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Abstract

The mechanisms behind the development of hepatic encephalopathy (HE) are unclear although 

hyperammonemia and systemic inflammation through gut dysbiosis have been proposed.

Aim—Define the individual contribution of hyperammonemia and systemic inflammation on 

neuro-inflammation in cirrhosis using germ-free (GF) and conventional mice.

Methods—GF and conventional C57BL/6 mice were made cirrhotic using CCl4 gavage. These 

were compared to their non-cirrhotic counterparts. Intestinal microbiota, systemic and neuro-

inflammation (including microglial and glial activation), serum ammonia, intestinal glutaminase 

activity and cecal glutamine content were compared between groups.

Results—GF-cirrhotic mice developed similar cirrhotic changes to the conventional mice after 

four extra weeks (16 vs. 12 weeks) of CCL4 gavage. GF-cirrhotic mice exhibited higher ammonia 

compared to the GF controls but this was not associated with systemic or neuro-inflammation. 

Ammonia was generated through increased small intestinal glutaminase activity with 

concomitantly reduced intestinal glutamine levels. However, conventional cirrhotic mice had 
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intestinal dysbiosis as well as systemic inflammation, associated with increased serum ammonia 

compared to conventional controls. This was associated with neuro-inflammation and glial/

microglial activation. Correlation network analysis in conventional mice showed significant 

linkages between systemic/neuro-inflammation, intestinal microbiota and ammonia. Specifically 

beneficial, autochthonous taxa were negatively linked with brain and systemic inflammation, 

ammonia and with Staphylococcaceae, Lactobacillaceae and Streptococcaceae. Enterobacteriaceae 
were positively linked with serum inflammatory cytokines

Conclusions—Gut microbiota changes drive the development of neuro- and systemic 

inflammatory responses in cirrhotic animals.
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Hepatic encephalopathy (HE) or brain dysfunction due to cirrhosis represents a major 

healthcare burden in subjects with cirrhosis(1). Cirrhosis is associated with dysbiosis or an 

altered gut microbiota that potentiates a systemic pro-inflammatory milieu(2). This 

inflammatory environment can potentiate neuro-inflammation and brain dysfunction in the 

setting of hyperammonemia(3–5). However the specific contribution of the gut microbiota 

towards neuro-inflammation and hyperammonemia in cirrhosis is unclear since ammonia 

production can also occur through intestinal glutaminase activity in germ-free (GF) animals 

(6). This is relevant because the majority of HE treatments act by modifying gut microbial 

function, while others can improve outcomes by scavenging ammonia from the systemic 

circulation without acting on the gut(1).

The aim of this study was to determine the role of gut microbiota in the development of 

experimental neuro-inflammation and hyperammonemia by inducing cirrhosis in germ-free 

and conventional mice.

METHODS

To study the impact of absence of microbiota on neuro-inflammatory response in cirrhosis, 

we created cirrhotic mice under GF and conventional conditions.

We included four groups of 10-week old C57BL/6 mice. Group 1: GF mice (n=8), Group 2: 

GF mice that underwent twice weekly CCL4 gavage to induce cirrhosis (n=36; see section 

below), Group 3: Conventional mice (n=6) and Group 4: Conventional mice that underwent 

CCL4 gavage to induce cirrhosis (n=6).

Creation of GF CCl4 gavage cirrhosis model

Mice were born and maintained in GF conditions in flexible film Trexler isolators at the 

National Gnotobiotic Rodent Resource Center (NGRRC) at UNC-Chapel Hill and were fed 

autoclaved mouse chow and water. Sterility was verified by fecal Gram stain and aerobic and 

anaerobic culture taken prior to manipulation. If any Gram stains were equivocal, sterility 

was verified by quantitative PCR using universal 16Sribosomal RNA primers, as per 
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published experiences (7, 8). This was repeated for all GF mice at pre-specified intervals 

throughout the study.

We performed gavage of 1ml CCL4/kg twice a week for 16 weeks in thirty six GF mice. 

