Practice

Surface plasmons are a collective excitation of electrons that oscillate across the surface of 

metals. In nanoparticles, these plasmons are confined to a small area and can become 
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resonantly excited by light, either absorbing or re-emitting the light with high efficiency. In 

particular, only the noble metals gold and silver exhibit surface plasmon resonances (SPRs) 

in the visible spectrum, with gold being the only material offering SPRs in the near-infrared 

(NIR) wavelength regime typically used for OCT.

The fact that gold is a noble metal is also fortuitous for biomedical applications; gold is 

chemically inert and has been used as a medicine since ancient times [35], although caution 

should be taken to ensure that the surface charge does not induce cytotoxicity [36].

The SPR property of gold nanoparticles (GNPs) offers a unique opportunity to tailor contrast 

agents for OCT, as summarized conceptually in Fig. 2. For gold nanospheres, the SPR peak 

wavelength shifts gradually from ~535 nm to 635 nm for particles from 20 nm to 140 nm, 

respectively [37]. To access longer wavelengths, shaped particles such as ellipsoids (or, in 

practice, nanorods) are used which split the resonance modes along the principle axes of the 

particle. In the case of gold nanorods, aspect ratios of 2.4 to 5.6 provide longitudinal SPRs 

from ~650 nm to 950 nm, respectively [38].

In addition to nanorods, GNPs with more complex geometries, like nanocages [39], 

nanorings [40] and nanoshells [41], also offer largely tunable spectral ranges. This is useful 

in multichannel measurements as seen with polarization-sensitive OCT [42] and SOCT [43]. 

Furthermore, shifting SPRs toward shorter wavelengths tailors the GNPs for use with 

higher-resolution OCT systems. Conversely, shifting the SPR toward longer wavelengths 

tailors them for OCT systems with larger penetration depths. This makes GNPs attractive for 

use with different systems depending upon the application.

A very important consideration is whether the SPR is predominantly light-absorbing or 

light-scattering in nature. Smaller particles are absorbing, with a transition to scattering-

dominance at ~100 nm in size [44]. Thus, applications such as photothermal OCT (PTOCT), 

which requires high light absorption to generate heat, will tend to prefer smaller GNPs, 

while diffusion OCT (DOCT) exploits dynamic light scattering and prefers larger GNPs. 

Spectroscopic OCT (SOCT) can, in theory, be designed to sense either wavelength-

dependent absorption or scattering, although in practice tends to employ absorption due to 

the already high scattering coefficient of tissue. Importantly, the optical extinction 

coefficient scales with the particle volume, V, in the absorbing regime, and V2 in the 

scattering regime [45], such that increasing particle size can rapidly increase optical 

detection. However, this must be balanced against the needs for smaller particles that can be 

effectively delivered to the biological target of interest.

An important consideration for SOCT is the quality factor (Q) of the SPR, as higher Q will 

provide a stronger wavelength-dependence, as well as the potential for multi-channel 

detection schemes. The Q of gold nanorods in particular has been established to be superior 

to gold spheres [46]. Another property of GNPs is polarization anisotropy, e.g., the ratio of 

the optical polarizability between light that oscillates parallel and perpendicular to the 

geometrical axis of the SPR, which can be exploited for DOCT. The need for polarization 

anisotropy in methods like DOCT, discussed below, also suggests the use of anisotropic 

particles such as gold nanorods.
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There are several notable GNP geometries missing from Fig. 2, including gold nanoshells 

[41] and nanocages [47], which will be discussed in greater detail in Section VI.

 A. Spectroscopic contrast

Spectroscopic OCT (SOCT) was originally developed to assess intrinsic optical properties 

through analysis of the backscattered OCT spectrum [48]. When GNPs are added to tissue, 

they modify the native wavelength-dependent scattering and absorption coefficients (μa(λ) 

and μs(λ), respectively). The resulting OCT signal amplitude is proportional to μs(λ) 

(presumed to scale with the backscattering coefficient, μb) and decays exponentially in 

depth, z, proportional to the total extinction μt = μs + μa [49]. Thus, in SOCT, relative μs can 

be obtained from the overall OCT signal amplitude, and μa is subsequently inferred from a 

differential with respect to z.

Because tissue is highly scattering in the NIR (μa<<μs) [50], most applications of GNPs with 

SOCT have employed absorbing GNPs. If we consider the resulting absorption and 

scattering coefficients in terms of the presence of tissue light scattering structures and 

absorbing GNPs with densities of ρs and ρa, respectively, we can write:

(3)

where εs and εa are the molar extinction coefficients of the tissue and GNPs, respectively. 

