
Coronaviruses are potentially lethal pathogens, and sev-
eral novel strains have emerged or have been identified 
in animal and human populations in the past 10 years. 
The global severe acute respiratory syndrome corona-
virus (SARS-CoV) epidemic was recognized in early 
2003 and caused 10–50% mortality in infected indi-
viduals, depending on their age1–3. SARS-CoV probably 
originated in bats, and the search for this reservoir has 
resulted in the vast expansion of the library of known 
coronaviruses. Many of these viruses infect various 
bats and other animal species, and several are phylo-
genetically similar to known pathogenic human coro-
naviruses4–13, which suggests that additional emergence 
events are highly likely to occur. Indeed, recent reports 
have confirmed the emergence of a novel coronavirus, 
designated Middle East respiratory syndrome corona-
virus (MERS-CoV), which causes ~50% mortality in 
patients who seek medical attention, is transmissible 
on close contact and has caused transmission clusters 
and cases in several countries, including Saudi Arabia, 
Jordan, Qatar and the United Kingdom14. Bat species 
have been implicated as reservoirs of MERS-CoV, but 
these species are distinct from those that are thought 
to have been involved in the emergence of SARS-
CoV6,12,15–18. Coronaviruses can also be major pathogens 
in animal populations; for example, porcine epidemic 
diarrhoea virus (PEDV), which is related to certain bat 
alphacoronaviruses (FIG. 1), is a major cause of economic 
loss in the swine industry in Europe and Southeast Asia 
and has now been detected in US herds (National Pork 
Board statement on PEDV).

The recent coronavirus emergence events that are 
summarized in this article indicate that coronaviruses 
have the potential to rapidly adapt and stably transmit 
to new species (see BOX 1 for a discussion on the struc-
ture and proteins of coronaviruses). These observations, 
when paired with an apparently extensive zoonotic res-
ervoir and the propensity of coronaviruses to emerge 
as highly virulent human pathogens, have spurred the 
development of animal models to investigate corona-
virus replication, pathogenesis and vaccine efficacy. In 
addition, because coronavirus vaccines have histori-
cally exhibited poor capacity for cross-protection19, the 
design of methods to generate safe, effective vaccines 
that can be rapidly implemented during an emerging 
epidemic is a high priority. In this Review, we summa-
rize the human coronavirus emergence events that have 
taken place over the past decade, highlight key biologi-
cal properties that are unique to coronaviruses, discuss 
the development of animal models for characterizing 
coronavirus replication, pathogenesis, transmission and 
vaccine efficacy, and examine the various strategies that 
have been implemented for the production of safe and 
effective coronavirus vaccines.

Emergence of novel coronaviruses
Before 2003, two coronaviruses were known to cause 
human disease: human coronavirus 229E (HCoV-229E) 
and HCoV-OC43, both of which were identified in the 
1960s. HCoV-229E and HCoV-OC43 cause compara-
tively mild common colds, except in infants, the elderly 
and the immunocompromised, in whom symptoms can 
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Abstract | Two novel coronaviruses have emerged in humans in the twenty-first century: 
severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory 
syndrome coronavirus (MERS-CoV), both of which cause acute respiratory distress syndrome 
(ARDS) and are associated with high mortality rates. There are no clinically approved 
vaccines or antiviral drugs available for either of these infections; thus, the development of 
effective therapeutic and preventive strategies that can be readily applied to new emergent 
strains is a research priority. In this Review, we describe the emergence and identification of 
novel human coronaviruses over the past 10 years, discuss their key biological features, 
including tropism and receptor use, and summarize approaches for developing broadly 
effective vaccines.
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Purifying selection
(Also called negative selection). 
A type of natural selection that 
removes deleterious alleles.

be more severe20,21. However, in early 2003, a previously 
uncharacterized virus that was associated with the devel-
opment of SARS, which often progressed to severe lung 
disease, was isolated from humans. The infected patients 
exhibited atypical pneumonia that was characterized by 
diffuse alveolar damage and that had the potential to 
progress to acute respiratory distress syndrome (ARDS) 
(BOX 2). SARS was first reported in Guangdong Province, 
China, and the disease quickly spread worldwide. After 
an unprecedented global containment effort, the final sta-
tistics included more than 8,000 infected individuals and 
nearly 800 deaths1–3,22. The virus, a lineage B betacorona-
virus, was eventually named SARS-CoV and was found 
to have crossed to humans from zoonotic reservoirs, such 
as bats12, Himalayan palm civets (Paguma larvata) and 
raccoon dogs (Nyctereutes procyonoides)23–25.

Subsequent to the SARS epidemic, two other coro-
naviruses that are capable of causing disease in humans, 
HCoV-NL63 and HCoV-HKU1, were identified from 
archived nasopharyngeal aspirates26–28. These viruses 
cause mild to serious lower respiratory tract infections 
— including croup, bronchiolitis and pneumonia — in 
infants, children and adults, although the precise disease 
prevalence and severity, especially in the very young, 

are still being studied29. Although the characterization 
of these viruses was carried out very recently, molecu-
lar clock analyses indicate that HCoV-NL63 probably 
diverged from its nearest relative, HCoV-229E, around 
500–800 years ago; however, as with all molecular clock 
analyses, these periods of time might be vastly under-
estimated or over-estimated because of mutation mask-
ing and rate changes owing to purifying selection7,30,31 
(FIG. 1; FIG. 2 (TIMELINE)).

In June and September 2012, two cases of severe 
infections with another novel coronavirus were iden-
tified in the Eastern Mediterranean region6,16,17. Both 
patients succumbed to severe respiratory illness and, at 
the time of writing, 145 cases and 62 deaths associated 
with the novel MERS-CoV have been confirmed by the 
US Centers for Disease Control and Prevention (CDC 
MERS-CoV incidence updates). MERS-CoV infection 
causes atypical pneumonia, ARDS and in some cases 
renal failure, which are often fatal; however the mortal-
ity rate cannot yet be accurately estimated owing to the 
small number of confirmed cases. Additionally, there is 
evidence that infection can cause less severe illness in 
cluster infections (such as those that occur among fami-
lies and in hospitals) and can even be asymptomatic32–34. 

Figure 1 | Whole-genome phylogeny of representative coronaviruses. The full genomic sequences of 50 coronaviruses 
were aligned and phylogenetically compared. Three distinct phylogenetic groups are shown: alphacoronaviruses (green), 
betacoronaviruses (blue) and gammacoronaviruses (orange). This taxonomical nomenclature replaced the former group 1, 
2 and 3 designations, respectively. Deltacoronaviruses are newly characterized and are not shown. Classic subgroup 
clusters are marked as 2a–2d for the betacoronaviruses and 1a and 1b for the alphacoronaviruses. The tree was generated 
using maximum likelihood with the PhyML package. The scale bar represents nucleotide substitutions. Only nodes with 
bootstrap support above 70% are labelled.
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Envelope protein

Membrane protein

Spike protein
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Seropositivity
The positive reaction of a 
serum sample tested for a 
pathogen: for example, 
detection of antibodies against 
a virus.