Given the uncertainty of cirrhosis development using oral CCL4 gavage in GF conditions, 

we performed serial sacrifices of a proportion of the group at weeks 8, 12 and 16 until fully 

established cirrhosis was established using an expert pathology analysis. We sacrificed 12 

mice at week 8, which showed liver injury and minor fibrosis without nodules. The 12 mice 

sacrificed at week 12 showed early nodule formation and the decision was made to continue 

to the gavage till week 16 at which point, all mice developed established cirrhosis. Therefore 

we had 12 GF CCL4 cirrhotic mice at week 16 for analysis.

Conventional mice—All conventional mice had their own microbiota from birth. Gavage 

was carried out at 1ml CCL4/kg twice a week for 12 weeks for CCL4-assigned group based 

on our prior studies (9). Mice were followed daily for the study duration, were fed identical 

diets and underwent necropsy at week 12.

At necropsy, cirrhosis was confirmed using histology for both CCL4 groups (GF at week 16 

and conventional at week 12) using trichrome staining associated with complete nodule 

formation and similar extent of injury by an experienced pathologist blinded to the groups. 

We harvested the liver, brain and intestinal mucosa. Microbiota analysis was performed on 

the intestinal mucosa (cecum, large and small intestines) using MTPS for the conventional 

mice groups and also to reconfirm the germ-free status of the GF groups. UNIFRAC, LEFSe 

and PiCRUST analyses were performed and the groups were compared.

Analysis of microbiota

Microbiota—Stool was collected and DNA extracted using published techniques(10). We 

first used Length Heterogeneity PCR (LH-PCR) fingerprinting of the 16S rRNA to rapidly 

survey our samples and standardize the community amplification. We then interrogated the 

microbial taxa associated using Multitag Pyrosequencing (MTPS) (11). This technique 

allows the rapid sequencing of multiple samples at one time.

Microbiome Community Fingerprinting—About 10 ng of extracted DNA was 

amplified by PCR using a fluorescently labeled forward primer 27F (5′-(6FAM) 

AGAGTTTGATCCTGGCTCA G-3′) and unlabeled reverse primer 355R’ (5′-
GCTGCCTCCCGTAGGAGT-3′). Both primers are universal primers for bacteria. The LH-

PCR products were diluted according to their intensity on agarose gel electrophoresis and 

mixed with ILS-600 size standards (Promega) and HiDi Formamide (Applied Biosystems, 

Foster City, CA). The diluted samples were then separated on a ABI 3130xl fluorescent 

capillary sequencer (Applied Biosystems, Foster City, CA) and processed using the 

Genemapper™ software package (Applied Biosystems, Foster City, CA). Normalized peak 

areas were calculated using a custom PERL script and operational taxonomic units (OTUs) 

constituting less than 1% of the total community from each sample were eliminated from the 

analysis to remove the variable low abundance components within the communities.
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MTPS(11)—Specifically, we have generated a set of 96 emulsion PCR fusion primers that 

contain the 454 emulsion PCR linkers on the 27F and 355R primers and a different 8 base 

“barcode” between the A adapter and 27F primer. Thus, each fecal sample was amplified 

with unique bar-coded forward 16S rRNA primers and then up to 96 samples were pooled 

and subjected to emulsion PCR and pyrosequenced using a GS-FLX pyrosequencer (Roche). 

Data from each pooled sample were “deconvoluted” by sorting the sequences into bins based 

on the barcodes using custom PERL scripts. Thus, we were able to normalize each sample 

by the total number of reads from each barcode. We have noted that ligating tagged primers 

to PCR amplicons distorts the abundances of the communities and thus it is critical to 

incorporate the tags during the original amplification step.

Microbiome Community Analysis—We identified the taxa present in each sample 

using the Bayesian analysis tool in Version 10 of the Ribosomal Database Project (RDP10, 

http://rdp.cme.msu.edu/)(12). The abundances of the bacterial identifications were then 

normalized using a custom PERL script and genera present at >1% of the community were 

tabulated. We chose this cutoff because of our a priori assumption that genera present in < 

1% of the community vary between individuals and have minimal contribution to the 

functionality of that community and 2,000 reads per sample will only reliably identify 

community components that are greater than 1% in abundance.

