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Abstract

In this study, we provide a comprehensive analysis of trends in the extremes during the Indian 

summer monsoon (ISM) months (June to September) at different temporal and spatial scales. Our 

goal is to identify and quantify spatiotemporal patterns and trends that have emerged during the 

recent decades and may be associated with changing climatic conditions. Our analysis primarily 

relies on quantile regression that avoids making any subjective choices on spatial, temporal, or 

intensity pattern of extreme rainfall events. Our analysis divides the Indian monsoon region into 

climatic compartments that show different and partly opposing trends. These include strong trends 

towards intensified droughts in Northwest India, parts of Peninsular India, and Myanmar; in 

contrast, parts of Pakistan, Northwest Himalaya, and Central India show increased extreme daily 

rain intensity leading to higher flood vulnerability. Our analysis helps explain previously 

contradicting results of trends in average ISM rainfall.

1. Introduction

Large parts of South Asia and Southeast Asia receive more than 80% of their annual rainfall 

during the four summer months of June, July, August and September (JJAS) [Bookhagen 
and Burbank, 2010] (see Fig. S1). The strong rainfall seasonality is caused by the Indian 

Summer Monsoon (ISM) system and is a critical climatic phenomenon for over a billion 

inhabitants of the South and Southeast Asian region, with significant socio-economic 

impacts. Much of the cultural, economic, and agricultural life centers around the ISM season 

in this densely-populated region of the world [Webster et al., 1998a; Gadgil and Gadgil, 
2006; Gadgil and Kumar, 2006].

Despite the ISM’s significance, there still remain large uncertainties about rainfall extreme 

events, which often lead to floods or droughts. Both have been identified to exert significant 

impact on cultural, social, and economic life [Schiermeier, 2006; Gadgil and Gadgil, 2006; 

Kshirsagar et al., 2006; Sivakumar and Stefanski, 2011; Mirza, 2011; Turner and Annamalai, 
2012]. In recent years, several attempts have been made to understand and quantify the 

changes in the properties of extremes during the ISM in the context of global warming e.g., 

Goswami et al. [2006]; Rajeevan et al. [2008]; Dash et al. [2009]; Krishnamurthy et al. 
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[2009]; Ghosh et al. [2012]; Malik et al. [2010, 2012]; Singh et al. [2014]; Mishra and Liu 
[2014]. Several new insights about monsoonal changes were presented in these studies. For 

example, Goswami et al. [2006] and Rajeevan et al. [2008] concluded that ISM extreme rain 

events over central India are increasing. In contrast, Ghosh et al. [2012] concluded that there 

is no uniform spatial trend in extremes over the Indian subcontinent, but rather their 

variability is increasing. In a recent study by Singh et al. [2014] it has been shown that 

extreme wet and dry spells during the ISM have statistically significant changes in their 

intensity and frequency in the period between 1951 to 2011. Also, it has been suggested that 

the ISM is showing two contrasting phases: a wetter early summer followed by a drier 

period, with a possible influence of aerosol concentrations on precipitation patterns [Gautam 
et al., 2009; Kharol et al., 2013].These changing rainfall patterns have been hypothesized to 

lead to an increased risk of droughts [Mishra and Liu, 2014]. See section S1 in the 

supporting information (SI) for further detailed discussion on ISM and climate change.

In our study, we present additional insights into the emerging features of the ISM rainfall 

over South and Southeast Asia by carrying out an analysis of two different climatic data sets: 

area-averaged time series of monthly rainfall from five different regions of India from 1871 

to 2012 [Parthasarathy et al., 1993; Mooley et al., 1981; Parthasarathy et al., 1987], and 

gridded daily rainfall data for South and Southeast Asia from 1951–2007 [Yatagai et al., 
2009]. This research differs from previous studies in the following critical ways: (1) We rely 

on a distinct computational method for trend analysis, known as quantile regression, which 

does not make any subjective choices on the rainfall amounts or return periods, as in more 

commonly used approaches involving linear regression and extreme value theory. Quantile 
regression is an entirely different method from the common practice of using least squares 
linear regression for estimating trends in different quantiles. (2) The majority of the previous 

studies used a data set that was limited to the political boundary of India. Instead, we 

analyze a data set with higher spatial resolution and larger spatial coverage, including all of 