Type I pneumocytes
Epithelial cells that line the 
lung alveoli; type I cells are flat 
and thin to enable efficient gas 
exchange.

Type II pneumocytes
Epithelial cells that line the 
lung alveoli; type II cells are 
round and produce surfactants.

Synanthropy
The process of an organism, 
particularly a wild animal, 
becoming ecologically 
associated with humans.

In addition to human infections, high seropositivity for 
MERS-CoV has been reported in camels, although the 
exact role of camels in virus transmission and main-
tenance in populations remains uncertain35. As is the 
case for SARS-CoV pathogenesis, the elderly seem to 
be especially vulnerable to poor disease outcomes as a 
result of MERS-CoV infection, particularly in the pres-
ence of co-morbidities such as diabetes, cardiac disease, 
hypertension and renal disease34. MERS-CoV is a line-
age C betacoronavirus and is phylogenetically distinct 
from all known human coronaviruses, including SARS-
CoV. MERS-CoV also uses a receptor that is distinct 
from that used by SARS-CoV and other human corona-
viruses: MERS-CoV uses dipeptidyl peptidase 4 (DPP4), 
whereas SARS-CoV and HCoV-NL63 have been shown 
to use angiotensin-converting enzyme 2 (ACE2)36–38. 
This difference in receptor usage seems to affect tro-
pism, as SARS-CoV infects type I pneumocytes, whereas 
MERS-CoV infects type II pneumocytes and non-ciliated 
bronchial cells39–41 (TABLE 1). Additionally, MERS-CoV is 
capable of both animal-to-human and human-to-human 
transmission: evidence shows that multiple animal-
to-human transmission events have occurred in Saudi 
Arabia in addition to human-to-human transmission42,43, 
which suggests that MERS-CoV is still undergoing selec-
tion in animal and human hosts and will probably con-
tinue to do so if the virus is to firmly establish itself in 
humans. Furthermore, zoonotic isolates that might be 

related to MERS-CoV have been identified in bat species 
that are native to the Arabian peninsula, Mexico, Ghana 
and Europe15.

Coronavirus reservoirs: the hidden bat virome
Although investigators initially focused on Himalayan 
palm civets and raccoon dogs as potential reservoirs of 
SARS-CoV infection, multiple observations suggested 
that palm civets were opportunistic hosts rather than 
the primary reservoirs of SARS-CoV-like viruses in the 
wild. Marketplace civets were disproportionately posi-
tive for viral RNA in screening assays44, and samples that 
had been isolated from civets showed ongoing selec-
tion, which suggested that the virus was still adapting 
to the civet rather than persisting in equilibrium in this 
host44,45. In fact, bioinformatic analysis suggested that 
there were at least three and possibly more transmis-
sion events that occurred between civets and humans: 
the first occurred before the 2003 epidemic, as indicated 
by the presence of SARS-CoV antigens in serum sam-
ples from uninfected individuals; the second occurred 
during the main SARS epidemic in 2003; and the third 
occurred in the winter of 2003–2004 and consisted of a 
series of sporadic infections45,46. Additionally, molecular 
analysis of samples that were taken from healthy indi-
viduals in Hong Kong in 2001 revealed a prevalence 
rate of 1.8% for antibodies against SARS-related viruses, 
which suggests that SARS-CoV or a close ancestor cir-
culated in humans before the 2003 epidemic47. In 2005, 
two groups independently reported the identification 
of SARS-CoV-related RNA sequences and anti-SARS 
nucleocapsid antibodies in Rhinolophus bats, particu-
larly Rhinolophus sinicus and Rhinolophus macrotis12,13,23. 
Interestingly, high antibody titres correlated with low 
RNA levels, which suggests that active viral replica-
tion occurred in these bat species. Genomes from these 
viruses differ by approximately 10–15% from the 2003 
epidemic SARS-CoV, which suggests that viruses with 
increased homology to SARS-CoV that are capable of 
using human and bat ACE2 orthologues for docking and 
entry could exist in bats.

With more than 1,100 species spanning 17 families, it 
is estimated that bats (order Chiroptera) comprise over 
20% of all mammalian species. Their dispersion over 
much of the globe probably enhances their potential 
to act as reservoirs for pathogens, some of which are 
extremely virulent and potentially lethal to other ani-
mals and humans, including SARS-CoV48,49. Bats’ natu-
ral roosting behaviours, in combination with ecological 
pressures that select for synanthropy, have brought bats 
closer to humans and to animals that live in proximity to 
humans, probably increasing the chances of bat-to-ani-
mal and bat-to-human transmission48,50. In fact, such 
a scenario has been proposed for the transmission of 
SARS-CoV-related coronaviruses from bats to humans: 
the bats roosted in or near open markets that sold civets 
in China; viruses were transmitted to civets via faecal 
and/or oral shedding; and humans handled civets and 
raw or improperly cooked civet meat, thus completing 
the transmission chain from bat to human. Alternatively, 
bats might have directly transmitted the virus to humans 

Box 1 | Coronavirus virion structure and proteins

Coronaviruses are enveloped RNA viruses that infect and cause disease in a broad array 
of animals and humans. Virus particles range from 70 to 120 nm in diameter and are 
surrounded by characteristic spike-shaped glycoproteins, as shown in the figure. 
Coronaviruses contain the largest single-stranded, positive-sense RNA genomes 
currently known, which range from 25.5 to nearly 32 kb in length. Whereas all 
coronaviruses encode strain-specific accessory genes in ORFs downstream of ORF1 
(the replicase–transcriptase), the order of essential structural genes is remarkably 
well-conserved: all coronaviruses encode the replicase–transcriptase (gene 1), spike, 
envelope, membrane and nucleocapsid proteins17,130,131. The ~180 kDa spike 
glycoprotein mediates host cell attachment and entry, utilizing virus- and host-specific 
cell receptors. The receptor-binding domain (RBD) of the spike glycoprotein is poorly 
conserved among viruses and, as a result, host receptor usage varies between viral 
genera and species37,38,132. This variability contributes to the broad host range of 
coronaviruses, as the viruses can breach cell type, tissue and host species barriers with 
relative ease133–137. Severe acute respiratory syndrome coronavirus (SARS-CoV) and 
Middle East respiratory syndrome coronavirus (MERS-CoV) recognize exopeptidases as 
receptors for docking and entry, and other human coronaviruses use aminopeptidases 
or carbohydrates. Crystal structures of both SARS-CoV and MERS-CoV RBDs 
complexed with their 
corresponding receptors have 
been solved36,116. Post-entry events 
are dependent on one or more 
cellular proteases, such as 
cathepsins, human airway 
trypsin-like protease (HAT) or 
transmembrane protease serine 2 
(TMPRSS2)138,139, which cleave the 
spike protein and initiate a variety 
of conformational changes that are 
important for membrane fusion 
and entry.
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via shedding, incidentally co-infecting the civets. There 
is evidence in support of this hypothesis, as a genetically 
reconstructed R. sinicus bat SARS-CoV-related corona-
virus was able to infect primate cells, mouse cells that 
expressed human ACE2 molecules and mice used to 
model SARS-CoV infection, and it was able to produce 
cross-neutralizing antibodies in these mice51.