QIIME analysis, LEFSe and Kruskal-Wallis tests were used to evaluate changes in overall 

microbial abundance (13). We also performed Metastats to evaluate changes in relative 

abundance between groups with correction for the false discovery rate (FDR)(14). Predicted 

bacterial functions were then assessed using PiCRUST (phylogenetic investigation of 

communities by reconstruction of unobserved states)(15).

In all groups, brain tissue was separated into cortex (Cx) and cerebellum (Cbl). Analysis was 

performed for mRNA of inflammatory mediators (IL-1β, MCP-1) and activation of 

microglia and glia (IBA-1, GFAP) using qPCR (normalized for GADPH) as well as mRNA 

expression of markers suggesting oligodendrocyte (MOG) and neuronal (NeuNFox) 

expression. Brain proteins were extracted after homogenization separately from the cortex 

and cerebellum. Analyses of proteins of pro-inflammatory (IL-1β, MCP-1, TNF-α) and anti-

inflammatory (IL-10) cytokines was performed using ELISA. We also performed serum 

TNF-α and IL-1β analysis (Assaygate Inc, Ijamsville, MD) using validated techniques(10). 

Serum ammonia and change in ammonia levels (delta) between GF and GF-cirrhosis and 

conventional control and cirrhotic mice were compared. Glutaminase activity was measured 

using the methods of Miller et al in small and large intestine in all groups(16). LC-MS using 

published techniques were used to analyze cecal, small intestinal and colonic glutamine 

content in all four groups at the West Coast Metabolomics Center at University of 

California, Davis(17). Kruskal-Wallis tests were used to compare values.

Correlation network analysis—We created correlation networks using tools in the 

Galaxy Portal at the Microbiome Analysis Center. We only included nodes consisting of 

microbiota, serum, brain inflammatory markers and markers of neuronal, microglial and 

glial activation, which had a p value <0.01 and correlation coefficient of >0.6 or <−0.6. 
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These networks were created conventional mice with and without cirrhosis (18) and were 

then visualized in Cytoscape (19).

This protocol was approved by the IACUC at University of North Carolina and VCU 

Medical Center.

RESULTS

All mice survived till the end of the experiment. At week 16 for GF CCl4 mice and at week 

12 for conventional CCL4 mice, there was no obvious ascites, jaundice, asthenia or change 

in behavior on observation. On sacrifice however, there was evidence of the nodular liver, 

which was confirmed by histology on each mouse. Both CCL4-treated groups showed 

cirrhosis on sacrifice on visual and histological examination (Supplementary figures 1A and 

B).

Neuro-inflammation and glial/microglial activation was only seen in conventional cirrhotic 
mice

There was a significant increase in mRNA expression of IL-1β and MCP-1 in conventional 

cirrhotic mice cerebellum and IL-1β in the cortex compared to the other groups (Figures 

1A/B). This was higher in both conventional groups compared to GF groups. There was 

significant microglial and glial activation as noted by IBA-1 and GFAP mRNA increase in 

conventional cirrhotics compared to other groups in the cortex and cerebellum. These 

findings were accompanied by a significantly higher IL-1β, TNF-α and MCP-1 protein and 

lower IL-10 protein levels in the brains of conventional cirrhotic mice compared to 

conventional controls and both GF groups. No changes regarding inflammation within the 

GF groups were seen. In addition, no significant alterations in NeuN/Fox-3 and MOG 

expression were seen between groups.

Systemic inflammation and ammonia were discordant in GF compared to conventional 
cirrhotic mice

There were significantly higher serum levels of IL-1β and TNF-α in conventional cirrhotic 

mice compared to the other groups and in all conventional groups compared to the GF ones. 

