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Abstract

Background—MicroRNAs (miRNA) regulate breast biology by binding to specific RNA 

sequences, leading to RNA degradation and inhibition of translation of their target genes. While 

germline genetic variations may disrupt some of these interactions between miRNAs and their 

targets, studies assessing the relationship between genetic variations in the miRNA network and 

breast cancer risk are still limited, particularly among women of African ancestry.

Methods—We systematically put together a list of 822 and 10,468 genetic variants among 

primary miRNA sequences and 38 genes in the miRNA biogenesis pathway, respectively; and 

examined their association with breast cancer risk in the ROOT consortium which includes women 

of African ancestry. Findings were replicated in an independent consortium. Logistic regression 

was used to estimate the odds ratio (OR) and 95% confidence intervals (CI).

Results—For overall breast cancer risk, three single nucleotide polymorphisms (SNPs) in 

miRNA biogenesis genes DROSHA rs78393591 (OR=0.69, 95% CI: 0.55–0.88, P=0.003), ESR1 
rs523736 (OR=0.88, 95% CI: 0.82–0.95, P=3.99×10−4), and ZCCHC11 rs114101502 (OR=1.33, 

95% CI: 1.11–1.59, P=0.002) and one SNP in primary miRNA sequence (rs116159732 in 

miR-6826, OR=0.74, 95% CI: 0.63–0.89, P=0.001) were found to have significant associations in 

both discovery and validation phases. In a subgroup analysis, two SNPs were associated with risk 

of estrogen receptor (ER)-negative breast cancer and three SNPs were associated with risk of ER-

positive breast cancer.

Conclusion—Several variants in miRNA and miRNA biogenesis pathway genes were associated 

with breast cancer risk. Risk associations varied by ER status, suggesting potential new 

mechanisms in etiology.
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Introduction

Breast cancer is the most common cancer among women world-wide and is a leading cause 

of cancer death (Coughlin and Ekwueme 2009). While common in high-income countries, 

the incidence of breast cancer is also increasing rapidly in many middle and low-income 

countries, including Sub-Saharan Africa (Parkin et al. 2008; Sitas et al. 2008). Numerous 

high-risk genes, such as BRCA1 and BRCA2, and low-penetrance common genetic variants 

have been identified as breast cancer risk factors, but a large proportion of heritability 

remains unexplained, suggesting that there are still uncharacterized genetic variants that 

modify the risk of breast cancer. Furthermore, already identified variants that affect breast 

cancer risk may not do so in all population groups because of differences in population 

characteristics (Chen et al. 2011; Chen et al. 2014; Yao et al. 2013; Zheng et al. 2013).

MicroRNAs (miRNAs) are ~22 nucleotide long, single-stranded RNA molecules that 

function in post-transcriptional gene regulation by binding to messenger RNA (mRNA) and 

leading to mRNA degradation (Kim 2005; Kim et al. 2009; Krol et al. 2010). The role of 

miRNAs in the initiation and progression of cancer has been confirmed in numerous studies 

and is a notable source of interest for developing targeted cancer therapy (Blenkiron and 

Miska 2007; He et al. 2015; Lee and Dutta 2009; Lin and Gregory 2015; Nana-Sinkam and 

Croce 2013; Ryan et al. 2010; Serpico et al. 2014). Furthermore, the genes involved in the 

synthesis of miRNAs have also been of interest given some evidence of association with 

cancer risk (De Santa et al. 2013; Gregory and Shiekhattar 2005; Ha and Kim 2014). 

miRNAs have frequently been found to be located in fragile sites (FRA) or cancer-

associated genomic regions (CAGRs), including those implicated in breast cancer (Calin et 

al. 2004). Several studies have examined the single nucleotide polymorphisms (SNPs) of 

miRNA biogenesis genes and their association with breast cancer risk among Asian 

populations, but the observations are rather inconclusive (Jiang et al. 2013; Sung et al. 2011; 

Sung et al. 2012). To our knowledge, there has been no large scale study that has taken a 

genome-wide approach of screening SNPs in the miRNA network for their association with 

breast cancer risk among women of African ancestry.