Since 2005, dozens of previously unknown bat  
corona viruses have been identified; in fact, so many  
bat coronaviruses are known to be distributed across the 
Coronaviridae family that there is enough evidence to 
suggest that bat coronaviruses were the ancestral sources 
of the alphacoronavirus and betacoronavirus gen-
era5,9,15,31,52,53 (FIG. 1). Additionally, a recent study reported 
the transmission of a bat coronavirus between bats of 
two different suborders, which supports the hypothesis 
that bats can be co-infected with different coronaviruses 
and thus, could enable viral molecular recombination6. 
Given that two new human coronaviruses might have 
emerged from bats and that HCoV-NL63 has been 
shown to replicate in New World bat cells31, priorities 
for basic research and global health preparedness include 
determining the amount of virus diversity in bats and 
other species and, in parallel, mapping the breadth of bat 
coronavirus host ranges among different bat and animal 
species.

In addition to SARS-CoV, there is evidence that other 
human coronaviruses have emerged from bats, includ-
ing HCoV-229E, HCoV-NL63 and the newly emerged 
MERS-CoV. MERS-CoV-related viruses (which  
can be as little as ~1.8% divergent from MERS-CoV) 
were identified in a recent survey of Pipistrellus bats 

that were captured in Ghana and Europe15. Bats that 
were sampled in Ghana also carried viral sequences 
that are phylogenetically similar to HCoV-229E15. Viral 
sequences that were sampled from North American 
Perimyotis bats have phylogenetic similarity to 
HCoV-NL63 (REF. 31). Additionally, immortalized cells 
from Perimyotis bats are capable of hosting HCoV-NL63 
infection, which supports the hypothesis that bats serve 
not only as reservoirs but also as reverse transmission 
conduits31. Clearly, there is substantial evidence that a 
broad array of coronaviruses persists in bats and that  
these viruses have the capacity to recombine and 
emerge as novel animal and human pathogens. Indeed, 
MERS-CoV is closely related to both HKU4 (which is 
a Tylonycteris bat coronavirus) and HKU5 (which is a 
Pipistrellus bat coronavirus); all three viruses probably 
emerged from a common ancestor several centuries ago. 
Additionally, many polymorphisms have been detected 
in HKU5 spike protein sequences, which suggests that 
this virus and, by extension, other bat coronaviruses are 
capable of generating mutants to occupy new ecological 
niches when they encounter novel hosts54.

Animal models for human coronaviruses
The continuing emergence of virulent human coronavi-
ruses emphasizes the need for animal models for study-
ing viral replication, pathogenesis and transmission. 
Thus far, this work has largely focused on SARS-CoV 
infection. SARS-CoV replication has been reported in 
mice, hamsters, cats, civets and primates, and the most 
severe disease symptoms have been observed in aged 
animals. MERS-CoV has a broad host range in vitro55, 
which provides some promise for the development of a 
small animal model for human disease in the near future. 
However, a functional small animal model for MERS-
CoV replication or pathogenesis has not yet been char-
acterized or reported; the possibility of ongoing selection 
in the receptor-binding sequence in the spike protein 
or other sequences that are important for host specific-
ity might contribute to this limitation. Inoculation of 
rhesus macaques with 7 × 106 half-maximal tissue cul-
ture infectious doses (TCID50) of a MERS-CoV isolate 
results in transient mild-to-moderate clinical disease, 
which includes localized or widespread pneumonia56; 
however, the lack of a small animal model is clearly a 
major obstacle to furthering our understanding of viral 
pathogenesis and to testing vaccines and therapeutics.

SARS-CoV mouse models. Epidemic SARS-CoV strains 
that have been isolated from humans encode receptor-
binding domains (RBDs) that interact well with human 
ACE2. These strains, particularly SARS-CoV Urbani, are 
capable of interacting with the mouse ACE2 orthologue 
and of replicating in mouse lungs and small intestine, 
but disease is limited to mild respiratory symptoms and 
minimal (<5%) weight loss. However, passage of SARS-
CoV Urbani in BALB/c mice produced mouse-adapted 
variants (SARS-CoV MA15, SARS-CoV MA20 and 
SARS-CoV v2163) that cause severe and lethal respira-
tory disease that closely resembles the clinical illness 
observed in patients and that leads to pneumonitis and 

Box 2 | Coronavirus infection and acute respiratory distress syndrome

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the main 
causes of respiratory failure and result in high morbidity and mortality in infections 
involving respiratory viruses, such as H5N1 influenza A, H1N1 2009, severe acute 
respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome 
coronavirus (MERS-CoV)16,42,140–143. Radiological examination of SARS-CoV- and 
MERS-CoV-infected patients reveals atypical pneumonia42,128,129,140. At the tissue level, 
increased permeability of the alveolar–capillary interface results in pulmonary oedema, 
hypoxia, type II pneumocyte hyperplasia and cellular infiltration, particularly neutrophil 
influx. This ‘runaway’ immune response is characterized by the upregulation of 
pro-inflammatory cytokines, particularly interleukin-1β (IL-1β), IL-8 and IL-6, 
CXC-chemokine ligand 10 (CXCL10), CC-chemokine ligand 2 (CCL2) and interferon-γ 
(IFNγ)144–147. This stage of the disease is generally followed by increased 
fibroproliferation and hyaline membrane formation; depending on the patient, these 
gross pathological changes may progress or resolve148. ARDS occurred in approximately 
20–30% of SARS-CoV cases and has been noted in MERS-CoV case reports. However, 
incidence is extremely age-dependent in the case of SARS-CoV infections, and older 
patients are disproportionately affected: mortality among this patient population 
exceeded 50% during the epidemic2. Among all SARS-CoV-infected patients who 
developed ARDS, the need for mechanical ventilation was a strong indicator for a high 
risk of mortality149. Although no animal models fully recapitulate the symptom profile 
that is observed in humans infected with SARS-CoV, a few reports have noted the 
presence of lung injury that resembles ARDS, including in mouse-adapted SARS-CoV- 
infected signal transducer and activator of transcription 1 (STAT1)-knockout mice and 
SARS-CoV-infected African green monkeys and, to a lesser extent, cynomolgus 
macaques70,71,86. Systems biology studies have begun to associate disease with host 
genetics and have implicated the urokinase pathway, along with other wound-repair 
pathways, in the development of severe SARS-CoV disease outcome in the ARDS pathway, 
including diffuse alveolar damage and ALI150.
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TALEN-mediated 
mutagenesis
Mutagenesis mediated by 
transcription activator-like 
effector nucleases (TALENs); 
involves the use of a series of 
TAL effector (DNA-binding) 
repeats fused to a Fok I-specific 
cleavage domain, which 
enables site-specific DNA 
double-strand breaks, 
non-homologous end joining 
and repair, which result in 
hybrid gene construction.

