Global to Channel Scale Water Level Forecasting & Analysis

Joannes Westerink¹, Maria Teresa Contreras¹, Coleman Blakely¹, Dam Wirasaet¹, William Pringle^{1*}, Guoming Ling¹, Mindo Choi¹, Brendan Woods¹

Zach Cobell²

Sergey Vinogradov³, Saeed Moghimi³, Edward Myers³, Andre van der Westhuysen⁴, Ali Abdolali⁴ Chris Massey⁵, Margret Owensby⁵, Amanda Tritinger⁵

¹University of Notre Dame, ^{1*}Joint University of Notre Dame & Argonne National Laboratory ²Water Institute of the Gulf, ³CSDL NOS NOAA,⁴NCEP NWS NOAA, ⁵ERDC USACE 1. Shoreline and bathy/topo data bases as a foundation for mesh development

Issues to overcome

- Problem: High resolution LiDar based bathymetric/topographic data bases misalign with US Medium shoreline data bases
 - Solution: Merge CUSP, NHD, and US Medium shorelines into continuous data base
 - **<u>Problem</u>: NOAA CRM's do not support meshes down to targeted 30 m resolution** <u>Solution</u>: Apply hierarchal approach using SRTM, Gebco2019, CONED, NCEI, NOAA local 10 m, USACE JALBTX, and USACE Dredging channel surveys
- **<u>Problem</u>: Inland high resolution data bases do not match with SRTM as this overestimates inland topography; lack access to statewide Lidar surveys</u>**

Misalignments of US Medium shoreline is an impediment to accurate meshes

Bathy/topo databases applied

2. High resolution optimal meshes for the U.S. East and Gulf of Mexico coasts

Approach

- Apply OceanMesh2D used to generate water side with high resolution shoreline
- Parameters control resolution to target mesh size depending on shoreline complexity, feature size, wavelength, topographic length scale, channel and inland feature width, element shape, and element size transition rates.
 - Mesh2D used to generate *floodplain/dry land side* of the mesh to seamlessly mate at the wet/dry interface.

Mesh with high resolution along the southeastern U.S.

High resolution portion of mesh along the southeastern U.S. – bathy/topo

High resolution portion of mesh along the southeastern U.S. – bathy/topo

Mesh details along the South Carolina coast – ocean side bathymetry only

Mesh details along the South Carolina coast – land side topography only

Mesh details along the South Carolina coast – land side topography with mesh

Further zoom of mesh along the South Carolina coast – ocean side bathymetry only

Further zoom of mesh along the South Carolina coast – land side topography only

Further zoom of mesh along the South Carolina coast – land side topography with mesh

Inlet scale zoom of mesh along the South Carolina coast – ocean side bathymetry only

Inlet scale zoom of mesh along the South Carolina coast – land side topography only

Inlet scale zoom of mesh along the South Carolina coast – ocean side bathymetry with mesh

3. Hindcast of Hurricane Irma using ADCIRC+SWAN

- <u>Tidal forcing functions</u>: Tides at boundary (TPXO8), SAL, internal tidal dissipation using annually averaged ocean climatology
- Atmospheric winds and pressure: Oceanweather Inc. hindcast for winds and atmospheric pressure
- <u>Circulation model</u>: ADCIRC run in 2D barotropic mode
- <u>Waves</u>: SWAN integrally coupled to ADCIRC run on identical unstructured finite element mesh

NOAA ADCIRC

NOAA ADCIRC

NOAA ADCIRC

NOAA ADCIRC

ADCIRC validation

• Excellent tide and surge results, including drawdown in western Florida

Missing Physics in the circulation model

- Baroclinicity impacts base water levels that change pre- to post-storm
- Rainfall affect far upstream locations

SWAN validation

• Excellent hindcasts of significant wave height

4. Development of 30m and 120m meshes for the U.S. East and Gulf Coasts

Approach

- Apply lessons learned to better optimize meshes
- Develop high resolution 30 m validation mesh and coarser 120 m light mesh to be used in statistical studies
- Use Notre Dame's high resolution CUSP+NHD+ USMSL integrated data base with consolidated ocean/land/dredged channel LIDAR and sounding bathy/topo data base
- Apply OceanMesh2D used to generate water side with high resolution shoreline
- Parameters control resolution to target mesh size depending on shoreline complexity, feature size, wavelength, topographic length scale, channel and inland feature width, element shape, and element size transition rates.
- Mesh2D used to generate *floodplain/dry land side* of the mesh to seamlessly mate at the wet/dry interface.