Thus, characterization of εs and εa in advance of an imaging experiment can allow for 

estimation of the density of absorbing GNPs, ρa, quantitatively. A least-squares solution for 

this problem exists [51], and models accounting for various noise contributions have been 

described [52]. There are, of course, many other computational methods for detecting 

wavelength-dependent absorbers within tissues, including simpler centroid-shifting methods 

[53], and spectral triangulation [54]. The choice of method should balance the need for 

accuracy and presence of particular sources of noise (such as modulation of wavelength-

dependent scatting in the native tissue) against imaging speed.

Building upon this basic concept, more advanced methods for SOCT-based GNP contrast 

have been developed. For example, differential contrast between OCT images from a non-

overlapping dual-band spectrum has been applied for discrimination between GNPs with 

different SPR wavelengths [55]. In a similar vein, GNPs synthesized with varying SPR 

wavelengths have been suggested for contrast imaging of multiple targeting moieties 

simultaneously [56]. Interestingly, while not demonstrated with SOCT, it may be possible to 

exploit the SPR red-shift that occurs between GNPs as they are brought into close proximity, 

which allows one to sense an activatable event such as binding of multiple GNPs to a single 

location on a cell surface [57].

 B. Photothermal contrast

When absorbing GNPs are used with an SPR in the wavelength band of the OCT light, it is 

often difficult to avoid photothermal heating. Fortunately, the photothermal effect itself can 

be exploited for contrast. As heat dissipates from the GNP into the surrounding aqueous 
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tissue, two effects occur simultaneously: the refractive index (n0) decreases with temperature 

T according to dn/dT (which is on the order of −10−4/°C for water), while the volume 

increases according to the volume expansion coefficient, β (which is on the order of 

2−4×10−4/°C for water). These terms respectively decrease and increase the optical path 

length, with the net path length change being given by the following [58]:

(4)

While these effects this may appear to be small, the cumulative effect of over even L0=10μm 

of path length and a temperature rise of 1°C can give rise to an optical path length difference 

on the order of 3nm, which is within reach of many phase-sensitive OCT systems.

Like MMOCT, PTOCT is a modulated contrast method (dark contrast method), which offers 

greater SNR than methods requiring prior knowledge or reference images of tissue in the 

absence of contrast agents [16]. Typically, PTOCT is performed by modulating a heating 

beam tuned to the GNP SPR but outside the passband of the OCT beam. OCT can then 

monitor the resulting modulation of Δz and employ lock-in detection. The dynamics of heat 

dissipation dictate imaging speed in this method; use of a laser intensity that is too high, or 

modulation without sufficient rest period between heating events results in loss of thermal 

confinement that can lead to creep of the tissue temperature over several modulation cycles 

[58]. Because the temporal response occurs over ~1 ms, modulation speeds on the order of 

10-100s of Hz are typical [58, 59].

More advanced methods have been employed to enhance the PTOCT. Initially demonstrated 

using optical coherence microscopy [60], photothermal optical lock-in OCT (poli-OCT) 

decreases PTOCT acquisition time and eliminates the need for post-processing of images 

using temporal phase data by inducing a phase modulation in the reference arm of the 

interferometer. Setting the integration time of the camera to an integer multiple of the 

frequency shift period results in low-pass filtering of the signal, isolating the signal due to 

photothermal heating and reducing signals from static scatterers to zero [61]. Poli-OCT 

increases image acquisition rates to allow for capturing in vivo time-course dynamics (e.g. 
blood flow and drug delivery).

 C. Diffusion contrast

An emerging form of OCT contrast is exploiting the Brownian diffusion of GNPs as a 

unique, time-dependent signature assessed by dynamic light scattering (DLS) techniques. 

DLS is a technology traditionally used for particle sizing, where the ability to depth-resolve 

DLS signatures in OCT was noted early in the development of OCT [62]. Today, DLS-based 

OCT is most commonly used to quantify aspects of hemodynamics by measuring red blood 

cell diffusion and flow [63]. For the purposes of contrast imaging, DLS of GNPs provides 

some unique opportunities for assessing viscous liquid properties [64] and porous properties 

[65] of tissues. This is because the translational diffusion rate, DT, of spherical particles 

within a viscous medium can be described by the Stokes-Einstein relation:
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(5)

Where η is the medium viscosity, a is the particle radius, and kB is the Boltzmann constant. 

In practice, the diffusion rate can be quantified by computing the temporal autocorrelation, 

Γ, of the OCT signal:

(6)

where q is the scattering vector equal to 2k in the backscattering geometry of OCT. 