CRISPR–Cas-mediated 
mutagenesis
Clustered regularly interspaced 
short palindromic repeats 
(CRISPRs), which consist of 
multiple short, conserved 
nucleotide repeats and 
function as a bacterial immune 
system that resists the 
incorporation of exogenous 
genetic elements. For 
mutagenesis, the CRISPR–Cas 
(CRISPR-associated)  
system targets foreign DNA 
with short, complementary 
single-stranded RNA that 
directs the Cas9 nuclease to 
the target DNA, causing 
double-strand breaks and 
resulting in silencing of that 
DNA sequence.

diffuse alveolar damage57–59. In young mice, adaptation 
requires 6–9 mutations, is focused on specific mutation 
sites (in the spike and membrane proteins) and takes 
approximately 15–25 passages; however, in aged mice, 
mouse-adapted strains emerge within five passages and 
are defined by fewer mutations, which occur at various 
locations across the genome. SARS-CoV mouse-adapted 
strains are significantly more pathogenic in 1-year-old, 
aged animals, as shown by ~100- to 1,000-fold reduc-
tions in median lethal dose values, increased clinical 
disease severity, extensive ARDS-associated pathologi-
cal lesions and increased mortality19,57,60–63. Viraemia 
is rare and transient in mice but is common and long-
lasting in patients64. Sublethally infected mice develop 
neutralizing antibody responses, and passive transfer 
of sera from these mice protects recipients from subse-
quent lethal challenge. These observations reflect what 
probably occurred in infected humans during the epi-
demic: in a cohort study of 128 convalescent human 
samples, 50% were positive for T cell responses (CD8+ 
T cell responses were more frequent than CD4+ T cell 
responses), and 90% possessed strongly neutralizing 
antibodies. Of the T cell epitopes that were identified, 
most were in the spike protein65.

Other mouse strains are also susceptible to infec-
tion with SARS-CoV and SARS-CoV mouse-adapted 
strains, most notably 129SvEv-lineage mice and C57BL6 
mice. This breadth of susceptibility facilitates the use of 
genetic knockout and transgenic animals, as most rele-
vant transgenic and knockout lines are available in these 
backgrounds66–69; for example, myeloid differentiation 
primary response 88 (MYD88)-knockout and signal 
transducer and activator of transcription 1 (STAT1)-
knockout animals, which both have defects in innate 
immunity, develop severe disease with weight loss, pneu-
monitis and bronchiolitis, and die within 9 days of infec-
tion. In STAT1-knockout animals, death follows a brief 
convalescent period and a resurgence of the animal’s 
inflammatory response63,70. By contrast, recombination 

activating gene (RAG)-knockout and severe combined 
immunodeficient (SCID) mice, which have defects in 
adaptive immunity, become persistently infected after 
SARS-CoV inoculation and maintain viral titres for at 
least 30–60 days after infection. There is no evidence of 
clinical disease during the course of the entire infection, 
probably owing to a lack of the inflammatory responses 
that would normally occur as a result of lymphocyte 
recruitment71.

Other SARS-CoV animal models. Syrian golden and 
Chinese hamsters have also been evaluated as models 
of SARS-CoV disease72–75. Infected animals develop 
pneumonitis, inflammation and immune cell infiltra-
tion, although signs of clinical illness do not necessar-
ily accompany the lung pathology. In contrast to mice, 
hamsters experience transient (1–2-day) viraemia and 
become less active. In addition, the virus can be detected 
in the spleen and liver, although it is not associated with 
inflammation in these organs. Similarly to mice, ham-
sters also develop a protective neutralizing antibody 
response to subsequent SARS-CoV challenge. Reagents 
for measuring immune responses in the hamster are 
improving, but there is still limited availability of geneti-
cally defined animals and refined immunological and 
cellular markers for hamster models. TALEN-mediated 
mutagenesis and CRISPR–Cas-mediated mutagenesis of 
zygotes might enable the development of genetically 
defined hamsters and other atypical model species for 
pathogenesis research.

Ferrets support SARS-CoV replication in both the 
upper and lower respiratory tracts; however, studies have 
yielded variable results in terms of other signs of infec-
tion. Multifocal lesions develop over 5–10% of the lung 
surface area and are detected during gross pathological 
analysis, but clinical symptoms differ between studies76,77. 
Fever has been reported in SARS-CoV-infected ferrets, 
in addition to nasal discharge, sneezing and virus shed-
ding; ferrets are the only animals that regularly develop 

Timeline | Timeline of coronavirus emergence events

 1200 1700 1890 1980 1990 2000 2012

(1200–1500) HCoV-NL63: molecular 
clock analysis* indicates that bat 
alphacoronavirus sequences share 
common ancestry with HCoV-NL63 
and that they diverged 
approximately 563–822 years ago31

HCoV-OC43: molecular clock 
analysis of BCoV and HCoV-OC43 
spike genes suggests that the 
viruses diverged from their most 
recent common ancestor in 
approximately 1890 (REF. 53)

MERS-CoV was isolated from the 
sputum of a 60-year-old Saudi Arabian 
male who had been hospitalized for 
fatal acute pneumonia and renal 
failure. The disease has subsequently 
been reported in eight countries and 
causes ~50% mortality in infected, 
hospitalized individuals16

rBCoV: coronaviruses 
were identified in a large 
percentage of affected 
calves on 32 farms with 
diarrhoea outbreaks127

(1700–1800) HCoV-229E: molecular 
clock analysis indicates that 
HCoV-299E and a bat Alphacoronavirus 
lineage from Ghana diverged 
approximately 213–327 years ago7

SARS-CoV: SARS was first reported in 
Guangdong Province, China, in November 
2002. SARS had spread globally by July 2003. 
A novel coronavirus, named SARS-CoV, was 
found to be the causative agent22,85,128,129

PEDV: CoV-like particles were 
detected by electron microscopy 
in intestinal contents sampled 
during diarrhoea outbreaks on 
four swine farms126

BCoV, bat coronavirus; HCoV, human coronavirus; MERS-CoV, Middle East respiratory syndrome coronavirus; PEDV, porcine epidemic diarrhea virus; 
rBCoV, respiratory bat coronavirus; SARS, severe acute respiratory syndrome; SARS-CoV, severe acute respiratory syndrome coronavirus. *Molecular clock 
analysis estimates the time at which two gene sequences diverged from each other based on known factors, such as mutation rate.