On the other hand, ammonia levels were the lowest in GF control mice and highest in 

conventional cirrhotic mice. Ammonia levels in conventional cirrhotic mice were 

significantly higher than in conventional control and in GF-cirrhotic mice. GF cirrhotic mice 

had a higher ammonia level than their GF control counterparts. Conventional controls were 

much higher than GF controls (Figure 1C). Although absolute ammonia levels between GF-

cirrhosis and conventional control were similar, there was a significantly higher increase in 

ammonia levels in the GF group after cirrhosis development compared to the conventional 

group (delta ammonia 402±51.1 in GF vs 196.5±13.6 μm/L in conventional mice).

To identify potential sources of ammonia production, glutaminase activity was studied in the 

small and large bowel linings. In GF cirrhotic mice compared to GF controls there was a 

significant increase in small and large intestinal glutaminase activity. When conventional 

cirrhotic mice were compared to conventional control mice, there was a significant increase 

in large bowel glutaminase activity in cirrhotic mice but no change in small bowel activity 
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was observed. When all four groups were evaluated, the highest small bowel glutaminase 

activity was seen in GF cirrhotic mice. The large intestinal glutaminase activity was higher 

in both cirrhotic groups (highest in conventional cirrhotic mice) compared to non-cirrhotic 

ones and within the cirrhotic mice, was higher in conventional cirrhotic ones (Figure 1D). 

Cecal glutamine content was the highest in GF mice, which got significantly lower with 

development of cirrhosis (Figure 1E). On the other hand, the glutamine content in the 

conventional cirrhotic mouse group was higher than that of controls.

Conventional cirrhotic mice showed dysbiosis and altered predicted microbial 
functionality, which was linked with systemic and neuro-inflammation

When microbiota were compared between the two conventional mouse groups, there was a 

significant difference in composition on UNIFRAC at the small intestine, cecum and large 

intestine level (all p values <=1.0e−02) in cirrhotic mice compared to controls. There were 

specific bacterial changes related to families (Figure 2) in these tissues. There was a 

significantly lower relative abundance of autochthonous families (Lachnospiraceae, 
Ruminococcaceae and Clostridiales XIV, Bifidobacteriaceae) and higher Staphylococcaceae, 
Enterobacteriaceae and Lactobacillaceae in large intestinal and cecal lining in stool of 

cirrhotic mice compared to control conventional mice (Figure 2A and B). Small intestinal 

lining changes showed relative increases in Enterobacteriaceae and Staphylococcaceae along 

with predominantly oral families such as Streptococcaceae in cirrhotic mice (Figure 2C). On 

PiCRUST, predicted functions related to endotoxin and endotoxin-related protein production 

with changes towards reduced branched chain and higher aromatic amino acids in large 

intestine and cecum of cirrhotic mice, while in the small intestine a higher functionality 

related to bacterial invasion of epithelial cells was demonstrated in cirrhotic mice 

(Supplementary figures 2C–E). While control mice microbiota had functions predicted 

towards synthesis of aromatic amino acids, the cirrhotic functionality was towards their 

degradation, which is associated with HE.

There were strong negative linkages between conventional mouse intestinal microbiota 

autochthonous bacterial families and ammonia, systemic inflammation and brain 

inflammatory markers (Figure 3 A–F). This was similar in cirrhotic and non-cirrhotic mice 

underlining the inherent beneficial nature of these taxa. On the other hand, specific families 

such as Staphylococcaceae, Lactobacillaceae and Streptococcaceae were negatively 

correlated with autochthonous taxa and Enterobacteriaceae were positively linked with 

systemic inflammation as manifested by inflammatory cytokines.

No microbial DNA was isolated from any tissues in both GF groups.

DISCUSSION

The relative contribution of the gut microbiota towards the cognitive dysfunction is not 

completely understood. While therapies for HE are overwhelmingly gut-based, there is often 

an additive role for synergistic, systemic ammonia-scavenging treatments in humans(1). 

There is patho-physiologic evidence supporting both hyperammonemia and inflammation in 

the causation of HE(20, 21). Specifically the inducement of hyperammonemia in cirrhotic 

patients greatly increases systemic inflammation and the development of neuro-
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psychological abnormalities(3). We found that increased ammonia levels in GF cirrhotic 

mice, due to an activated small bowel glutaminase activity, did not result in systemic 

inflammation, glial or microglial activation and neuro-inflammation, while similar 

conditions in conventional mice resulted in higher ammonia along with systemic and neuro-

inflammation that was correlated with gut microbiota.