Importantly, because GNPs are plasmon-resonant, they provide orders-of-magnitude larger 

optical scattering than non-resonant tissue structures of the same size. Because of the strong 

size-scaling of optical scattering, tissue features that are larger (on the order of λ) will 

dominate the endogenous OCT signal. According to Eq. 5, these larger features will exhibit 

smaller DT, and thus the detection of unusually high DT is a unique signature of GNPs 

within tissue.

The choice of GNPs is therefore dictated by a need for sufficiently large size to provide 

optical scattering, balanced against the diffusivity of GNPs into the tissue. In practice, gold 

nanorods of ~20 nm × 60-80 nm have been found to rapidly homogenize throughout model 

tissue structures, while being sufficiently large for DOCT detection [65]. Interestingly, gold 

nanorods also provide polarization anisotropy (Fig. 2), which provides the ability to measure 

both rotational (DR) and translational (DT) diffusion for further tissue discrimination [64].

The applications of GNP-based DOCT are growing. In tissues, non-adherent GNPs can be 

designed to diffuse through extracellular pores to monitor tissue remodeling processes [65] 

that may provide new insight into cancer growth. In liquids such as mucus, GNPs can 

provide relative measures of hydration [65], providing a metric for assessing respiratory 

diseases like cystic fibrosis. More comprehensive details are provided in Section VI.

 IV. Experimental systems overview

Table 1 provides an overview of many (but not all) magnetic- and plasmonic-based OCT 

contrast systems reported to date, with emphasis on in vivo experiments, novel particle 

geometries, and novel imaging schemes. Within each imaging modality (and within each 

subset of GNP shape), particles are sorted by size from small to large. When possible, a 

particle concentration is given to aid in general comparison between the techniques, 

although the reader should be cautioned that direct comparison of concentrations is not 

always possible due to varying applications and experimental details.

 V. Magnetomotive OCT Experiments

This section is organized as follows. First, the various types of magnetomotive optical 

coherence tomography (MMOCT) systems are described, including phase- vs. amplitude-
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sensitive and sinusoidal vs. pulsed systems. Next, types of magnetic particles that have been 

reported to be used with MMOCT imaging are discussed. Finally, the breadth of potential 

clinical applications for MMOCT is addressed. While this review is intended to represent the 

widest variety of ongoing efforts in this field, for the sake of brevity only a subset of 

publications are able to be addressed.

 A. System Types

MMOCT was first reported by Oldenburg et al in 2004 [66], with follow-up papers in 2005 

[67, 68]. These were obtained using a time-domain OCT system where the B-field was 

modulated for each A-scan; thus, scan times were quite long (1 minute). Because MMOCT 

operates by both optical and mechanical principles, tissue phantoms were prepared to mimic 

the optical and mechanical properties of soft tissue by embedding optically-scattering TiO2 

particles into a silicone matrix. The addition of varying amounts of MIOs into each phantom 

allowed for determination of the MMOCT system sensitivity, which was found to be 220 

μg/mL, establishing a starting point for further improvements [68]. The first in vivo 
MMOCT was obtained in African frog tadpoles (Xenopus laevis) under anesthesia. 

Magnetic particles were consumed by tadpoles via their suction feeders and subsequently 

observed within their digestive tract [68].

This early work was performed using a time-domain OCT that was not phase-sensitive, and 

thus contrast was limited to differences in the OCT signal amplitude. To overcome this 

limitation, a differential-phase OCT system was developed for sensitive displacement 

measurement [69], which was applied to magnetomotive imaging [70]. Results demonstrated 

nanoscale resolution of magnetic particle motion within ex vivo tissues, where the particles 

had accumulated within the in vivo animal models to demonstrate deliverability [70, 71].

The emergence of spectral- or Fourier-domain OCT provided improved imaging times [72, 

73] as well as phase-sensitivity due to the avoidance of moving parts [22]. Crecea et al 
(2007) investigated the spectral-domain amplitude and phase signals from magnetomotion in 

phantoms, and observed free oscillations induced after application of a step-like B-field [74]. 

Further work with phase-resolved magnetomotive OCT by Oldenburg et al (2008) 

demonstrated sensitivity to nanomolar concentrations of magnetic nanoparticles under 

sinusoidal modulation [29]; achieving nanomolar sensitivity marked an important milestone 

for cell-receptor targeted imaging applications.

The application of pulsed magnetic fields has also been explored for MMOCT. By pulsing 

the electromagnet, one can reduce coil heating effects endemic to the higher duty-cycle 

sinusoidal method [34]. Using this technique, phantoms with magnetically-labeled cells at a 

relatively large standoff distance of 30 mm from the coil were imaged [34], and labeled cells 

within 3D constructs have also been contrasted in pulsed MMOCT [75].