R E V I E W S

840 | DECEMBER 2013 | VOLUME 11  www.nature.com/reviews/micro

© 2013 Macmillan Publishers Limited. All rights reserved



Super-spreader events
Pathogen transmission events 
that are characterized by the 
identification of a host (human 
or animal) that transmits  
and spreads infection to a 
significantly greater number of 
susceptible organisms than the 
statistical average for that 
pathogen–host combination.

fever when infected with SARS-CoV, a symptom that is a 
hallmark of human infections78,79. Ferrets have not been 
evaluated as a model for studies of SARS-CoV transmis-
sion, but their use might provide interesting information 
about the genetic basis of the super-spreader events that 
were observed during the 2002–2003 epidemic. As ferret 
and human ACE2 molecules probably require different 
mutations in the SARS-CoV RBD for optimal interac-
tions to occur, it is probable that such ‘transmission-
evolved’ ferret-adapted strains would efficiently replicate 
in ferrets, but less so in humans; however, such studies 
might highlight residues or regions that have roles in 
transmission and altered host specificity.

SARS-CoV has also been serially passaged in young 
F344 rats, which yielded a virus that was capable of 
enhanced replication and limited pathogenesis in 
young rats and more severe clinical disease in adult rats. 
Sequence analysis of the adapted mutant showed that 
there was a Y442S substitution in the spike protein80. 
In vitro passage of SARS-CoV on Chinese hamster ovary 
(CHO) cells that expressed rat ACE2 yielded a variant 
that encoded A811S and S950F substitutions in the spike 
protein81. Further sequence analysis of rat-adapted vari-
ants might help to identify interesting genetic correlates 
between serially passaged mouse and rat viruses.

Multiple non-human primates (NHPs) are suscepti-
ble to SARS-CoV infection, including rhesus macaques, 
cynomolgus macaques, marmosets and African green 
monkeys82–85. Clinical symptoms and pathology vary 
by species but all NHPs that support infection show 
evidence of SARS-CoV replication in the lungs (with 
105–106 TCID50 titres in the lungs) and shedding in res-
piratory secretions. Most primate models develop histo-
pathological changes and show evidence of pneumocyte 
infection and some degree of diffuse alveolar damage. 

Disease outcomes seem to be more severe in aged 
macaques86, which reflects human disease outcomes. 
As in humans, increased virus replication and increased 
lung pathology are noted in primates that are infected 
with wild-type SARS-CoV compared to most other ani-
mal models, except for mice that have been infected with 
mouse-adapted SARS-CoV. Few vaccine candidates have 
been evaluated in NHPs, probably owing to the cost and 
the challenge of achieving statistically significant sample 
sizes in NHP studies.

Prevention of human coronavirus disease 
There are currently no approved antiviral treatments or 
vaccines for human coronavirus infections, including 
HCoV-NL63, HCoV-HKU1, SARS-CoV and MERS-
CoV. Studies have described small-molecule inhibitors 
that have the potential to control SARS-CoV infection, 
and in vitro studies have reported that the virus has par-
tial ribavirin and interferon sensitivity at high doses, 
but clinical management of severe infections (which 
mostly occur in people infected with SARS-CoV and 
MERS-CoV) is limited to supportive and palliative 
care14,87,88. Thus, the development of safe, stable vac-
cines is necessary, and, because these viruses rise rapidly 
out of heterogeneous, zoonotic pools, vaccines would  
ideally be broad-spectrum and rapidly adaptable to new 
coronaviruses. Of particular importance is the protec-
tion of the elderly, as they might be disproportionately 
susceptible to severe disease from both SARS-CoV and 
MERS-CoV infections. In support of this hypothesis, 
the median age of MERS-affected patients who expe-
rience disease that is severe enough to require medi-
cal attention is currently 50 years (with an age range 
from 14 months to 94 years) (WHO MERS-CoV inci-
dence updates). Additionally, in the case of SARS-CoV, 

Table 1 | Coronavirus receptor and co‑receptor usage*

Virus Group Receptor Might also bind

Human coronavirus 229E (HCoV-229E) Alpha APN -

Feline coronavirus (FCoV) Alpha APN -

Transmissible gastroenteritis virus (TGEV) Alpha APN Sialic acid

Canine coronavirus (CCoV) Alpha APN -

Bat coronaviruses (BCoVs — multiple species) Alpha Unknown -

Human coronavirus NL63 (HCoV-NL63) Alpha ACE2 (REF. 132) -

Murine hepatitis virus (MHV) Beta CEACAM1a Sialic acid

Severe acute respiratory syndrome coronavirus 
(SARS-CoV)

Beta ACE2 (REF. 38) DC-SIGN, DC-SIGNR, LSECtin

Bat SARS-related coronavirus (Bat-SCoV) Beta ACE2? -

Middle East respiratory syndrome coronavirus 
(MERS-CoV)

Beta DPP4 (REF. 37) -

Human coronavirus OC43 (HCoV-OC43) Beta Unknown Sialic acid

Avian infectious bronchitis virus (IBV) Gamma Unknown Sialic acid

Bird coronaviruses (multiple species) Delta Unknown -

ACE2, angiotensin converting enzyme 2; APN, aminopeptidase N; CEACAM1a, carcinoembryonic cell adhesion molecule 1a; 
DC-SIGN, dendritic cell-specific ICAM3-grabbing non-integrin; DC-SIGNR, DC-SIGN-related protein; DPP4, dipeptidyl 
peptidase 4; LSECtin, liver and lymph node sinusoidal C-type lectin. *Coronavirus receptor usage has been reviewed in 
REFS 133,151.
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Adjuvants
Pharmacological or 
immunological substances that 
modify and enhance the effect 
of an agent, such as a vaccine.

the elderly respond poorly to most vaccine formula-
tions14,42,89. Multiple strategies have been used to gen-
erate coronavirus vaccines, which include inactivated 
virus vaccines, live-attenuated virus vaccines, viral vec-
tor vaccines, subunit vaccines and DNA or protein vac-
cines. Most studies have focused only on SARS-CoV 
vaccine development and have used animal models 
that do not recapitulate the severe clinical disease that 
occurs in humans (TABLE 2). To critically evaluate a vac-
cine, lethal-challenge models using viral strains that are 
homologous and heterologous to the vaccine strain in 
both young and aged animals are essential.

