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ABSTRACT
Immune checkpoint inhibitors (ICI) based cancer immunotherapy has recently attracted considerable
interest in the field of cancer therapy. The relevant immunotherapeutic agents do not directly attack the
tumor, but boost the body’s immune system to recognize and kill cancer cells. In this commentary, recent
efforts utilizing immunoengineering for local delivery of these immune checkpoint antibodies are
introduced. Future opportunities and challenges in this research theme are also commented.
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As a paradigm shift in cancer treatment, cancer immuno-
therapy has received tremendous attentions. More than half
of the current cancer clinical trials include formats of
immunotherapy. Instead of directly attacking the tumor,
immunotherapeutic agents boost the body’s immune system
to kill the cancer cells.1,2 Particularly, the immune check-
point blockade has elicited durable antitumor responses and
long-term remissions in a subset of patients.1-3 Immuno-
logic effector T cells may be blocked by inhibitory regula-
tory molecules, which serve as checkpoints to control or
“turn off” the immune response.4 Cancer cells utilize these
mechanisms to evade elimination by immune system.5 The
immune regulatory checkpoint inhibitors agents, including
anti-CTLA-4 and anti-PD-1/PD-L1, are antibodies targeting
cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed
cell death 1 (PD-1), and programmed cell death ligand 1
(PD-L1), respectively. They can overcome this main
defenses strategy of cancer cells by blocking the normal
protein ligands on cancer cells or on T cells that respond
against the immune system attack.6 So far, 4 checkpoint
inhibitors have received rapid approval from the US Food
and Drug Administration (FDA) for cancer, including ipili-
mumab (Yervoy�), pembrolizumab (Keytruda�), nivolumab
(Opdivo�), and atezolizumab (Tecentriq�).7-11

Despite remarkable progress, current methods of check-
point blockade therapy limit therapeutic benefit in many
patients.2 The largest limitation observed in clinical trials
maybe the severity of the adverse effects, grade 3/4 adverse
events have often occurred.12-15 Since the blockade of these
regulatory pathways is not antigen specific, the off-target
effect from these drugs can be significant. In this context,
it could be desirable for specifically targeting the tumor
site, rather than systemic activation of the immune

system.3,16 Meanwhile, a large fraction of patients failed to
respond to these agents.2,7-9,17 How to enhance immune
checkpoints inhibitors based cancer therapy with limited
side effects has become one of the central themes in the
field of cancer immunology and immunotherapy.6

In light of this, we have recently leveraged design of bio-
materials to deliver checkpoint inhibitor antibodies to the
tumor microenvironment (TME) for the improvement of
treatment efficacy. For example, a biodegradable micronee-
dle was developed for controlled delivery of anti-PD-1
(aPD1) toward melanoma (Fig. 1).18 Microneedle (MN)
patches have been widely used in transdermal drug and
vaccine delivery in preclinical studies,19,20 such as insu-
lin,21,22 influenza,23 human papillomavirus (HPV)24 during
the last decade. In this study, the microneedle patch was
composed of biocompatible hyaluronic acid (HA), which
has been widely applied in numerous FDA approved thera-
peutic formulations or medical devices due to its excellent
biocompatibility and biodegradability. HA was integrated
with pH-sensitive dextran nanoparticles that encapsulate
aPD1. The self-dissociated nanoparticles distributed inside
the MN tips resulted in the sustained release of aPD1 over
a 3-day period of time in vitro. In the animal study, we
demonstrated that one microneedle patch enhanced the
retention of aPD1 in the tumor microenvironment and
induced robust immune responses against B16F10 mouse
melanoma in comparison of aPD1 in the free form. These
effects are associated with increased effector T cell infiltra-
tion in the TME. Additionally, the MN patch can be served
as a platform for combination delivery of other immune
checkpoint inhibitors, such as anti-CTLA4 (aCTLA4). A
remarkable synergistic effect was achieved by combination
therapeutics of aCTLA4 and aPD1 co-delivered via MNs.
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70% long-term disease-free survival of mice was achieved
after being treated with a combinational MN patch of
aCTLA4 and aPD1 in 60 d. Collectively, our strategy based
on the biodegradable microneedle for local treatment of
melanoma improves the therapeutic efficacy of immune
checkpoint inhibitors and can reduce the systemic toxicity
simultaneously. This “immune patch” could offer an alter-
native option for patients with an early stage of melanoma.
The patch can prevent primary tumor growth and metasta-
sis before the surgery, if not destroying the primary tumor.

Checkpoint inhibition combined with other immunomo-
dulators has demonstrated a synergistic increase of antitu-
mor activity.25 In another work, we described a new
delivery carrier for the controlled release of loaded anti-
PD1 antibody and CpG oligodeoxynucleotides (CpG ODNs)
in response to inflammation conditions for post-surgery
treatment (Fig. 2).26 The delivery carrier was “weaved”
through the rolling circle amplification27-29 using a CpG
ODN-encoded template. DNCs (DNA nano-cocoons) were
loaded with aPD1 and inflammation-responsive triglycerol
monostearate (TGMS) nanoparticles caging a restriction
enzyme inside, which can specifically cleave DNCs into
short pieces of CpG ODNs. After injection into the tumor
resection sites, TGMS nanoparticles were disassembled
upon the digestion of inflammatory-associated proteases to
release the caged enzyme, allowing fragmentation of DNCs
into CpG ODN and releasing aPD-1. These DNCs provided
sustained release of immunomodulators that can evoke T
cell activity, break tumor tolerance and elicit durable,

tumor-specific immunity after removal of the solid tumor.
40% of mice showed complete responses with nondetectable
recurrent tumor to our combination therapy. The CpG
DNA-based carrier not only serves as a therapeutic loading
matrix for aPD1, but also can enhance therapy efficacy by
enzymatic fragmentation into another drug-CpG pieces to
active DCs.

Outlook

Despite the promise of using local delivery of checkpoints to
treat cancer, there are still several challenges. First of all, MN
can only deliver checkpoint antibodies to superficial tumors
microenviroment such as melanoma. How to develop delivery
technologies for targeting tumor microenvironment inside the
body and avoiding overstimulating tumor-irrelevant T cells
thus limit autoimmunity-related side effects are vast opportu-
nities for biomedical engineers. Second, a large fraction of
patients failed to respond to checkpoints agents. For atezolizu-
mab, the entire population had an objective response rate
(ORR) of only 14.8%. Even for the PDL1 positive subgroup,
ORR was increased to 26%.11 Tumor lymphocytic infiltration
is a prerequisite for response. Creating “T cell-inflamed”
TME, generating a “PD-L1-positive tumor,” and boosting T
cells activity as well as other immune cells when delivering
the checkpoint antibodies would further enhance the anti-
PD1/PDL1 immunotherapy and promote the objective
response rate. Moreover, checkpoint blockade therapies com-
bined with other anticancer therapeutics and/or treatment

Figure 1. Schematic of the MN patch-assisted delivery of aPD1 for the skin cancer treatment. (a) Schematic of the aPD1 delivered by an MN patch loaded with physiologi-
cally self-dissociated NPs. With GOx/CAT enzymatic system immobilized inside the NPs by double-emulsion method, the enzyme-mediated conversion of blood glucose to
gluconic acid promotes the sustained dissociation of NPs, subsequently leading to the release of aPD1. (b) The blockade of PD-1 by aPD1 to activate the immune system
to destroy skin cancer cells. © 2016 American Chemical Society.18 Reproduced by permission of American Chemical Society. Permission to reuse must be obtained from
the rightsholder.
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modalities will be a promising strategy to achieve synergistic
anticancer effects.30,31-33
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