New shoreline for the US East Coast (CUSP + NHD)

New shoreline for the US East Coast (CUSP + NHD)

South Carolina inlets

US medium shoreline — New shoreline

High resolution optimal meshes for the U.S. East Coasts

Bathy/topo with on high resolution mesh along the U.S.

High resolution optimal meshes for the U.S. East Coasts

And Smellight Mary Kitter

Mesh with high resolution along the southeastern U.S.

Cooper river, SC

South Carolina inlets

Atchafalaya delta, LA

Long Island inlets

South Carolina inlets

South Carolina inlets - detail

South Carolina inlets - detail

South Carolina inlets - detail

120 m mesh water and land sides

120 m mesh water and land sides

120 m mesh water and land sides

5. ADCIRC global tidal model development

Advantages of a global model

- Global shell to seamlessly insert regional scale models
- Improves robustness and accuracy of tidal, atmospherically, and baroclinicaly forced processes
- Unify and reduce runtime and maintenance costs of running a host a regional models

ADCIRC implementation details

- Reformulated ADCIRC's equations and its GWCE algorithm to enable solution on a sphere
- Implemented re-orientation of the spherical axis in order to avoid the singularity at the poles
- All global meshes improve resolution towards the coast, have a maximum resolution of 24 km in the deep ocean, and add resolution where there are steep topographic gradients, down to 2 km nearshore
- Apply Self attraction and load tides and internal tide dissipation model based on average ocean climatology

ADCIRC Global 24-2 km model bathymetry

ADCIRC global 24-2 km model resolution

TPXO9 Atlas M₂ amplitude

TPXO9 Atlas M₂ phase

M₂ amp (ADCIRC - TPXO9) with GEBCO 2014 bathymetry

M₂ amp (ADCIRC - TPXO9) with GEBCO 2014 + Rtopo (Antarctica) bathymetry

M₂ amp (ADCIRC - TPXO9) with GEBCO 2014 + Rtopo + NONNA + AUS

Global-2kmMin-25kmMax-FS-3-WL30-G0-2-SLP10-FL-5-m2-Amp-err

M₂ amp (ADCIRC - TPXO9) with GEBCO 2019

Global-2kmMin-25kmMax-FS-3-WL30-G0-2-SLP10-FL-5-m2-Amp-err -0.1 -0.08 -0.06 -0.04 -0.02 0.02 0.1 0 0.04 0.06 0.08 80°N 40°N 0° • 40°S 80°S 120°E 120°W 60°W 60°E 180° 0°

M₂ amp (ADCIRC - TPXO9) with GEBCO 2019 + Rtopo (Antarctica)

M₂ amp (ADCIRC - TPXO9) with GEBCO 2019 + Rtopo + NONNA

M₂ amp (ADCIRC - TPXO9) with GEBCO 2019 + Rtopo + NONNA + AUS

Global-2kmMin-25kmMax-FS-3-WL30-G0-2-SLP10-FL-5-m2-Amp-err

Meshing and parameter studies

- Meshing
 - Coastal resolution 2 km
 - Deep ocean resolution 24 km
 - Wavelength to mesh 30
 - TLS parameter 10
- Friction $C_f = 0.0025$
- Internal tide parameter
 - $C_{IT} = 3.25$ except $C_{IT} = 2.25$ in Atlantic
 - Internal tide cutoff at 150m

M₂ amp (ADCIRC - TPXO9) with GEBCO 2019 + Rtopo + NONNA + AUS

Global-2kmMin-25kmMax-FS-3-WL30-G0-2-SLP10-FL-0-m2-Amp-diff

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

<u>9. Global cit3.25, local cit2.25, d150, cf=0.0025</u>

X axis is TPXO9-Atlas amplitude

Lat>-60 & deleted Black Sea:
ADCIRC global 24-2 km model compared to TPXO9 global model