Inactivated virus vaccines. Inactivated virus vaccines use 
chemicals (such as formalin, β-propiolactone and diethyl-
pyrocarbonate) or radiation to render the viral genome 
non-infectious while maintaining the virion structure, 
thus preserving antigenicity but eliminating the potential 
to cause productive infection. Thus, in concept, inacti-
vated virus vaccines are easily prepared and antigenically 
similar to the live virus. In SARS-CoV research, various 
studies have shown that inactivated vaccines elicit the 

production of neutralizing antibodies78,90–92, and admin-
istration of inactivated vaccines with or without adjuvants 
has been shown to protect against viral replication78,93,94. 
Vaccination and SARS-CoV challenge in primates 
and ferrets was reported to favour a T helper 2 (TH2)  
cell response that resulted in the production of interleu-
kin-4 (IL-4) and subsequent IL-4-driven inflammatory 
pathology, rather than the macrophage-driven clearance 
that is observed in the typical antiviral TH1 response95. 
One particular inactivated SARS-CoV vaccine, double- 
inactivated vaccine (DIV), which uses alum as the adju-
vant, was protective against challenge with the homolo-
gous virus; however, it induced eosinophilia and TH2 cell 
immune pathology with poor protection after challenge 
with a heterologous virus19. This type of response has 
been noted with other inactivated, vectored and DNA 
vaccines (see below). For respiratory syncytial virus, 
eosinophilic infiltrates are associated with increased 
mortality and exacerbated lung disease96. The eosino-
philia that was observed in SARS-CoV-vaccinated ani-
mals was not age-dependent but might have promoted 
hypersensitivity in the presence of other inflammatory 

Table 2 | Coronavirus vaccine strategies: advantages and disadvantages

Vaccine 
strategy

How is it 
generated?

Advantages Disadvantages Constructs and/or 
loci tested in CoVs

Inactivated virus 
vaccines

Virions are 
inactivated with 
chemicals or 
radiation

Virion structure maintained 
(antigenically similar to live virus); 
easy to prepare; cannot infect, 
propagate or cause disease; can 
produce high-titre neutralizing 
antibodies78,90–92; protective when 
used with adjuvant78,93,94

Can induce a T
H
2 cell-skewed immune 

response that leads to inflammatory 
immune pathology, including eosinophilia 
and neutrophilia19,95,96

Whole virus, with or 
without adjuvant

Live-attenuated 
virus vaccines

Genomes are 
mutated using 
chemical-driven 
or site-directed 
mutagenesis

Inexpensive; can be generated 
rapidly for novel emerging 
pathogens; cause little or no disease 
in vaccinees; can elicit T cell- 
and B cell-dependent immune 
responses98; can induce life-long 
immunity; site-directed mutations 
can be tailored to target unique or 
conserved loci

Phenotypic or genotypic reversion 
possible; can still cause some disease; 
generation of a protective immune 
response with high-titre neutralizing 
antibodies might depend on sufficient 
viral replication

Envelope protein 
deletion99–101; 
non-structural protein 
14 (nsp14) and 
exonuclease (ExoN) 
inactivation71

Viral vector 
vaccines

An unrelated 
viral genome 
lacking packaging 
elements is 
engineered to 
encode the gene of 
interest

Infect but cannot propagate 
without helper genes; can induce B 
cell- and T-cell-dependent immune 
responses; can generate high-titre 
neutralizing antibodies (although 
fewer than those produced by 
vaccination with inactivated virus)

Intranasal and intramuscular routes 
of inoculation can produce different 
immune responses (intranasal inoculation 
could be necessary to induce mucosal 
immunity)94; protection may not be 
complete (although the resulting disease 
is less severe); protection may fail in aged 
vaccinees66,107,108; nucleocapsid protein 
vaccination produces a T

H
2 cell-skewed 

immune response107

Spike and 
nucleocapsid 
proteins66,107,109,111,113,114

Subunit 
vaccines

Antigenic 
components are 
generated in vitro 
and harvested for 
vaccine use

Cannot cause disease from viral 
infection; can induce B cell- and T 
cell-dependent immune responses; 
can generate high-titre neutralizing 
antibodies117

In vivo studies have not been 
completed118,119

Spike and 
nucleocapsid 
proteins36,115,116

DNA vaccines Genes that 
encode antigenic 
compounds are 
directly inoculated 
into vaccinees

Cannot cause disease from 
viral infection; T

H
1 cell immune 

profile results from vaccination 
in combination with inactivated 
virus122; can generate high-titre 
neutralizing antibodies120,121

T
H
2 cell-skewed immune response 

results when used alone; vaccines using 
nucleocapsid protein might not generate 
a protective response; vaccines using 
nucleocapsid protein could result in 
delayed-type hypersensitivity119,123

Spike and 
nucleocapsid 
proteins120,121

CoV, coronavirus; T
H
, T helper. 
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Viral replicon particles
(VRPs). Virus-like particles that 
encode the components 
required to mediate replication 
of the genome but that do not 
encode genes necessary for 
the production of new virions. 
Viral replicon particles are 
typically generated by 
co-transfecting the replicon 
genome with helper cassettes 
that encode structural 
components, which enables a 
single round of replication and 
particle production to occur.

responses that are enhanced in aged animals, such as 
neutrophilia19. Inactivated SARS-CoV vaccines have 
been administered to humans; the vaccines were well 
tolerated and induced the production of neutralizing 
antibodies, although the participants were all relatively 
young (with an age range between 21 and 40 years) 
and lung pathology was not assessed. Additionally, in 
the absence of a natural challenge, no data on vaccine  
efficacy are available78,97.

Live-attenuated virus vaccines. Live-attenuated vac-
cines are produced by reducing or eliminating the viru-
lence of a live virus, typically using chemical-driven or 
site-directed mutagenesis; thus, the virus is capable of 
productive infection but the resulting disease is either 
diminished or eliminated. Live-attenuated vaccines 
can elicit both innate and adaptive immune responses, 
and protection can be life-long. Additionally, their pro-
duction is inexpensive98. The development of reverse 
genetics for coronaviruses, particularly SARS-CoV, 
has greatly simplified the investigation of attenuation-
associated alleles and their resistance to reversion in cell 
culture and in mice and the evaluation of the efficacy 
of attenuated viruses as vaccine candidates. The enve-
lope protein, which is involved in viral morphogenesis, 
intracellular trafficking and budding and which might 
possess ion channel activity, is dispensable for SARS-
CoV production; however, replication is attenuated 
in SARS-CoV lacking this protein99. SARS-CoV lack-
ing the envelope protein that was initially constructed 
in a wild-type rather than mouse-adapted backbone  
was protective against challenge in hamsters99 and par-
tially protective in mice that transgenically express the 
human ACE2 molecule100. When the deletion of the 
envelope protein was engineered in the MA15 backbone, 
it elicited higher titres of neutralizing antibodies and 
was protective against challenge in aged mice101. This 
improvement in vaccine efficacy is probably facilitated 
by the ~2 log-increased replication of mouse-adapted 
strains compared to wild-type virus in mice59.