While MMOCT is traditionally used to image elastically-bound MIOs within tissue, the 

ability to contrast unbound MIOs in free solution, such as the blood volume, would provide 

new translational opportunities. To address this need, Kim et al (2013) developed the dual-

coil MMOCT system displayed in Fig. 3 [33]. In this configuration, the coils are used to 

apply opposing forces in sequence, in order to initially displace then restore MIOs in 
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solution. Thus, it avoids the need for an intrinsic elastic restoring force to generate a 

modulated displacement signal.

Magnetomotive optical coherence elastography (MMOCE) is a natural extension of 

MMOCT that exploits the dependence of induced tissue vibration on its intrinsic mechanical 

properties. While the vibrational response of tissues to external loading forces was 

demonstrated via OCE [76], the ability to use MIOs to apply those forces internally in 

tissues offers added flexibility and with lower strain rates to avoid nonlinearities. In 2013, 

Crecea et al demonstrated MMOCE by studying free oscillations of ex vivo tissues in 

response to stepped forces, where the vibrational frequency and rise time were 

proportionally and inversely related to the elasticity, respectively [77]. Then, in 2014, Crecea 

et al adapted these methods on an optical coherence microscopy (OCM) setup to investigate 

biomechanical properties on the single-cell scale [78]. Other efforts in MMOCE have 

investigated shear-wave methods commonly used in OCE [79].

The frequency-dependence of tissue mechanical properties can also be exploited by 

interrogating MIOs in tissues at varying frequencies. In 2015, Ahmad et al demonstrate this 

principle in phantoms and tissues, with validation against finite-element modeling [80]. As 

an extension of this, Oldenburg et al (2010) developed a resonant acoustic spectroscopy 

method to measure elasticity of small biosamples with high precision [81]. Interestingly, this 

has found particular application in the assessment of blood clot elasticity [82, 83], which 

may in future work connect with the same group’s efforts in magnetically-loaded platelet 

labeling of blood clots [30].

 B. MIO Particle Sizes and Types

Here we will cover the general classes of MIOs used in MMOCT; for more detailed 

information, the reader is directed to a review on this topic [84]. The choice of magnetic iron 

oxide particle core size and coating for MMOCT should take into consideration the desired 

magnetic properties and targeting moieties. For nanoparticles (<100 nm), several general 

classes of MIOs have been used. One of the most common are dextran-coated MIOs 

produced by a precipitation method that can be performed without special equipment [85]. 

These tend to produce particles in the 10-20 nm size range, while the dextran coating can 

increase their hydrodynamic diameter to 30 nm or more, and have successfully been used in 

several MMOCT studies [82, 86]. An important class of dextran-coated MIOs are MRI 

contrast agents FDA-approved as liver contrast agents; of these, Feridex IV™ has been used 

in several MMOCT studies [30, 70], noting that they are comprised of clusters of ~5 nm 

MIO cores embedded in a larger dextran matrix, with an overall average hydrodynamic 

diameter of 36 nm [23].

To generate nanosized MIOs that have greater size monodispersity, synthesis via thermolysis 

of iron precursors [87]. Commercially available particles prepared in this way are available 

with a variety of coatings (Ocean Nanotech, Inc.); for MMOCT, COOH-coated MIOs have 

been employed with success [81, 88].

The conjugation of antibodies onto MIOs confers them with specificity for specific over-

expressed cell receptors. John et al (2010) conjugated anti-HER2 onto dextran-coated MIO 

Oldenburg et al. Page 10

IEEE J Sel Top Quantum Electron. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particles, demonstrating specific uptake into tumors via MMOCT in an in vivo rodent model 

of breast cancer; the same particles provided MRI contrast for validation of the particle 

localization within tumors [86].

At the same time, conjugation of fluorescent dyes confers multi-functional (OCT-

fluorescence) imaging capabilities that can aid in validating the biodistribution of MIOs used 

in animal models in vivo. In particular, oil-filled albumin microspheres offer a platform 

particularly amenable to multi-functionalization. Several studies have demonstrated a class 

of such microspheres that are filled with an oil-based ferrofluid containing fluorescent dye, 

while being surface labeled with a peptide to target sites of cancer and atherosclerosis [89, 

90]. Because these protein microspheres are nominally 2-5 μm in size, they are appropriate 

for vascular targets such as atherosclerosis, as well as cancers exhibiting “leaky vasculature” 

where blood pool agents will tend to accumulate [91]. In addition to these customized 

multifunctional particles, MMOCT has also been used with commercially available 

magnetic microbeads that offer fluorescent as well as surface conjugation capabilities [78].