Global-2kmMin-25kmMax-FS-3-WL30-G0-2-SLP10-FL-0-m2-RMS

M₂ tide RMS error of 2.77 cm Highest fidelity non data assimilative tidal model

ADCIRC global 24-2 km model M₂ error compared to tidal station data

ADCIRC global 24-2 km model M₂ error compared to tidal station data

ADCIRC global 24-2 km model M₂ error compared to tidal station data

ADCIRC global and other model RMS elevation differences (cm) versus tidal gauges and the TPXO8 Atlas

Model	Deep Ocean		Shelf	
	RMS _{TG}	RMS _{ALT}	RMS _{TG}	RMS _{ALT}
ADCIRC global	2.77	2.1	8.13	7.8
NSWC	4.27	4.41	-	17.4
нім	8.75	5.25	33.7	22.3
OTIS-GN	7.54	6.76	25.3	18.6
STORMTIDE	8.33	7.76	48.2	27.9
OTIS ERB	5.63	4.65	23.6	24.0
STM-1B	12.69	7.74	30.5	25.8
НҮСОМ	7.82	7.00	49.0	26.2

ADCIRC global tidal modeling observations

Projections

• All 7 ADCIRC projections lead to identical results

Bathymetry

- Gebco2019 leads to much better results than SRTM or earlier GEBCO data sets
- High resolution regional bathy sets in *"tidal dissipation hot spots"* leads to improvements in global results
 - Hudson Bay, Australian Shelf, St. Lawrence/Bay of Fundy, Bering Sea

Internal tide dissipation

• Lower in the Atlantic than other basins

Inner shelf and coastal stations

• Are quite sensitive to inner shelf bathy

5. Baroclinicity as a driver of steric water level fluctuations and ocean currents

CFSv2 Global Atmospheric Model @

ADCIRC 2D

with baroclinic pressure gradient, internal tide, and dispersion terms

HYCOM 3D Global Circulation @

Heterogeneous mode splitting

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + f \boldsymbol{k} \times \boldsymbol{u} = -\nabla \left[\frac{p_s}{\rho_0} + g(\zeta - \zeta_{EQ} - \zeta_{SAL}) \right] \\ + \frac{\nabla M}{H} - \frac{\nabla D}{H} - \frac{\nabla B}{H} + \frac{\boldsymbol{\tau}_s}{\rho_0 H} - \frac{\boldsymbol{\tau}_b}{\rho_0 H} - \boldsymbol{\mathcal{F}}_{IT}$$

Baroclinic pressure gradient (BPG):

$$\nabla B = \int_{-h}^{\zeta} \left(g \nabla \left[\int_{z}^{\zeta} \frac{\rho - \rho_{0}}{\rho_{0}} \right] dz \right) dz$$

Momentum Dispersion:

$$\nabla D = \nabla \int_{-h}^{0} \left[(\boldsymbol{v} - \boldsymbol{V}) \cdot (\boldsymbol{v} - \boldsymbol{V}) \right] dz$$

Internal tide induced barotropic energy conversion:

$$\mathcal{F}_{IT} = C_{IT} \frac{[(N_b^2 - \omega^2)(\tilde{N}^2 - \omega^2)]^{1/2}}{\omega} (\nabla h \cdot \boldsymbol{u}) \nabla h$$

GOFS3.1 forcing of the ADCIRC global model: sea surface elevation

GOFS3.1 forcing of the ADCIRC global model: currents

Comparison of sea surface height RMS variability between GOFS3.1 and ADCIRC forced with GOFS3.1 temperature and density fields

GOFS 3.1

ADCIRC forced with GOFS 3.1 temperature and salinity fields

Sample comparison of 30 day averaged water levels – Atlantic Basin

Sample comparison of 30 day averaged water levels – Eastern Pacific

Sample comparison of 30 day averaged water levels – Western Pacific

6. Global operational storm surge model: 5 day forecasts 4 times per day