In this case-control study, we hypothesized that SNPs in miRNA and miRNA biogenesis 

genes are associated with risk of breast cancer and that this risk is further modified by 

factors such as hormone receptor status. Through a literature review, we identified 35 genes 

involved in miRNA biogenesis and three additional genes known to be involved in the 

hormonal regulation of miRNA biogenesis (Alanazi et al. 2013; Krol et al. 2010; Leaderer et 

al. 2011; Sung et al. 2011; Sung et al. 2012; Tchatchou et al. 2009). In addition, we 

examined genetic variants found in primary miRNA sequences using the miRBase version 

20 (http://www.mirbase.org/) (Griffiths-Jones et al. 2006). We comprehensively evaluated 

these genetic variants in the Genome-Wide Association Study of Breast Cancer in the 

African Diaspora - the ROOT consortium, and validated the findings in independent samples 

from the African American Breast Cancer consortium (AABC).
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Materials and Methods

Study participants

The study populations of the ROOT consortium have been described previously (Boersma et 

al. 2006; Huo et al. 2012; Nemesure et al. 2009; Qian et al. 2014; Zheng et al. 2013). 

Briefly, this study included 3,686 participants of African ancestry (1,657 breast cancer cases 

and 2,029 controls). Ascertainment of cases and controls occurred in Ibadan, Nigeria (711 

cases and 624 controls), Barbados (92 cases and 229 controls), and four sites in the USA 

(854 cases and 1,176 controls). Samples in the replication stage of the study were from the 

AABC consortium, previously described in detail (Chen et al. 2013). In brief, the AABC 

consists of 5,984 African Americans (3,153 cases and 2,831 controls) from nine case-control 

studies (John et al. 2007a; John et al. 2007b; Kolonel et al. 2000; Marchbanks et al. 2002; 

Newman et al. 1995; Prorok et al. 2000; Signorello et al. 2005; Smith et al. 2008).

SNP genotyping and imputation

Genotyping in the ROOT consortium was conducted using the Illumina HumanOmni2.5–

8v1 array, which included approximately 2.4 million genetic variants. Genotyping was 

attempted for a total of 3,909 study samples, of which 3,859 were successful. These samples 

were derived from 3,774 participants, with 85 of these with duplicate samples. After 

genotyping, quality control analysis was carried out by checking gender discordance, 

chromosomal anomalies, participant relativeness, population structure, missing call rates, 

batch effects, duplicate sample discordance, Mendelian errors, Hardy-Weinberg equilibrium, 

and duplicate SNP probes. First, duplicate samples from 85 pairs were excluded. 

Chromosomal anomalies > 5 Mb and anomalies on chromosomes where the sum of the 

anomaly lengths > 10 Mb were identified. No samples were excluded for this reason but all 

genotypes were set to missing for regions with chromosome anomalies. According to the 

identical by descent analysis, samples from 59 participants were excluded because they were 

possibly relatives of other participants. Additionally, 20 samples (18 African Americans and 

2 African Barbadians) were excluded because principal components analysis showed that 

they were clustered with the CEU/TSI HapMap populations (i.e., high percentage of 

European ancestry). We further filtered out 7 samples with a missing call rate > 2% and 2 

samples with possible tumor contamination. After these exclusions, a total of 3,686 

participants (1,657 cases and 2,029 controls) were included for the final analysis. After SNP 

level quality control analysis, genotype imputation was conducted using IMPUTE2 software 

(Howie et al. 2009). With the 1000 Genomes Project phase I integrated variant set as the 

reference panel, 16,147,413 were imputed and passed the imputation quality filter 

(imputation score > 0.3).