 C. Contrast Imaging Applications

While MMOCT is currently a pre-clinical technology, the breadth of research studies 

implicates a wide variety of future clinical applications. One class of applications lies in 

tracking magnetically-labeled cells, the feasibility of which was initially demonstrated in 3D 

cell culture in early MMOCT work [67]. Because macrophages readily phagocytose 

nanoparticles, MMOCT can be used to track the fate of macrophages in the liver and spleen 

[70], or macrophage-laden sites of vulnerable atherosclerotic plaques [71]. Also, the ability 

to track stem cells is highly sought after for monitoring stem cell therapies; recently, Cimalla 

et al. (2015) demonstrated MMOCT of labeled stem cells in vitro [75], working toward a 

method for monitoring retinal regeneration.

Blood platelets are a powerful tool for functional imaging, as they readily take up foreign 

particles via a mechanisms known as “covercytosis” [92], and play a crucial role in 

hemostasis and thrombosis [93]. Thus, the highly functional nature of platelets can be used 

to target sites of vascular damage where blood clots form. As shown in Fig. 4, MMOCT of 

magnetically-labeled platelets flowed through ex vivo porcine arteries exhibits highly 

specific contrast only to damaged blood vessel walls [30]. In combination with existing 

technologies for cardiovascular imaging [4], MMOCT of labeled platelets, macrophages, or 

functionalized microspheres discussed in the previous subsection, may play a role in 

identifying sites of vulnerable atherosclerotic plaque.

Moving beyond pure imaging applications, there has been recent development in the area of 

theranostics (i.e., simultaneous diagnostics and treatment). Huang et al. (2015) report a 

novel clustered magnetic nanoparticle with both light scattering properties at 860 nm for 

OCT imaging, and absorbing properties at 1064 nm for photothermal therapy [27]. Thus, 

cancer cells were shown to be both imaged and subjected to hyperthermia by the same 

particles. Interestingly, the potential exists to provide heating to tissue directly via magnetic 

fluid hyperthermia by applying a magnetic field modulated in the 100’s of kHz [94], a 

technique that has yet to be explored in conjunction with MMOCT.
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Given the widespread use of OCT in ophthalmic applications, it should be noted that 

MMOCT has also been explored in this area. In 2010, Wang et al. reported the ability to 

contrast magnetic beads in the anterior segment of a mouse eye, which was overlaid on the 

structural OCT image [95]. The same group subsequently developed a SOCT-MMOCT 

platform for detecting cochlin (a precursor of glaucoma) in the trabecular meshowork of 

mice using anti-cochlin labeled magnetic particles [96].

Elastographic applications of magnetomotive imaging via MMOCE are also under 

development. For example, measurements of lung epithelium compliance can aid in tracking 

the progression of bronchiectasis in diseases such as COPD; Chhetri et al. (2010) 

demonstrated MMOCE measurements of in vitro human tracheo-bronchial-epithelial (hBE) 

cells [97]. More recent technological developments by Ahmad et al. (2014) have 

demonstrated promising capabilities for shear-wave based MMOCE in tissues ex vivo [79].

All of these potential applications will be aided by the continually improving acquisition 

rates in OCT technology, which have recently been shown to enable acquisition of entire 

OCT volumes during modulation of the magnetic field for volumetric MMOCT [32].

 VI. Plasmonic Nanoparticle OCT Experiments

Nanoparticles have recently gained popularity for medical imaging and therapeutics due to 

their size and unique optical properties. The size and shape of these nanoparticles govern 

their optical response with the wavelength at plasmon resonance (λSPR) typically occurring 

in the near-infrared (NIR) “biological imaging window.” By altering the size and shape of 

these plasmonic gold nanoparticles (GNPs), λSPR can be shifted to wavelengths from red 

into the NIR, within the detection range of typical OCT systems, making them attractive 

candidates as contrast agents in tissue using current OCT imaging techniques.

The GNPs reviewed here are primarily gold taking the shape of rods, roses, spheres, shells, 

cages, and stars/branches. These shapes offer their own unique optical properties and 

biological characteristics to be discussed. Nanospheres offer a plasmon resonance mode with 

dependence on diameter [98]; cylindrically-shaped nanorods offer two plasmon resonant 

modes (longitudinal and transverse) that can be tuned to the near-IR by adjusting the aspect 

ratio of their length (L) to diameter (d), [99], as described in Section III. Nanoroses are a 

conglomeration of smaller nanospheres (~10nm), that alone, are too small to exhibit a 

plamon resonance, but do as a whole [100]. Nanostars are created from spherical gold seeds 

and have gold branches stemming from the center. The plasmon resonance of these 

structures is governed by the length of these branches and the size of the initial seed, that 

acts to enhance plasmon resonance at the tips [101]. Gold nanocages, created from silver 

nanostructures through a galvanic replacement process, are gold frames taking various 

geometric shapes (e.g. cubes and polyhedrons). The λSPR of these structures, tunable to the 