South and Southeast Asia. Additionally, we have analyzed area-averaged time series 

extending from 1871 to 2012. (3) A large number of past studies have concentrated only on 

rain events related to high extremes, e.g., above the 90th percentile. Our study presents a 

more comprehensive analysis of extremes during the ISM and includes droughts as well. (4) 

Our results capture the regional variations of extremes. This is important because the ISM is 

composed of complex spatial patterns influenced by several local geographic factors such as 

topography and small-scale atmospheric processes.

2. Data and Method

In our study we rely on two data sets, the Homogeneous Indian Monthly Rainfall Data Set 

(1871–2012), a set of time series prepared by the Indian Institute of Tropical Meteorology 

hereafter referred to as IITM-HIMR [Mooley et al., 1981; Parthasarathy et al., 1987, 1993], 

and the gridded data set for the South Asia region from the APHRODITE (Asian Rainfall 

Highly Resolved Observational Data Integration Towards the Evaluation of Water 

Resources) project [Yatagai et al., 2009]. The APHRODITE data set (APHRO-V01003R1) 

includes spatial coverage for both South and Southeast Asia (see Fig. S1 for regions 

included in this analysis). For further details on the data set, including additional data 

sources, see section S2 of the SI.

Malik et al. Page 2

Geophys Res Lett. Author manuscript; available in PMC 2017 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We rely on quantile regression [Koenker and Hallock, 1978, 2001; Koenker, 2005], where 

one estimates the relationship between a variable X and conditional quantiles of response 

variable Y given that X = x, providing a more robust analysis of the central tendency and 

statistical dispersion of the relationship between variables. Conditional mean based classical 

(linear) regression is very sensitive to the extremes. In contrast, quantile regression is robust 

to the extremes of the response variable [Koenker and Hallock, 1978, 2001; Koenker, 2005], 

making it a much more powerful tool for studying trends of extremes in a distribution.

For a random sample of Y of size n {y1, y2, . . . , yn}, in our data yi is the rainfall on the xi th 

day or year (depending on the temporal resolution of the data). We notate the cumulative 

distribution function by FY (y) = P(Y ≤ y). The τth quantile of Y is given by QY (τ) = inf{y : 
FY (y) ≥ τ} where τ ε [0, 1]. In this notation, QY (0.5) is the median of the sample Y . 

Whereas one can obtain the sample mean of Y by minimizing a sum of squared residuals, 

the median can be obtained by minimizing a sum of absolute residuals . 

In general, one can obtain any other quantile by minimizing a sum of asymmetrically 

weighted absolute residuals, i.e.,  where ρτ is the tilted absolute value 

function, more specifically ρτ (z) = z(τ − 1(z < 0)), 1(.) denotes the indicator function. 

Quantile regression is specified in a form related to conditional expectation E(Y |X = x), 

which can be estimated by , where μ(xi, β) is a 

parametric function. Instead, the conditional quantile functions are estimated by

The function ξ(x, β) is formulated as a linear function of the type . We have solved the 

above minimization problem by unconstrained nonlinear optimization, utilizing the 

fminsearch function available in the optimization toolbox of MATLAB® The resulting 

quantities β̂(τ) are called the regression quantiles [Koenker, 2005]. For linear quantile 

regression we will obtain two regression parameters from the quantile regression procedure: 

the intercept β0̂(τ) (rainfall magnitude at the initial time) and the slope of the fitted line 

β̂1(τ) (change in magnitude of rainfall per unit time). Rainfall in the xith year or day for the 

τ th quantile can then be estimated as β̂0(τ) + xiβ̂1(τ).