It has been hypothesized that in humans the dysbiotic gut microbiota is the major source of 

both ammonia and the systemic pro-inflammatory milieu(22). Specifically with the 

progression of cirrhosis, the relative reduction in autochthonous commensals and the 

increase in microbiota such as those belonging to Enterobacteriaceae and Streptococcaceae 
that can produce endotoxin and ammonia through their urease activity respectively(23). This 

dichotomy between ammonia and systemic inflammation in the pathogenesis of cirrhosis-

associated neuro-inflammation was tested in GF and conventional mice that were made 

cirrhotic through toxic CCL4 injury. GF cirrhotic mice demonstrated an increase in 

ammonia compared to GF-controls to increased small bowel glutaminase activity that did 

not result in systemic or neuro-inflammation and did not engender microglial or glial 

activation. This was in contrast with the conventional CCL4 cirrhosis models that 

demonstrated not only increase in relative ammonia levels, but also systemic inflammation 

that was associated with cerebellar and cortical inflammation and microglial and glial 

activation. Moreover, we found that conventional control mice have higher anti-

inflammatory cytokines (IL-10) in the brain, which significantly decreases after dysbiosis 

sets in after cirrhosis, and is not found with or without cirrhosis in GF animals.

Glutaminase activity was highest in the conventional cirrhosis group in the large intestine, 

which usually has the highest bacterial abundance and not the small intestine in contrast to 

the GF cirrhosis group where small intestinal glutaminase expression predominated. 

Glutaminase polymorphisms have been shown to impact the occurrence of HE in humans 

and certainly have a role in the modulation of nitrogen metabolism at the intestinal level(6). 

However, the mechanism behind this increase in small intestinal glutaminase activity in GF 

cirrhosis is unclear. The ammonia generation from this differential activation is evident by 

the significantly lower small intestinal, cecal and large intestinal glutamine in GF-cirrhotic 

mice corroborating the increased intestinal glutaminase activity. In contrast there was little 

change in intestinal glutamine contents in conventional cirrhotic mice reflecting the lack of 

change in glutaminase activity. Studies have shown that the small intestine can be a source 

of ammonia that is equivalent to the colon(24) and is proportional to the glutamine uptake. 

However, we found that despite a higher cecal glutamine content and an activity pattern of 

small intestinal glutaminase that was equivalent to the non-cirrhotic mice, that serum 

ammonia was the highest in conventional cirrhotic mice. This indicates that in the presence 

of microbiota, it is likely that the relative contribution of intestinal glutaminase activity 

towards hyperammonemia is modest. This is in contrast to the GF state where small 

intestinal glutaminase activity largely determines the serum ammonia levels. Therefore, it is 

likely that in the presence of microbiota, alternative sources of gut ammonia generation such 

as degradation of amino acids other than glutamine could predominate. This is also borne 

out by predicted bacterial functionality differences between conventional control and 

cirrhotic mice that does not show glutamine metabolism as a major differentiator between 

groups. Given the same chow and lack of asthenic changes between the groups, it is unlikely 
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the amount of glutamine consumed could explain these differential changes. Proximal 

intestinal and gastric glutamine contents, which were not available in this study, could have 

increased our insight into the overall glutamine consumption. Ultimately, glutaminase 

activity is an important source of ammonia production, whose relative importance may be 

tempered in the presence of microbiota.

The significant gut dysbiosis in the conventional cirrhotic mice compared to conventional 

controls mirrors recent animal studies(25). Moreover, this dysbiosis that exists in cirrhotic 

mice is similar to that seen in humans with cirrhosis(26). In prior studies using 

thioacetamide-treated (TAA) conventional mice, a specific microbial mixture or specifically 

engineered probiotics with sustained low ammoniagenesis were able to improve cognition 

and mortality respectively(27). However, the question of synergistic hyperammonemia and 

inflammation in cirrhotic mice was left open. Unlike the TAA model, the CCL4 model does 

not reliably develop visible neuro-behavioral changes nor is associated with early mortality. 