NIR at exceptionally small sizes, are governed by the outer width (w) and frame thickness 

(t), with absorption dominating for structures <45nm [39]. Nanoshells, created by growing 

gold on a dielectric core, can be tuned with higher precision than other GNPs by altering the 

fabrication materials and size (outer diameter, OD, and inner diameter, ID), [41]. Finally, 

nanorings exhibit a plasmon resonance dependent upon the ratio of the outer diameter to the 
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ring thickness. Nanorings can exhibit redshifts into the NIR as large as 100’s of nm by 

making small changes to the ring thickness, while keeping the overall outer diameter 

constant [40].

The properties of these GNPs offer unique contributions that lend to a wide variety of 

biomedical imaging, diagnostic, and therapeutic applications. Below, we review this variety 

of applications using spectroscopic, photothermal, and diffusion OCT (SOCT, PTOCT, and 

DOCT).

 A. Spectroscopic systems

In SOCT, localized spectral measurements are taken within the OCT image. However, the 

strongly modulated spectrum of tissue light scattering, and the fundamental trade-off 

between spatial and spectral resolution makes SOCT challenging for biomedical 

applications. Several techniques have been described to overcome these challenges, 

including differential absorption [102], spectral fractionation [103], and spectral 

triangulation [104]. These methods require scatterers with known spectral characteristics 

that can be tuned with respect to the OCT signal bandwidth (ΔλOCT), for which GNPs are 

well suited. Before discussing the application of GNPs for spectroscopic (wavelength-

dependent) contrast, it is prudent to first mention work done to enhance intensity-based 

contrast (i.e., changes to the overall OCT signal intensity) through exploitation of GNP’s 

unique absorption and scattering characteristics.

Because GNPs strongly absorb/scatter light at tunable wavelengths, OCT intensity imaging 

can be enhanced for better contrast and penetration in tissue. Oldenburg et al. first described 

gold nanorods as contrast agents in OCT using their low backscattering albedo compared to 

that of tissue [44]. Around the same time, Chen et al. investigated small nanocages (<40 nm) 

as absorptive contrast agents in OCT, with implications for cell targeting in both diagnostics 

and therapeutics. These studies paved the way for contrast enhancement using highly 

absorbing/scattering GNPs. For example, nanoshells have been used in imaging and ablating 

tumors in mice [105] and contrasting in vivo on pig skin [106] and rabbit skin [107]; 

nanorods have been used to enhance contrast in tumors [108] and in vivo mouse eyes [109]; 

nanostars have been used in cell imaging [110]; and nanoparticle accumulation in tumors 

has been monitored [111].

Building upon these works, investigators have derived new methods and applications of 

OCT intensity contrast. For example, Tseng et al. showed that strong absorption by gold 

nanorings at λOCT could heat pig adipose during imaging, changing the tissue properties and 

thereby enhancing contrast [112]. Xi et al. introduced a new method of characterizing 

nanoparticle properties by cross-referencing with tissue void of nanoparticles [113]. Doppler 

OCT has been enhanced using gold nanorods by Wang et al. for imaging ocular flow [114]. 

Sirotkina et al. found that OCT intensity enhancement could be used to estimate gold 

nanoparticle accumulation in tumors for guided laser hyperthermia [115]. Later, Couglin et 
al. showed that by conjugating gold nanoshells with Gadolinium, contrast could be enhanced 

for MRI and X-Ray, in addition to OCT, for multimodal diagnostics and therapeutics in 

cancer [116]. Lastly, the growth of nanocubes has been studied by Ponce de Leon et al., by 

monitoring enhanced contrast during the nanocube growth [117].
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While extensive work has been done studying intensity contrast enhancements using GNPs, 

few have exploited their wavelength-dependent properties to provide more specific contrast 

against the tissue background. Cang et al. introduced gold nanocages as contrast agents in 

spectroscopic OCT [47]. The strong absorption at λSPR for the 35 nm cages allowed for 

stronger contrast within ΔλOCT, providing contrast via both the spectral content and change 

in overall OCT intensity (shown in Fig. 5). Oldenburg et al. extended this technique, first 

into interlipid phantoms [118], and then into ex vivo tissue using gold nanorods [119]. The 

authors showed that relative nanorod density was evident against strong scattering in human 

carcinoma breast tissue, lending toward an in vivo human tumor contrast agent.