All coronaviruses encode an exonuclease (ExoN) in 
the non-structural protein 14 (nsp14)-coding region of 
ORF1b. ExoN has been shown to mediate proofread-
ing activity for the viral RNA-dependent RNA poly-
merase102. Inactivation of ExoN (ΔExoN) in SARS-CoV 
yields viable, replication-attenuated virus that accu-
mulates mutations when passaged103. When generated 
in the MA15 background, the SARS-CoV MA-ΔExoN 
virus is attenuated for both growth and pathogenesis in 
young, aged and immunocompromised mice; it is fully 
protective against lethal challenge and elicits high lev-
els of neutralizing antibodies, even at low vaccination 
doses71. Moreover, SARS-CoV MA-ΔExoN is stable in 
terms of both replication and resistance to reversion 
over short- and long-term passage. Its high resistance 
to reversion to virulence in vitro and in vivo might be 
due to the increased mutation frequency, which is likely 
to continuously introduce attenuating and/or neutral 
mutations that discourage and/or prohibit primary (at 
the site of the original mutation) and secondary (at sites 
other than the original mutation) reversion to virulence.

The particular advantage of approaches that involve 
conserved alleles, such as envelope and ExoN, aside 
from their effects on replication and efficacy in all 
mouse models tested, is that the conservation of the 
alleles makes them prime candidates for the rapid gen-
eration of new vaccines after the genome sequence of 
a novel emerging coronavirus (such as MERS-CoV) is 
known. Further work will focus on stabilizing the atten-
uated ΔExoN background and ensuring that it remains 
resistant to both primary and secondary reversion to 
virulence and recombination with virulent corona-
viruses. For example, all coronaviruses possess a net-
work of fairly well-conserved transcriptional regulatory 
sequences (TRSs) that are essential for the production 
of subgenomic mRNAs. Changing the TRS consensus 
yields viable viruses that have a reduced capacity to 
recombine with other coronaviruses — a method that 
shows great promise for rendering vaccine candidates 
refractory to recombination with naturally occurring 
(virulent) coronaviruses and for enhancing the safety of 
using genetically engineered coronaviruses as live vac-
cines104. With the recent development of MERS-CoV 
reverse genetic systems, these approaches can also be 
tested in the newest emergent coronavirus105,106.

Other vaccine approaches. Viral-vector vaccines, which 
function as viral gene delivery systems, rely on a host 
viral genome (for example, adenovirus) that typically 
lacks the genetic components necessary to produce new 
virions and that encodes antigenic components of the 
virus of interest to elicit an immune response. Because 
viral-vector vaccines persist in the host as genetic mate-
rial, directly infect antigen-presenting cells and have 
strong inherent adjuvant activity, they can efficiently 
induce both innate and B cell- and T cell-mediated 
immune responses. Adenovirus vectors that express 
SARS-CoV spike and nucleocapsid proteins, which 
are the immunodominant coronavirus proteins, yield 
varying results depending on preparation, the route 
of administration and the animal model used; how-
ever, challenge experiments have not always been per-
formed78,93. Although intramuscular vaccination induces 
high serum titres of neutralizing antibodies, intranasal 
inoculation more effectively prevents replication of 
the challenge virus, which suggests that the intranasal 
route is more efficient at inducing mucosal immunity94. 
In a side-by-side comparison with inactivated virus, an 
adenovirus-vectored vaccine produced significantly 
lower titres of neutralizing antibodies but was protective 
against subsequent challenge (although not as protec-
tive as inactivated virus)94. Venezuelan equine encepha-
litis virus (VEE) viral replicon particles (VRPs) have also 
been used to express SARS-CoV spike and nucleocap-
sid proteins. Spike-expressing VRP (VRP-S) vaccines 
protect against lethal homologous challenge in both 
young and aged BALB/c mice. When challenged with 
lethal virus that expresses the heterologous spike pro-
tein, only young mice are protected and only for a short 
time66,107,108. Other viral vectors that use the spike pro-
tein, including poxvirus109,110, parainfluenza virus111,112, 
rabies virus113 and vesicular stomatitis virus114, confirm 
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Delayed-type 
hypersensitivity
(Also called type IV 
hypersensitivity). A CD4+ T cell- 
mediated immunological 
response rather than an 
antibody-mediated response. 
The immune reaction develops 
24–72 hours after exposure to 
an immunogen.

the production of neutralizing antibodies, and some 
demonstrate protection. Conversely, vaccination with 
VRP constructs that express SARS-CoV nucleocapsid 
protein results in a TH2 cell-skewed immune response 
and immune pathology in the lungs, with no protection 
against homologous or heterologous challenge107.

Similarly to vectored vaccines, subunit vaccines only 
utilize antigenic components from the virus of inter-
est; in contrast to vectored vaccines, the propagating 
organism is grown in the laboratory rather than in the 
vaccinee, and the antigenic component is harvested for 
use in the vaccine. SARS-CoV subunit vaccines contain 
either a spike protein fragment (which consists of amino 
acids 14–762) or the nucleocapsid protein. Because the 
crystal structures of both the SARS-CoV and MERS-
CoV spike protein RBDs have been solved in complex 
with their corresponding receptors and their interact-
ing residues have been mapped, these domains are the 
most obvious targets for subunit vaccine design36,115,116. 
Additionally, subunit spike vaccines can produce higher 
neutralizing antibody titres than live-attenuated SARS-
CoV, poxvirus spike protein or DNA spike protein 
(DNA-S) vaccination117. Subunit nucleocapsid vaccines 
induce high levels of B cell- and T cell-mediated immune 
responses; however, in vivo challenge experiments have 
not yet been performed118,119.

DNA vaccines consist of DNA that encodes the viral 
antigenic components, and they are directly injected or 
otherwise inoculated into the vaccinee. As in vectored 
and subunit vaccines, DNA vaccines also use spike pep-
tides to elicit high titres of neutralizing antibodies120,121. 
Interestingly, when DNA-S vaccines are used in combi-
nation with inactivated vaccines, the cellular immune 
response is TH1 cell-directed (whereas vaccination with 
inactivated virus alone induces a TH2 cell response)122. 
Similarly to viral nucleocapsid protein vectored  
vaccines, DNA vaccines that encode the nucleocapsid 
protein induce strong cell-mediated immunity but are 
not protective after high-titre challenge; additionally, 
and unlike spike protein vaccines, DNA-nucleocapsid 
(DNA-N) vaccines can induce delayed-type hypersensi-
tivity, even in the absence of an antibody response119,123. 
Importantly, sub unit and DNA vaccines have not been 
rigorously tested in either young or aged animals in 
lethal-challenge models, so their true in vivo efficacy is 
currently unknown.