Genotyping in the AABC consortium was conducted using the IlluminaHuman1M-Duo 

BeadChip (Chen et al. 2013). Samples based on the following exclusion criteria were 

removed: (1) unexpected replicates (≥ 98.9% genetically identical) that were confirmed 

through discussions with study investigators; (2) unknown replicates that could not be 

confirmed; (3) samples with call rates < 95% after a second genotyping attempt; (4) samples 

with < 5% African ancestry; and (5) samples with ≤ 15% mean heterozygosity of SNPs on 

the X chromosome and/or similar mean allele intensities of SNPs on the X and Y 
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chromosomes, as these are likely to be males. African ancestry was assessed using principal 

components analysis and the first eigenvector was used to distinguish between participants 

of African and those of other ancestries. This was confirmed by using input genotypes from 

the HapMap populations, CEU (CEPH Utah), YRI (Yoruba), and JPT (Japanese). Lastly, 

SNPs with <95 % call rate were removed.

A total of 17,291 candidate SNPs were extracted from the 38 miRNA biogenesis genes 

(Supplemental Table S1) using the dbSNP database (National Center for Biotechnology 

Information), including all SNPs found 5kb upstream and downstream of the known coding 

region. SNPs in this list were then matched to the ones present in stage 1 of our study. For 

miRNA variants, using the NCBI build 37 positions, 1,283 SNPs in our study that laid 

within the starting and ending positions of the primary miRNA sequence in miRBase version 

20 were extracted. Variants that had MAF < 0.01 among controls or imputation score <0.7 

were excluded from the stage 1 analysis. After these selections, 10,468 SNPs in biogenesis 

genes and 822 SNPs in the miRNA sequences were included in the association analysis.

Statistical analysis

Case–control differences in demographic and disease characteristics were compared using 

chi-squared tests for categorical variables and t-tests for continuous variables. Within each of 

the SNPs identified in miRNA or miRNA biogenesis genes in stage 1, we identified the most 

significant markers by testing the association of each SNP with breast cancer risk using 

logistic regression models, adjusting for age, study site (Nigeria, USA, or Barbados), and the 

first 10 eigenvectors from the principal component analysis (PCA). In both the discovery 

and replication stages, the first ten principal components were computed using the smartpca 

program in the EIGENSOFT package (Patterson et al. 2006). No eigenvectors from the 

principal component analysis were strongly associated with case status after controlling for 

the matching factors, DNA source, and study. Odds ratios (ORs) and 95% confidence 

intervals (CIs) were calculated in logistic regressions as estimates for allele dosage effect 

using SNPTEST v2.5 (Oxford University). As an exploratory analysis, we also examined 

whether SNPs were associated with risk of estrogen receptor (ER)-negative or ER-positive 

breast cancer. SNPs with P < 0.05 in stage 1 were examined in the stage 2 replication study 

in AABC. ORs and 95% CIs were estimated using unconditional logistic regression, 

adjusting for age, the first 10 eigenvectors from the PCA, and study site. An overall odds 

ratio or ORmeta, its 95% CI, and P-value were estimated by inverse-variance weighting of 

the stage 1 and 2 results.

The top SNP signal in each gene was determined by the smallest P-value from the genetic 

association test. After identifying the top signal, a conditional analysis was conducted by 

including this SNP in the genetic association test model as a covariate and examining 

whether there were additional signals that reached statistical significance. SNPs found to be 

statistically significant in the same miRNA biogenesis gene were examined for linkage 

disequilibrium (LD) using HaploReg v2 (Broad Institute, Massachusetts Institute of 

Technology) using r2 > 0.2 as the threshold.

We performed corrections for multiple testing by estimating number of independent variants 

for each miRNA biogenesis gene. Using Haploview (Barrett et al. 2005), we identified the 
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number of SNPs that can tag all SNPs with MAF ≥ 0.05 in the genomic region 5kb upstream 

and downstream of each miRNA biogenesis gene for Yoruba in Ibadan, Nigeria (YRI) 

population from the International HapMap Project. The method of aggressive tagging was 

used in which up to two SNPs can be used to tag a SNP if they are in LD with r2 > 0.8. The 

regional corrected alpha level was calculated by dividing 0.05 by the number of tagging 

SNPs in each region, whereas a genome-wide correction was calculated by dividing by the 

total number of SNPs from all regions. For miRNA variants, we applied a genome-wide 

correction based on the number of SNPs we tested that had MAF ≥ 0.05 in our stage 1 

population.