Other methods of spectroscopic OCT have recently been employed. Wei et al. demonstrated 

the use of GNRs with different aspect ratios, thus different λSPR, as a method of differential 

absorption OCT, with implications in molecular imaging and contrasting highly scattering 

tissues [102]. Expanding on differential absorption contrast techniques, Rawashdeh et al. 
showed that a dual-bandwidth OCT system was capable of providing spectroscopic contrast 

using different sizes of nanorods tuned to different λSPR [43]. This technique was 

demonstrated in agar/TiO2 phantoms and ex vivo muscle tissue. Similarly, Jia et al. employ a 

new method of spectral fractionalization by dividing the OCT bandwidth into sub-bands, 

providing OCT contrast by comparing the ratio of short to long wavelengths [103]. They 

demonstrate this method in an interlipid tissue phantom and in vitro using a 3D cell culture, 

moving toward imaging the human retina in vivo.

 B. Photothermal

PTOCT provides enhanced tissue contrast by exploiting the photothermal properties of 

GNPs heated at λSPR. This method is especially attractive for cancer applications due to its 

ability to both detect GNPs in tissue and induce a therapeutic response by tissue through 

GNP heating. The following describes work that has been done using GNP contrast 

enhancement with PTOCT.

This was first demonstrated nearly simultaneously by two research groups. Adler et al. 
introduced 120 nm gold nanoshells for contrast enhancement using photothermal OCT, 

demonstrated in tissue phantoms [58]. Skala et al. applied PTOCT in 2D and 3D cell 

cultures using 60 nm gold nanospheres [59]. Zhou et al. demonstrated the use of nanoshells 

in ex vivo breast tissue, and showed that oversampling improves SNR [120]. More complex 

nanoparticle constructs were introduced by Paranjape et al., who used gold nanoroses to 

detect macrophages [121]. Small nanospheres were clustered together, forming roses, to 

exhibit strong absorption at the tuned λSPR, making them attractive candidates for 

photothermal OCT. The tunability of these clusters post-manufacturing gives them the 

unique ability to sense different types of environments. These “smart” particles can be 

engineered to cluster under specific conditions, such that λSPR shifts into the photothermal 

imaging window at discrete clustering states. Xiao et al. demonstrated this using pH-

activated aggregation for cell imaging [122]. Chi et al. took advantage of the ability for 

nanorings to be tuned far into the infrared by using two OCT systems, one with λOCT 

matching λSPR, and the other with λOCT outside the peak of λSPR [123]. The authors found 

that PTOCT could disambiguate the source of scattering seen in conventional OCT images. 
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Furthermore, they found that when using PTOCT with λOCT= λSPR, only tissue scattering 

was seen with OCT, with nanorings being detected with PTOCT.

Recently, new techniques have been employed to enhance PTOCT abilities using GNPs. 

Nahas, et al. combined full-field OCT (FFOCT), which collects high resolution (~1 μm) en 
face 2D images, with PTOCT techniques using nanospheres [124]. Because FFOCT only 

images the surface of the tissue, thermal responses of the tissue to modulated energy pulses 

were delayed with rates dependent upon particle depth. The authors were able to extract the 

depth location of nanospheres in tissue based on these response delay times to triangulate 

the location of nanospheres in 3D tissue. This technique allows the combined benefit of high 

resolution FFOCT and cell targeting with PTOCT. In addition to resolution enhancement, 

speed of PTOCT has been improved using optical lock-in techniques (coined poli-OCT), 

previously described by Pache et al. for optical coherence microscopy [60]. Tucker-Schwartz 

et al. employed these methods to improve imaging speed in an in vivo mouse ear [61]. Here, 

they show that poli-OCT can disambiguate motion due to blood flow against the PTOCT 

signal (Fig. 6).

 C. Diffusion

As technology progresses with OCT, new methods are possible owing to increased imaging 

rates and resolution. Particles exhibit a natural Brownian motion that can be measured using 

dynamic light scattering (DLS) within a coherence volume [62]. The rapid collection rates 

and coherence gating techniques used in spectral-domain OCT (SD-OCT) makes it an 

attractive candidate for measuring these movements using DLS, as has previously been 

shown [125]. Furthermore, SD-OCT with polarization sensitivity (PS-OCT) allows for 

discrimination between optically anisotropic scatterers (like nanorods) and isotropic 

particles (like cells). The small size and strong scattering of GNPs make them excellent 

candidates for diffusion OCT (DOCT).