However, this model remains useful to study brain mRNA expression and the impact of liver 

fibrosis over a relatively longer time period(28). Therefore, our animals were not specifically 

tested for neuro-behavioral changes and brain inflammation was used as a corollary. This is 

the first report of an oral gavage producing CCl4 cirrhosis in GF mice. In contrast with the 

intra-peritoneally injected CCL4 GF cirrhosis model in which greater liver injury was 

achieved in GF compared to conventional mice(29), we found that the oral gavage required 

four extra weeks for generation of complete cirrhosis compared to the conventional mice. 

This could reflect a potential requirement for microbial modulation of CCL4 to be absorbed 

and cause liver injury when given orally, unlike intra-peritoneal injections, in which CCl4 

has already crossed the intestinal barrier. These findings could also reflect the absence of 

endotoxin and other TLR ligands in GF conditions, which would otherwise increase 

intestinal permeability and perpetuate liver injury and disease progression in conventional 

mice. We did not use the bile-duct ligation model due to the impact of biliary diversion on 

intestinal microbiota that does not reflect changes seen in cirrhosis that is not related to 

severe cholestasis(25, 30). A few prior studies have evaluated the impact of 

hyperammonemia in GF animals; one was a type A HE study in which hepatectomy in GF 

rats induced hyperammonemia similar to conventional ones(31), while others are GF dog 

Eck fistula studies of type B HE(32). However both these models of type A and B HE are 

not reflective of type C or cirrhosis-associated HE which has both liver insufficiency and 

shunting(28).

While the ideal model for type C HE is lacking, the current CCL4 model findings show 

concordance with prior published human data with respect to the mouse correlation 

networks(33). This is specifically in the linkages between autochthonous bacteria, 

Enterobacteriaceae, ammonia and neuro/systemic inflammation. Stool microbial predicted 

functionality showed a significant increase in pathways related to both inflammatory 

(endotoxin/endotoxin-protein synthesis) and ammoniagenic functionality (higher branched 

chain amino acid degradation and metabolism of aromatic amino acids) in conventional 

cirrhotic mice large intestinal and cecal bacteria also showed a similar change related to 

endotoxin and ammoniagenic amino acid functions compared to control conventional 

mice(34). However, in the mouse small intestine, the focus was towards the bacterial 

invasion of epithelial cells with a similar pattern of aromatic/branched-chain amino acid 
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functionality but not endotoxin-related functions. This is could be due to the significantly 

larger bacterial and hence Gram-negative population in the large intestinal and cecal 

microbiota compared to those of the small intestine.

Interestingly, Lactobacillaceae, which in control mice appeared beneficial, i.e. negatively 

associated with neuro-inflammation, reversed their associations in cirrhotic mice on 

correlation network analysis. This was corroborated with an increased relative abundance of 

Lactobacillaceae in human stool of HE patients in prior studies(33). It was assumed in past 

human studies that the increased Lactobacillaceae abundance was due to the use of lactulose 

for HE therapy, which was not fed to the mice(35). However, our prior and current human 

results and prior animal CCL4 studies demonstrate that Lactobacillaceae increase may be a 

part of an expansion of selected urease-producing Firmicutes in humans and mouse cirrhosis 

models(2, 25, 36). An increased cerebral lactate, which has now been hypothesized to be 

synergistic with glutamine for HE development in some animal models, could also be 

precipitated by Lactobacillaceae spp(37). This seems to be in contrast with the use of 

members of Lactobacillaceae as probiotics but this is a large family of bacteria, from which 

it is possible that some members could be actually pro-inflammatory in their impact(33).