To assess statistical significance, we construct the confidence interval of β̂ (τ) using a 

method of bootstrapping on residuals. This is accomplished by adding randomly resampled 

residuals back to the model fits to obtain synthetic samples of response variables. We 

generate 1000 such samples and employ the above described algorithm for quantile 

regression to estimate  (b = 1, . . . , 1000) on each of these synthetic samples of response 

variables. Next, we order  with the 95% confidence interval given by the 

25th and 975th ordered elements. For significance testing, we reject the null hypothesis H0: 

β̂ = β̂0 at the 5% significance level if β̂0 lies outside the above stated confidence interval.
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For our purposes, extreme events are defined as the very low and very high quantiles of a 

distribution, following a convention that considers the top and bottom 10% as extremes 

[Field et al., 2014; Solomon et al., 2007]. We refer the reader to section S3 in the supporting 

information for details on the strength and limitations of quantile regression and section S3.1 

for interpretation of trends and units used in the analysis.

3. Results

The IITM-HIMR data set (see section S2 of SI for the detailed description of the data set) 

provides area-averaged time series of monthly rainfall from 1871 to 2012 for five different 

regions of India: the regions are Northwest, Northeast, Peninsular, Central Northeast, West 

Central, and a sixth time series that is a composite of all regions, and is referred to as All 

India (see Fig. 1(a)). We have analyzed the time series individually to identify and compare 

trends in the annual JJAS rainfall in different regions of India. In Fig. 1(b–g) we show trends 

for different quantiles for all six time series, using quantile regression.

The threshold we have used for defining droughts is τ ε [0.1, 0.3], i.e., the bottom 10% (τ = 

0.1) to 30% (τ = 0.3) annual rainfall amounts. These thresholds, highlighted by brown 

vertical bands in Fig. 1(b–g), are sufficiently low that they have the potential to cause 

drought conditions irrespective of other environmental conditions. Except Peninsular India, 

we observe intensification of droughts, i.e., decrease in rainfall intensity in τ ε [0.1, 0.3] 

quantiles in all of the other time series (West Central, Northeast, Central Northeast, 

Northwest and All India). In the four time series Northeast, Central Northeast, West Central 

and All India, we observe a decrease in the mean of the annual JJAS rainfall of 3 – 5% (see 

red dotted line in Fig. 1(b–g)).

In Fig. 1(b–g) we have highlighted higher quantiles, i.e., trends for τ ε [0.75, 0.95] by blue 

shaded vertical bands. Increase in these quantiles can indicate intensification of annual 

monsoonal rainfall. We observe that for the Northeast, Central Northeast and All India time 

series the rainfall appears to be mostly stable in these quantiles. Meanwhile, West Central 

and Northwest show some decrease in rainfall intensity in these quantiles. Although for 

some extremely low quantiles (τ < 0.1) all regions except the Central Northeast show an 

increase in rainfall, it is difficult to draw definitive conclusions from these features as very 

few data points are available for such low quantiles in the 142 year annual time series.

For the Northwest region, we observe high variability in the trends for different quantiles 

(Fig. 1(f)). Lower quantiles show a massive decrease of up to 20%, while the moderate 

quantiles show an increase and higher quantiles show a decrease as well. The Peninsular 

region (Fig. 1(e)) shows a different trend compared to all the other regions, and it appears 

that rainfall is either increasing or stable across all quantiles. The All India time series also 

shows a decrease across all quantiles, close to the decrease in the mean rainfall. The two 

main results of our analyses are: (1) Rainfall is decreasing or stable to different degrees in all 

the regions except peninsular India where it has increased and (2) there is an intensification 

of droughts in the Northwest, Central Northeast, West Central and the Northeast.
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To ascertain whether trends have shown any alterations over time, we have carried out 

further analysis of the six IITM-HIMR time series by estimating trends over moving time 

windows. We divide the time series into windows consisting of data points for 72 years with 

67-year overlap between neighboring time windows (the total temporal range of each time 

series is 142 years) and estimate trends in two different quantiles (τ = 0.25 characterizing 

droughts and τ = 0.85 characterizing heavy rainfall) for each of these windows separately. 