Statistical analysis was conducted using the SAS 9.3 package (SAS Institute, Cary, NC) and 

Stata 14.0 (StataCorp, College Station, TX). All P-values are two-sided and a P-value < 0.05 

was considered statistically significant for demographic and disease characteristics and SNP 

identification in stage 1 analysis.

Results

The initial analysis included 1,657 cases and 2,029 controls among women of African 

ancestry from Nigeria, USA, and Barbados (Table 1). The mean age of cases was 49.3 years 

whereas the mean age of controls was 48.4. The majority of cases and controls in the sample 

were African American. Compared to controls, higher proportions of cases were post-

menopausal, had a family history of breast cancer, and had ever consumed alcohol. Controls 

had a higher mean BMI (29.7) than cases (28.4) and were more likely to have ever used oral 

contraceptives. In the replication analysis in AABC consortium, 3,153 cases and 2,831 

controls were analyzed. The age of the cases and controls in the replication sample ranged 

from 22 to 87 years, with median ages of 55 and 58 years, respectively (Table 1). Roughly 

11% of the participants in both our discovery study and the replication sample had a first-

degree family history of breast cancer. Approximately 60% of the cases in the replication 

sample had ER positive disease, which is slightly higher than the percentage in the discovery 

study.

Across the miRNAs and 38 miRNA biogenesis genes, 1,743 SNPs (1,638 from biogenesis 

genes and 105 from miRNA) were significantly associated with breast cancer risk at 

significant level of 0.05 in stage 1. Out of these SNPs, 575 were associated with overall 

breast cancer risk (Supplementary Table S2). In addition, 736 were associated with ER-

negative breast cancer risk (Supplementary Table S3) whereas 676 were associated with ER-

positive breast cancer risk (Supplementary Table S4). These SNPs were further examined in 

stage 2 of our study.

Using Haploview, we found that 622 SNPs could be used to tag all SNPs with MAF>0.05 in 

the miRNA biogenesis genes and gene-level multiple testing corrected significance level 

were presented in Supplementary Table S1. The genome-wide corrected alpha level for the 

SNPs in the miRNA biogenesis genes was calculated to be 8.04 × 10−5. For SNPs in primary 

miRNA sequences, we found that 439 of the SNPs we tested had MAF ≥ 0.05, which can be 

used to calculate a genome-wide corrected alpha level of 1.14 × 10−4. These corrected alpha-

values were applied to identify significant variants in the pooled analysis.
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Table 2 displays the 14 individual SNPs from miRNA biogenesis pathway genes that were 

associated with overall breast cancer risk in pooled analysis. The most significant SNPs in 

each miRNA biogenesis pathway gene are presented. Three SNPs were consistently found to 

be associated with breast cancer risk in both stages 1 and 2, including DROSHA rs78393591 

(G vs. A, ORmeta = 0.69, 95% CI: 0.55 – 0.88, P = 0.003), ESR1 rs523736 (G vs. A, ORmeta 

= 0.88, 95% CI: 0.82 – 0.95, P = 3.99 × 10−4), and ZCCHC11 rs114101502 (G vs. C, 

ORmeta = 1.33, 95% CI: 1.11 – 1.59, P = 0.002). Table 3 displays the 14 individual SNPs 

located in miRNAs that were associated with overall breast cancer risk. One SNP was 

consistently found to be associated with breast cancer risk in both stages 1 and 2: mir-6826 
rs116159732 (C vs. T, ORmeta = 0.74, 95% CI: 0.63 – 0.89, P = 0.001).

Table 4 shows the association between individual SNPs and breast cancer risk stratified by 

ER status. Two SNPs were found to be associated with risk of ER-negative breast cancer: 

mir-4725 rs73991220 (A vs. G; ORmeta = 1.27, 95% CI: 1.09 – 1.48, P = 0.002), and PAPD4 
rs146287903 (A vs. T; ORmeta = 0.49, 95% CI: 0.33 – 0.72, P = 3.27 × 10−4) in both stages 

1 and 2. Three SNPs were found to be associated with risk of ER-positive breast cancer in 

both stages, including miR-339-3p rs72631820 (T vs. C, ORmeta = 1.36, 95% CI: 1.10 – 

1.69, P = 0.004), ESR1 rs9479113 (C vs. T, ORmeta = 0.86, 95% CI: 0.78 – 0.95, P = 0.003), 

SMAD3 rs79730172 (T vs. C; ORmeta = 1.30, 95% CI: 1.11 – 1.54, P = 0.001).