Future directions
The emergence of SARS-CoV in 2002 taught us many 
lessons about zoonotic reservoirs, the importance of 
identifying animal models that recapitulate the various 
aspects of human disease and the determinants of vac-
cine efficacy and safety. This knowledge is being applied 
to the recent emergence of MERS-CoV in the human 
population. With its strikingly high morbidity and mor-
tality rates in hospitalized individuals, it is clear that 
MERS-CoV has the potential have a profound impact 
on the human population. However, its low penetrance 
thus far suggests that the virus might ultimately fail to 
develop a niche in humans or it might still be adapting 
to human hosts and that the worst of its effects are yet to 

come. Studies with SARS-CoV suggest that MERS-CoV 
research should focus on establishing animal models 
that recapitulate replication, pathogenesis and transmis-
sion in humans. A priority is to develop treatments to 
prevent viral-induced immune pathology, particularly in 
the elderly. Furthermore, vaccines that target conserved 
alleles and provide broad protection against strains that 
are both closely and distantly related to the vaccine 
strain should be developed. One particular concern is 
the possibility that MERS-CoV vaccines can elicit TH2 
cell immune pathology, as seen with inactivated, vec-
tored and DNA SARS-CoV vaccines. Live-attenuated 
vaccines and vaccine combinations (for example, inac-
tivated virus combined with DNA vaccines) do not 
seem to induce this immune phenomenon; thus, these 
approaches might hold more promise for the develop-
ment of successful vaccination strategies, particularly in 
older populations. Adjuvants that promote more robust 
TH1 cell responses should also be evaluated in more rig-
orous models. A second concern is that for SARS-CoV 
escape from neutralization is driven by spike protein var-
iability; thus, spike-dependent vaccine strategies might 
require multivalent approaches124. For MERS-CoV, the 
natural variation in the MERS-CoV spike glycoprotein 
is mostly unknown; thus, it is essential that more natu-
ral isolates are recovered and sequenced from humans 
and reservoir species. Focusing on these priorities will 
not only help to combat the emergence of MERS-CoV 
but will also increase our preparedness for any future 
coronavirus emergence events that originate from the 
vast, mutable zoonotic reservoir. As such, heterolo-
gous SARS-CoV- and MERS-CoV-related isolates that 
encode even minute variations in the spike protein will 
be important reagents for evaluating vaccine efficacy 
against future emerging strains.

Coronavirus phylogeny demonstrates an incredible 
diversity in antigenic variants, which leads to limited 
cross-protection against infection with different strains, 
even within a phylogenetic subcluster. Consequently, 
the risk of introducing novel coronaviruses into naive 
human and animal populations remains high. Despite 
this antigenic breadth, it is revealing that alphacorona-
viruses and betacoronaviruses often use receptor ortho-
logues and/or recognize carbohydrates for cross-species 
transmission. Given the large number of bat species and 
an ecology that enables potential pathogens to spread 
between bat populations, a number of bat coronaviruses 
might be naturally able to recognize human orthologue 
receptors for docking and entry. A recent study that 
analysed viral biodiversity in the flying fox Pteropus 
giganteus supports this hypothesis, as coronavirus spe-
cies were among the several potentially novel viral  
species that were identified in PCR assays125. Moreover, 
the phylogeny of cornonaviruses that have appeared in 
the human population indicates an accelerating pat-
tern of emergence and disease outbreaks from zoonotic 
sources. Molecular clock analyses have estimated the 
dates of the emergence of HCoV-NL63 (~500–800 years 
ago)31, HCoV-229E (~200–300 years ago)7, HCoV-OC43 
(~120 years ago)53, PEDV (~30 years ago)126, respiratory 
bovine CoV (rBCoV) (~20 years ago)127, SARS-CoV 
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(~10 years ago)22,85,128,129 and MERS-CoV (<1 year ago)16 
(FIG. 2), which demonstrates a potential paradigm shift in 
the relationships that coronaviruses have with domes-
ticated animals and human hosts. Bat coronaviruses 
have probably evolved to transmit in close proximity 
and with broader host tropism as a result of the large 
multi species bat populations that exist across much of 
the globe. This pattern of transmission facilitates the 
spread of coronaviruses to other hosts; for example, 
intensive farm-management practices result in thou-
sands of animals being housed together in a closed envi-
ronment. Human population density has increased over 
the past 100 years, encroaching on wild animal habitats. 
In addition, the average age of the human population is 
increasing, and with it the proportion of immunocom-
promised individuals who are susceptible to severe lung 
infections. These conditions provide more vulnerable 
hosts for severe disease and, if animal models are rep-
resentative of the process in humans, can lead to rapid 
in vivo evolution of virulence and transmissibility (FIG. 3). 
In fact, most early cases of SARS-CoV and MERS-CoV 
have been described in the elderly and arose after close 
contact in hospital and family settings42,89. Emergence of 
virulence in the SARS-CoV background in older hosts 
could require fewer mutations and less passage than is 
required in young hosts57. Moreover, if close proxim-
ity is an important determinant for efficient corona-
virus cross-species transmission and dissemination, 

it is possible that the current and projected ecological 
and demographic conditions are approaching a criti-
cal point. The Coronaviridae family is poised to excel 
in these conditions and colonize this growing niche. 
If these hypotheses are correct, accelerated transmis-
sion of bat and animal coronaviruses to humans can  
be expected to continue and possibly escalate. Public 
health authorities should prepare by developing broadly 
applicable platform strategies for the rapid diagnosis, 
containment and treatment of, and vaccination against, 
emerging coronavirus infections. We have been warned 
twice in recent years, and the belief that coronaviruses 
are highly vulnerable to public health intervention strat-
egies is not supported by the increasing incidence of 
coronavirus emergence in livestock animal populations 
and the identification of novel coronaviruses in reservoir 
species, despite the application of widespread disease  
management practices and intervention strategies.

Note added in proof
The recent identification of bat SARS-like coronaviruses 
in Chinese horseshoe bats that are capable of using 
both the bat ACE2 and the human ACE2 receptor for 
entry152 strongly supports the argument that SARS-CoV 
emerged as a human infection directly from a bat reser-
voir. These data emphasize the importance of surveying 
synanthropic wildlife populations for potential zoonotic 
candidates.
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http://www.pork.org/News/3904/
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CoV incidence updates:  
http://www.cdc.gov/coronavirus/mers/
World Health Organization — MERS-CoV incidence 
updates: http://www.who.int/csr/disease/coronavirus_
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