Using this method of windowing we lose the ability to identify any alterations in trends 

before 1943 (the first window’s end point). To quantify any gradual temporal shifts in trends 

of these quantiles, we estimate slopes of linear regression line fitted to data points from 

years before and after 1970. Negative (positive) signs of these slopes indicate gradual 

decrease (increase) in percentage trend for these two quantiles (see Fig. S2(b)). Although 

visual comparison gives the impression of a change point in 1970, a change-point analysis 

documents that none of these time series undergo a statistically-significant change point 

(Fig. S2c and explanation in the SI).

We observe a gradual change towards the intensification of droughts for all regions since 

1970 (Fig. S2). Except for the Central Northeast, every region has experienced a gradual 

shift from less intense to more intense droughts. For the Northwest, the Central Northeast, 

the West Central, and All India we also observe decreasing strength of heavy monsoonal 

rainfall years since 1970 (Fig. S2(a)). These observations are indicative of some form of 

rainfall reduction over multiple parts of India. It has been hypothesized by Bollasina et al. 
[2011] that monsoonal precipitation over south Asia has decreased in the second half of the 

20th century, due to the slowdown of the tropical meridional overturning circulation caused 

by increasing aerosol emissions over the region.

In order to enhance the spatial and temporal resolution of our analysis, we present the results 

of our analysis of the APHRO–V1003R1 data set (see section S2 of SI for the detailed 

description of the data set). This analysis is carried out at two different temporal resolutions: 

(i) total seasonal JJAS rainfall and (ii) daily rainfall during the JJAS season.

A decreasing trend in the lower quantiles (τ ≤ 0.25) of the seasonal JJAS rainfall documents 

intensification of drought situations at a grid point. The maximum intensification of 

droughts or strongest decrease in the lower quantiles of the annual JJAS rainfall are observed 

over parts of Myanmar, parts of Northwest India and adjoining parts of Central India (See 

Fig. 2(a–b) and Fig. S1). Other notable areas showing sharp intensification of droughts are 

the Northwest Himalaya and the high ISM rainfall zone west of the western Ghats (west 

coast of India along the Arabian Sea). Some parts of Eastern and Central India also show 

signs of intensification of droughts. An increasing trend in the higher quantiles (τ ≥ 0.80) of 

the annual JJAS rainfall will amount to above-average ISM rainfall for a grid point if the 

rainfall is evenly spread across four months of the JJAS season. If JJAS rainfall is not evenly 

distributed over the four ISM months then an increase may be associated with heavy rainfall 

events and related destruction of life and property. We observe an interesting pattern over 

parts of peninsular India with an increase in the higher quantiles of JJAS rainfall over almost 

the entire Indian peninsular, except over the western Ghats mountain range and regions west 

of them (a very high annual seasonal JJAS rainfall zone) (Fig. 2(c–d)). A similar increase 

can be observed over Eastern and Northeast India, Northern Myanmar. There is a general 
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decrease in annual ISM strength in the Himalaya and parts of Tibet, central Myanmar, parts 

of Central and Northwest India.

To detect changes in daily intense rainfall events in the APHRO–V1003R1 dataset, we 

analyze trends of the 0.995, 0.99, 0.975 and 0.95 quantiles (Fig. 3 a–d). These quantiles 

represent the top 0.5%, 1.0%, 2.5% and 5% of daily rain events, an increase in their intensity 

has the potential to cause large-scale flooding and may have large socio-economic impacts. 

These thresholds are chosen so that a particular extreme rain event (e.g., storm) does not 

make a trend, but rather a trend is estimated over multiple daily rainfall events across time. 