Discussion

In this comprehensive investigation of miRNA-related SNPs in 9,670 women of African 

ancestry (4,810 cases and 4,860 controls), we identified four SNPs in miRNA biogenesis 

genes or miRNA sequences were consistently significantly associated with breast cancer 

risk, and additional five SNPs in miRNA biogenesis genes or miRNA sequences were 

associated with breast cancer risk after stratification by ER status. None of these SNPs were 

in linkage disequilibrium with genetic variants previously identified in GWAS (Chen et al. 

2013; Michailidou et al. 2015; Michailidou et al. 2013; Song et al. 2013).

We found a total of five SNPs that differed in their relative association with breast cancer 

risk according to tumor ER status, which is consistent with prior studies that showed that the 

patterns of miRNA expression vary according to the specific breast tumor subtype 

(Blenkiron et al. 2007; Iorio et al. 2005; Lowery et al. 2009). For ER-negative breast 

cancers, we found two novel SNPs (rs73991220 and rs146287903) which conferred breast 

cancer susceptibility. rs146287903 was in the PAPD4 3’UTR region, which may implicate 

this particular variant in the transcriptional regulation of PAPD4 expression. For ER-positive 

breast cancers, rs72631820 in miR-339-3p was consistently found to be associated with 

increased risk in both consortia. In previous studies, altered expression of miR-339-3p was 

associated with risk of prostate cancer and also served as a prognostic factor in diffuse large 

B-cell lymphoma (Lim et al. 2015; Medina-Villaamil et al. 2014). Furthermore, there is 

some evidence that expression levels of the related miR-339-5p have direct effects on the 

pathogenesis of breast cancer, including initial invasion and subsequent metastasis (Wang et 

al. 2014; Wu et al. 2010). One other SNP located in miR-202 (rs12355840) was found to be 

associated with breast cancer in stage 1 of our study (OR = 0.78, P = 0.005), but not in the 

stage 2 replication (OR = 0.94, P = 0.27), with the pooled result (ORmeta = 0.90, P = 0.02). 
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This particular SNP and miR-202 were found to be associated with breast cancer risk and 

prognosis in several other studies, indicating a potential functional role of this miRNA, and 

warranting further studying of this miRNA in breast cancer diagnosis, prevention, and 

treatment (Joosse et al. 2014; Rawlings-Goss et al. 2014; Schrauder et al. 2012).

Our finding of SNPs in the gene ZCCHC11 being associated with breast cancer risk may be 

based on a unifying pathway in the regulatory circuit of the let-7 miRNA family, which has 

been found to be associated with tumorigenesis (van Kouwenhove et al. 2011; Yu et al. 

2007). LIN28 has been found to recruit ZCCHC11 to mediate LIN28’s blockage of let-7 
miRNA biogenesis (Hagan et al. 2009; Lin and Gregory 2015; Piskounova et al. 2011). The 

possible changes in let-7 expression through this pathway may be a driver for the 

development of many types of cancers. The complex interactions of these proteins in 

addition to genetic variants that may alter their functional capabilities warrant further in-

depth investigations.

We found SNPs in the SMAD3 gene that were associated with both with overall and ER-

positive-specific risk of breast cancer. Several recent studies have examined the pathways 

through which SMAD3 may influence breast cancer pathogenesis. First, through the 

mediation of transformation growth factor β (TGF-β), SMAD3 can interact directly with 

miR-21, which has been shown previously to be upregulated during breast cancer (Davis et 

al. 2008; Li et al. 2014). A second pathway is through the interaction of the BRCA1 gene 

with DROSHA along with the SMAD3/p53/DHX9 pathway in promoting miRNA 

maturation (Dubrovska et al. 2005; Kawai and Amano 2012). This result may confer an 

additional pathway through which BRCA1 modulates breast cancer pathogenesis, 

particularly among women of African ancestry, who have higher rates of BRCA1/BRCA2 
mutations and may be more susceptible to the deleterious effects of BRCA1/BRCA2 on 

inducing triple-negative breast cancer (Dietze et al. 2015; Hall et al. 2009).