We conclude that a dysbiotic profile of gut microbiota may be required for the development 

of systemic inflammation and neuro-inflammation in cirrhosis with or without an increase in 

ammonia levels. Specific alterations, which provide potential novel therapeutic targets to 

restore intestinal and neuronal homeostasis, in the gut microbial milieu could impact 

different aspects of brain function in cirrhotic individuals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

HE hepatic encephalopathy

GF Germ-free

LH-PCR Length Heterogeneity PCR

MTPS Multitag Pyrosequencing

PiCRUST phylogenetic investigation of communities by reconstruction of unobserved 

states

LEFSe Linear discriminant analysis effect size

MCP-1 monocyte chemoattractant protein-1
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GFAP glial fibrillary acidic protein

MOG myelin oligodendrocyte glycoprotein

IBA-1 microglial ionized calcium binding adaptor molecule 1

NeuNFox neuronal nuclei Fox3

CCL4 carbon tetrachloride

TAA thioacetamide-treated
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Figure 1. Ammonia and inflammation-related results
Legends common to all figures: Data is shown as mean±SEM, ap<0.05 on one-way 

ANOVA, bp<0.05 GF vs conventional, cp<0.05 control vs. cirrhosis within that group Con: 

conventional, Ctrl: control or non-cirrhotic, GF: Germ-free, Cirr: cirrhotic, Cbl: cerebellum, 

Cx: cerebral cortex, MCP-1: monocyte chemoattractant protein-1, GFAP: glial fibrillary 

acidic protein, MOG: myelin oligodendrocyte glycoprotein IBA-1: microglial ionized 

calcium binding adaptor molecule 1, NeuNFox: neuronal nuclei Fox3
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A. Changes in mRNA expression in the mouse cerebellum: Conventional cirrhotic mice had 

the highest expression of IL-1b, MCP-1 along with IBA-1 and GFAP compared to other 

groups. Both conventional groups had higher expression of MCP-1, GFAP and IBA-1 

compared to germ-free groups (p<0.002 for all comparisons). No changes within the germ-

free groups were seen. No significant differences in MOG or NeuNFox were identified.

B. Changes in mRNA expression in the mouse cerebral cortex: Similar to the cerebellum, 

conventional cirrhotic mice had the highest expression of IL-1balong with IBA-1 and GFAP 

compared to other groups. Both conventional groups had higher expression of MCP-1, 

GFAP and IBA-1 compared to germ-free groups (p<0.005 for all comparisons). No changes 

within the germ-free groups were seen. No significant differences in MCP-1, MOG or 

NeuNFox were identified.

C. Changes in brain protein expression in cerebellum and cortex: Pro-inflammatory 

cytokines were significantly higher in the cortex and cerebellum in conv-cirr compared to 

others (ANOVA p<0.001 in all except TNF-α where it was p<0.03). In contrast, the anti-

inflammatory cytokine IL-10 was the highest in conventional controls and reduced with the 

development of cirrhosis. All cytokines (pro and anti-inflammatory) were significantly 

higher in conventional compared to GF mice. No differences within GF and GF-cirr mice 

were seen while apart from cortical IL-10, all conv-cirr mice had significantly different 

cytokine expression compared to their respective controls.

D. Changes in serum markers: A significant increase in serum IL-1b and TNF-α were seen 

in conventional cirrhotic mice compared to other groups. Serum ammonia was the lowest in 

germ-free controls and highest in conventional cirrhotics. Serum ammonia levels were 

significantly higher in GF-cirr compared to GF (p<0.0001), in conv-cirr compared to GF-cirr 

(p=0.002), and in conv-cirr compared to conv-control (p<0.001). Delta ammonia was 

significantly higher in GF mice compared to conventional mice (p=0.02).

E. Changes in glutaminase activity and glutamine content: A significantly increased 

glutaminase activity was seen in the small intestine of GF-cirr mice (p<0.003) compared to 

the other groups. In the large intestine, both cirrhotic groups had significantly higher 

glutaminase activity compared to non-cirrhotic ones (p<0.001). Conv-cirr had a significantly 

higher large intestinal glutaminase activity compared to GF-cirr (p=0.03). Glutamine content 

was highest in GF-control mice which reduced significantly after development of cirrhosis 

(p=0.01). In contrast, cecal glutamine increased after cirrhosis development in conventional 

mice (p=0.02). In the small intestine and large intestine, the highest glutamine was again 

seen in conventional mice compared to the rest (p=0.005 small and p=0.002 large intestine). 