We observe a sharp increasing trend in Central India, parts of South India, South and Central 

Pakistan, parts of Northwest Himalaya and adjacent regions of Tibet for all of the above 

mentioned quantiles. In contrast, parts of Northwest India, Myanmar, Thailand and 

Cambodia show a rather strong decreasing trend in such events.

In an attempt to synthesize all of our findings, we have identified regions; with the most 

pronounced changes in extremes during the ISM season (Fig. 4). Through visual inspection 

of all our results (Fig. 1, 2, 3, S3 and S4), we have grouped spatially contiguous grid points 

with approximately similar trends into regions. We have delineated regions into two groups 

—regions with increase in the intensity of extreme daily rainfall and regions with 

intensification of droughts — because these will have the largest socio-economic impacts, as 

increasing strength of extreme rain events will increase chances of flash floods and 

increasing intensity of droughts can cause severe shortage of fresh water (additional details 

about steps followed in constructing Fig. 4 are provided in the SI Sec. S5). We have also 

listed some of the events (droughts or floods) within the identified regions, details about 

these events with corresponding references are provided in Table S1. Further discussion of 

results is provided in section S4.

4. Conclusion

Our study builds on previous analyses, but has added important methodological advantages, 

leading to the following key findings:

1. Decreasing trends in lower quantiles, generally associated with an 

intensification of droughts, is temporally the most stable and spatially the 

most extensive trend observed. Both data sets used in the analysis indicate 

that most of continental India shows a trend towards intensification of 

droughts. The regions of special concern in this context are Northwest 

India, parts of peninsular India and Himalaya, and all of Myanmar and 

some other parts of Southeast Asia (see a list of drought years in Table 

S2).

2. Analysis of the area-averaged monthly rainfall time series from 1871 to 

2012 suggests that intensity of droughts has gradually increased since 

1970. This drying could be related with increasing aerosol concentration 

over the region [Bollasina et al., 2011].

3. We have delineated regions which are most likely to be highly vulnerable 

to heavy rainfall events and related natural disasters, either due to increase 
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in the higher quantiles of annual JJAS rainfall or due to increase in the 

intensity of extreme rainfall events. Large parts of peninsular India and 

parts of eastern and central India show increasing trends in the higher 

quantiles of annual JJAS rainfall (top 20% years of JJAS rainfall). Also, 

there is a significant increase in extreme rain events especially at the top 

1% over central India, Pakistan, parts of south and eastern India, and parts 

of Northwest Himalaya.

4. Apart from spatial inhomogeneity, we also observe dissimilarity in trends 

in different quantiles. For example parts of peninsular, central and eastern 

India show trends towards decreasing rainfall in lower quantiles, but also 

show increasing rainfall in the higher quantiles.

5. A spatially homogeneous trend of decreasing strength of moderate rainfall 

events (strongest 40% to 25% of rain events [Fig. S5 and S6]) seems to be 

emerging in the ISM area, even on time scales of just 6 decades. Similar 

observations have also been reported in previous studies [Goswami et al., 
2006; Rajeevan et al., 2008; Dash et al., 2009; Ghosh et al., 2012]. In this 

study, we further unravel the spatial scale of this trend and show that it 

extends beyond continental India and covers almost all of South Asia. 

Furthermore, we found that this trend is more prominent in the regions of 

higher rainfall (wetter regions).

Our study suggests that the Indian Summer Monsoon region is a patchwork of trends with 

significant local and regional differences. Some regions are characterized by an increase in 

ISM rainfall, while other adjacent areas show an increase of droughts. The lack of a 

spatially-coherent trend of the Indian monsoon will require reassessment of the vulnerability 

and mitigation projections for this region. This study also demonstrates that the Indian 

monsoon system is responding in a complex fashion to global climatic forcing and that we 

do not anticipate to see homogeneous changes throughout the Indian monsoon domain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Station locations used in the constructing of area-averaged time series of the IITM-