ER plays a prominent role in breast cancer signaling, progression, and metastasis, and is also 

a potent target for hormonal therapies such as tamoxifen (Clarke et al. 2003; Fuqua 2001). 

The differential associations of miRNA with ER-negative and ER-positive breast cancer 

suggests that miRNA may interact directly with or is modulated by the ER. In a prior study, 

variants in a miRNA binding site in ESR1 were associated with familial breast cancer risk 

(Tchatchou et al. 2009). The specific ESR1 variant, rs2747648, was noted to affect the 

binding capacity of miR-453. Another study demonstrated that miRNA processing could 

involve complex regulatory pathways with both ER and c-Myc, leading to differential levels 

of miRNA expression in ER-positive or ER-negative breast cancers (Castellano et al. 2009). 

The interaction between miRNA and ER is hence of particular interest as a better 

understanding of this pathway could unveil additional therapeutic targets for breast cancer. 

While we were not able to replicate this finding in the present study, we did find one SNP in 

ESR1 (rs523736), the gene encoding ERα that was consistently associated with breast 

cancer risk regardless of ER status. This SNP was not found to be in strong LD with GWAS 

identified ESR1 SNPs, such as rs2046210 or rs12662670, which were both found to be 

strongly associated with breast cancer risk in European and Asian populations (Garcia-

Closas et al. 2013; Hein et al. 2012; Yang et al. 2013). This suggests a possible novel 

mechanism by which ERα influences breast cancer risk among African populations.
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Our study has several strengths, including its large sample size and replication which 

reduces the likelihood of false positive findings, a comprehensive search of genes/miRNA of 

interest, and the high coverage of known SNPs using a genome-wide scan. We also assessed 

the LD between the SNPs in our study and known breast cancer susceptibility loci and did 

not find any notable linkages. The limitations of this study include the need to determine the 

functionality of the particular SNPs in altering the expression level or function of the 

biogenesis gene or miRNA and the resultant effects on breast cancer risk. Additional 

research is needed to confirm the associations found for these SNPs and determine how 

these miRNAs and biogenesis genes alter the disease pathway of breast cancer. The majority 

of the variants found in our study were intronic variants which may exert their effect through 

effects on alternative splicing, binding of regulatory miRNA or RNA binding proteins, and 

additional interactions with enhancers or repressors (Ward and Kellis 2012). In addition, we 

did not have complete hormone receptor status for all breast cancer cases the in stage 1 and 

2 studies, thus decreasing the number of cases and controls tested in stratified analyses. 

Furthermore, while our study examined the association of individual SNPs with the risk of 

breast cancer, growing research shows that the joint variations of multiple miRNAs (Zhong 

et al. 2014) have profound effects on breast cancer risk; understanding these complex 

interplays will be key in determining novel preventive, diagnostic and therapeutic strategies. 

Lastly, we cannot rule out the possibility that variants found in this study could be false 

positives. Since there were statistically significant differences in several baseline 

characteristics in our discovery cohort, we performed a sensitivity analysis in which we 

additionally adjusted for these variables. Overall, the effect estimates are not 

materialistically different from our main analysis, though several variants that previously 

had borderline statistical significance were no longer significant (Supplementary Table 5). In 

addition, we applied a more liberal form of correction by using regional tagging SNPs for 

each gene and a combined genome-wide correction. Additional studies in populations of 

African ancestry as well as other populations will be needed to confirm our findings, since 

the SNPs examined in our study did not reach our corrected genome-wide significance. 

Nevertheless, our study provides further evidence that miRNA play a potentially important 

regulatory role in breast cancer and highlight the importance of using miRNA as novel 

biomarkers for clinical risk assessment as well as potential therapeutic targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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