This was also higher compared to conventional groups (p=0.01 in both intestinal contents) 

and in GF-cirrhotic compared to control mice (p<0.001 in both intestinal contents). There 

was no significant difference in glutamine content of small and large intestines between the 

two conventional groups.
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Figure 2. Microbial composition changes between conventional control mice compared to those 
with CCL4-induced cirrhosis
Legend common to all sub-parts: LEfSe predictions for bacterial families. LDA score 

represents log changes in relative bacterial family representation. The cladogram shows the 

phylogenetic relationship between the bacterial families. LDA, linear discriminant analysis, 

red=cirrhotic mice, green=control mice

2A. LEfSe predictions for bacterial families found in Cecum

2B. LEfSe predictions for bacterial families found in large intestine

2C. LEfSe predictions for bacterial families found in small intestine
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Figure 3. Correlation networks between microbiota, systemic and neuro-inflammatory markers 
in conventional mice
Legends common to all sub-parts:

Red nodes: stool bacterial families, light green: cerebellar markers, dark green: cortical 

markers, blue nodes: serum results. MCP-1: monocyte chemoattractant protein-1, GFAP: 

glial fibrillary acidic protein, MOG: myelin oligodendrocyte glycoprotein IBA-1: microglial 

ionized calcium binding adaptor molecule 1, NeuNFox: neuronal nuclei Fox3

In all correlation networks, blue lines joining nodes represent positive correlations between 

those nodes while red lines indicate negative correlations. All correlations represented are 

significant at p<0.01 with a correlation coefficient of r>0.6 or <−0.6. Thick correlation lines 

indicate p<0.001 while thin lines indicate p values between 0.01 and 0.001.

3A. Control small intestine: Cerebellar and cortical inflammatory markers were positively 

correlated with glial, microglial, oligodendrocyte and neuronal markers as well as with 

systemic inflammatory cytokines. These markers were negatively correlated with 

Lactobacillaceae and positively with Erysipelothricaceae. Ammonia was positively 

correlated with cortical IL-1β.

3B. Control cecum: Similar to the small intestine, brain markers were positively linked to 

each other, to serum ammonia and peripheral inflammatory cytokines. Brain inflammatory 
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cytokines and neuronal markers, and ammonia were negatively linked with autochthonous 

bacterial families (Lactobacillaceae, Ruminococcaceae, Lachnospiraceae and Clostridiales 

XIV) and positively with Erysipelothricaceae and Clostridiaceae.

3C. Control large intestine: Similar trends to the small intestine and cecum were seen with 

regards to inter-relationship between brain activation and inflammatory markers with serum 

inflammation and ammonia. Also the negative relationship between autochthonous bacteria 

(Lactobacillaceae and Ruminococcacae) with ammonia and brain markers of inflammation, 

microglial and glial activation was again seen.

3D. Cirrhosis small intestine: There was a positive correlation between ammonia and brain 

inflammation and glial activation markers. Brain inflammation was linked with serum 

inflammatory cytokines and with Staphylococcaceae. Lactobacillaceae and Streptococcaceae 
were negatively linked with autochthonous bacterial families and positively with 

Staphylococcaceae, while Porphyromonadaceae, Enterobacteriaceae and Rikenellaceae were 

positively linked with each other.

3E. Cirrhosis cecum: Positive linkages within brain inflammatory markers, ammonia and 

serum inflammation were seen. Autochthonous bacteria (Ruminococcaceae, Clostriales 

XIV) and Bacteroidaceae, Erysipelothriaceae, were negatively linked with systemic and 

cerebellar inflammation, while Enterobacteriaceae were positively correlated.

3F. Cirrhosis large intestine: Similar inter-relationships between brain inflammatory markers 

and serum inflammation and ammonia were found. Similar to the cecal findings, 

Bacteroidaceae were negatively correlated with brain inflammation.
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