HIMR data set (1871–2012), for different homogeneous rainfall regions. Each color 

represents one particular region, whereas ‘All India data’ includes all stations. IITM-HIMR 

data consists of area averaged monthly rainfall amounts from 1871 to 2012. We have built 

the time series of annual ISM rainfall from these data by taking the average over JJAS 

months for each year. (b)–(g) Markers are the percentage trend in each quantile over the 142 

year period, marker colors and shape correspond to different geographic regions and the 

error bars represent the 95% confidence intervals obtained using method of bootstrapping on 

residuals. Red dotted lines indicate the linear trend in the mean of the respective time series 

over the 142 years, independent of quantiles. Black heavy lines act as a reference for no 

change/no trend. Quantile values are indicated by τ (horizontal axes). Brown-shaded vertical 

bands highlight the lower quantiles i.e., trends for τ ε [0.1, 0.3]. Blue-shaded vertical bands 

highlight the higher quantiles, i.e., trends for τ ε [0.75, 0.95]. Observe the low values of the 

quantile trends for τ ε [0.1, 0.3] for West Central, Central Northeast, Northeast, Northwest, 

and All India indicating intensification of droughts in these regions. See Figs. S7, S8 and S9 

and Sec. S3.2 for additional information.
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Figure 2. 
Trends in the annual JJAS rainfall based on the analysis of the spatial gridded APHRO–

V1003R1 data set (1951–2007). Annual JJAS rainfall amounts (in mm) at a grid point were 

calculated by summing daily rainfall amounts of 122 JJAS days. Trend in the (a) 10th and 

(b) 20th percentile of the annual JJAS rainfall. A negative trend indicates a decrease in 

rainfall for these quantiles and can be associated with an intensification of droughts. Trend 

in the (a) 80th and (b) 90th percentile of the annual JJAS rainfall. A positive trend indicates 

an increase in rainfall for these quantiles which may be associated with a higher frequency 

and/or greater strength of intense rainfall events. To obtain net increase in mm over the 

entire time period of the data set (1951–2007), multiply the value given above in mm/year 
by 56. For further details about converting and interpreting above units for trends see section 

S3.1. For comparison with other τ thresholds and data sets see Figs. S3 and S4.
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Figure 3. 
Trends in the extreme daily JJAS rainfall events based on the analysis of the spatial gridded 

APHRO–V1003R1 data set (1951–2007). The unit of daily rainfall in this data set is mm, 

and for the analysis we have used all the JJAS days (6954) available in the data set. Trend in 

the (a) 99.5th, (b) 99th, (c) 97.5th and (d) 95th percentile of the daily rain events during 

JJAS. An increase of intense rainfall events has the potential to lead to flash floods and 

associated hazards. Observe the increasing trend over parts of south Pakistan, and the 

Northwest and Karakoram Himalaya. Trend increases can also be seen in central and eastern 

India and the northeast Himalaya. Baseline magnitudes (intercepts of the fitted lines) for 

these thresholds are available in Fig. S14. To obtain net increase in mm over the entire time 

period of the data set (1951–2007), multiply the value given above in mm/day by 6953, i.e., 
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one less than the total number of JJAS days in the data. See section S3.1 for converting and 

interpreting above units for trends.
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Figure 4. 
Synthesis showing spatial patterns of strongest rainfall trends in the extremes during the ISM 

season over the past 57 years. Brown regions indicate increasing trends in lower quantiles, 

often associated with drought conditions, while blue regions indicate areas with increasing 

rainfall at the higher percentiles, generally characterized by an increase in flooding. Region 

numbers and associated geographic regions are shown on the right. The demarcation of 

drought regions has also been corroborated by our observed trends (Fig. 1). We use light 

blue (flood) stars and orange (droughts) dots to indicate particular events during the recent 

past (between the years 2000 to 2013). These events were either extensively studied by the 

scientific community or have been reported by international media coverage (see SI material 

Table S1, Fig. S12, S13 and Sec. S5 for additional information).
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