Diffusion of gold nanorings was first tracked by Lee, et al. The authors were able to contrast 

diffusion of these nanorings against native tissue by mapping OCT speckle variance within 

the image to track the diffusion of these particles over time [126]. Exploiting the optical 

anisotropy of nanorods, Mehta and Chen used simulations to show enhanced polarization 

sensitive contrast using a chiral nanostructure constructed from two nanorods [127]. Chhetri 

et al. used this polarization sensitivity to monitor rotational motion of rods, whose 

movement about the axis results in polarization dependent intensity fluctuations. Using DLS 

theory, the authors showed the rotational diffusion of gold nanorods could accurately predict 

the viscosity of a Newtonian diffusion in liquids [64]. Oldenburg et al. then used DOCT to 

discriminate between tissue and cells using the decorrelation time of speckle fluctuations 

(A) in addition to the cross-polarized intensity signals (PS) that are only evident from 

nanorod scatters [42]. The authors found that these properties, along with cellular motility 

measurements (M), created unique MAPS signatures by which cells and tissue could be 

clearly contrasted, with applications ranging from functional drug delivery to quantification 

of tissue properties. Fig. 7 shows an example of this MAPS (motility-amplitude-

polarization-sensitive) signature in artificial tissue seeded with mammary epithelial cells. 

This group later extended DOCT measurements to quantify non-Newtonian fluids 
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(polyethylene glycol) which led to quantification of polymeric tissues like mucus and 

artificial tissue. Chhetri et al. showed that nanorod diffusion could predict the diseased state 

of mucus, with implications in treating respiratory diseases like Cystic Fibrosis, and the 

extracellular matrix, with implications for monitoring the diseased state of tissue during 

tumorigenesis [65].

 VII. Conclusion

The use of magnetic iron oxide and plasmonic gold nanoparticles offer many advantages for 

OCT contrast, in addition to excellent biocompatibility. The choice of a particular particle 

and contrast method should be considered relative to the needed application, ranging from 

molecular contrast imaging of cell surface receptors, to the quantification of extracellular 

nanoporosity. All of the above methods offer sufficiently high imaging speeds and safety to 

be used in vivo, which may lead to new clinical applications for diagnostics, guidance, and 

treatment monitoring.
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Fig. 1. 
Concept diagram of sinusoidal MMOCT. Tissue containing MNPs (black dots) is placed in 

the fringe field (blue lines) of a solenoid, while the OCT imaging beam scans through its 

bore. A square-root sinusoidal voltage applied to the solenoid produces a pure sinusoidal 

force on MNPs directed along the field gradient. OCT detects the resulting axially-directed 

motion (z) of light-scattering structures within the tissue that are mechanically coupled to 

the MNP motion.
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Fig. 2. 
General trends in the optical properties of gold nanospheres and prolate ellipsoids as a 

function of size and aspect ratio, respectively. The various contrast methods (SOCT, PTOCT, 

and DOCT) each have different figures of merit that dictate different particle sizes and 

shapes.
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Fig. 3. 
he schematic and output of a dual-coil magnetomotive OCT setup employing magnetically 

labeled microspheres (MSs) in a flow phantom containing phosphate-buffered saline (PBS). 

(Reprinted with permission from [33]).
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Fig. 4. 
Sample B-mode images of ex vivo porcine arteries following exposure in a flow chamber to 

SPIO-RL platelets. (a) OCT image of control artery (b) OCT image of damaged artery (c) 

magnetomotive OCT image of control artery (d) magnetomotive OCT image of damaged 

artery. Note that each artery is longitudinally cut with the luminal wall facing upward. Scale 

bar: 0.5 mm (Reprinted with permission from [30]).
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Fig. 5. 
Spectroscopic OCT images of TiO2 gelatin phantom, with right side doped with 35 nm 

nanocages. (a) Standard OCT showing decreasing signal in location with absorbing 

nanocages. (b) Spectroscopic OCT showing changes in scattered spectra. (c) Hue-

Saturation-Value (HSV) image of the same cross section with hue representing centroid 

wavelength, and saturation/value representing OCT intensity. (d) Plot of intensity versus 

depth versus wavelength. (Reprinted with permission from [47]).
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Fig. 6. 
Matrigel containing gold nanorods injected into an in vivo mouse ear showing blood flow 

via speckle variance (red) and nanorods via PTOCT (green). (a) Blood flow without 

nanorods and with modulating laser off. (b) Blood flow without nanorods and with 

modulating laser on. (c) Blood flow with nanorods and the modulating laser off. (d) Blood 

flow with nanorods and the modulating laser on. (Reprinted with permission from [61]).
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Fig. 7. 
MAPS signature in a cell culture containing mammary epithelial cells where DOCT was 

used to enhance contrast of tissue containing gold nanorods against cells void of nanorods. 

(Reprinted with permission from [42]).
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