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Abstract

DNA methylation is a key epigenetic mark involved in both normal development and disease 

progression. Recent advances in high-throughput technologies have enabled genome-wide 

profiling of DNA methylation. However, DNA methylation profiling often employs different 

designs and platforms with varying resolution, which hinders joint analysis of methylation data 

from multiple platforms. In this study, we propose a penalized functional regression model to 

impute missing methylation data. By incorporating functional predictors, our model utilizes 

information from nonlocal probes to improve imputation quality. Here, we compared the 
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performance of our functional model to linear regression and the best single probe surrogate in 

real data and via simulations. Specifically, we applied different imputation approaches to an acute 

myeloid leukemia dataset consisting of 194 samples and our method showed higher imputation 

accuracy, manifested, for example, by a 94% relative increase in information content and up to 

86% more CpG sites passing post-imputation filtering. Our simulated association study further 

demonstrated that our method substantially improves the statistical power to identify trait-

associated methylation loci. These findings indicate that the penalized functional regression model 

is a convenient and valuable imputation tool for methylation data, and it can boost statistical power 

in downstream epigenome-wide association study (EWAS).
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Introduction

DNA methylation is an important epigenetic modification involved not only in normal 

development [Smith and Meissner, 2013], but also in risk and progression to many diseases 

[Bergman and Cedar, 2013]. It has been shown to play a key role in the regulation of gene 

transcription, X-inactivation, cellular differentiation, and other critical processes such as 

aging [Bird, 2002; Gonzalo, 2010]. Recently, the emergence of powerful technologies such 

as microarray-based DNA methylation studies [Bibikova et al., 2011] and whole-genome 

bisulfite sequencing [Harris et al., 2010] has enabled the profiling of DNA methylation 

levels at high resolution. Numerous studies employed these high-throughput approaches to 

characterize changes in DNA methylation patterns and their corresponding tissue- and 

disease-specific differentially methylated regions on a genome-wide scale [Berman et al., 

2012; Chen, Ning, Hong, & Wang, 2014; Horvath, 2013; Varley et al., 2013].

As new technologies emerge, researchers tend to replace older methylation profiling 

platforms with new ones. However, different platforms can target CpG sites at different 

locations and with varying resolutions, which hinders the joint analysis of data from multiple 

platforms. For instance, the Illumina HumanMethylation27 (HM27) and Human-

Methylation450 (HM450) BeadChip [Bibikova et al., 2011] are two common microarrays 

used by The Cancer Genome Atlas (TCGA) project. HM27 investigates 27,578 CpG sites 

predominantly located near CpG islands, while HM450 provides broader coverage with 

485,577 probes spanning 96% of CpG islands and 92% of CpG shores across a larger 

number of genes [Bibikova et al., 2011]. Several TCGA studies have used HM450 to 

generate methylation profile data for more recently collected samples while still using 

HM27 to measure DNA methylation in the older test subjects. These mixed profiles compel 

researchers to focus on those probes shared between the two platforms when using the data 

for downstream analysis, as reevaluating all samples using HM450 is not only expensive, but 

also time-consuming [Getz et al., 2013; Koboldt et al., 2012; The Cancer Genome Atlas 

Research Network, 2012, 2013].
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Imputation has been successfully employed in many genetic, genomic, and epigenomic 

contexts [Donner et al., 2012; Ernst and Kellis, 2015; Jewett et al., 2012; Li et al., 2009; 

Zhang et al., 2015]. For methylation profiling, multiple methods have been proposed to 

impute methylation levels across tissue types [Ma et al., 2014] or employing various 

genomic and epigenomic features, including DNA sequence context, genomic position, 

predicted DNA structure, GC content, and DNA regulatory elements [Bock et al., 2006; Das 

et al., 2006; Zhang et al., 2015]. However, most of these methods dichotomize methylation 

status. More importantly, no cross-platform imputation methods have been proposed for 

predicting methylation levels at unassayed CpG sites. On the other hand, for genotypes, 

imputation of untyped SNPs has become a standard procedure used both to resolve similar 

inconsistencies between genotyping arrays and to increase the resolution of genotype data 

collected in genome-wide association studies [Li et al., 2009]. Here, we propose the 

application of a similar concept to impute data in DNA methylation profiles from a subset of 

probes. Although DNA methylation does not exhibit as clear or strong a correlation structure 

as LD blocks among SNPs, we observe local correlation among neighboring probes similar 

as reported by others [Eckhardt et al., 2006; Zhang et al., 2015]. Importantly, we have found 

nonlocal correlations among probes falling into the same functional categories that have not 

been employed in the literature. Therefore, we adopt a penalized functional regression model 

[Goldsmith et al., 2011], which uses functional predictors to capture these nonlocal 

correlations. Our study demonstrates that this model can impute an HM27 dataset into an 

HM450 dataset effectively and accurately, and using these imputed values can improve the 

statistical power of downstream epigenome-wide association study (EWAS).

Materials and Methods

Data

We evaluated our imputation model using DNA methylation data from TCGA acute myeloid 

leukemia (AML) samples [Ley et al., 2013]. The dataset contains DNA methylation data of 

tumor tissues from 194 patients with AML and is one of the largest methylation datasets 

from the TCGA project. All samples were evaluated using both HM27 and HM450. We 

transformed the raw β values into M values, defined as M = log 2[β/(1 – β)], as the M values 

better follow a Gaussian distribution [The Cancer Genome Atlas Research Network, 2013]. 

Our goal is to impute the HM27 dataset into an HM450 dataset to get an expanded view of 

the epigenomic landscape. The dataset is publicly available at the TCGA data portal (https://

tcga-data.nci.nih.gov/tcga/).

Because imputation of sporadic missing data is not the focus of this work, we removed all 

probes with at least one missing values for the sake of convenience. However, these missing 

values can be imputed by applying similar methods developed for gene expression profiles 

[Bo, Dysvik, & Jonassen, 2004; Kim et al., 2005; Liew et al., 2011; Troyanskaya et al., 

2001] to generate data without missing values. Additionally, we removed 743 probes 

designed in HM27 but not in HM450. In total, the HM27 dataset consisted of 20,794 probes 

passing TCGA quality control (QC) criteria [Ley et al., 2013] and the HM450 dataset 

consisted of 393,152 QC+ probes. The latter set contained all 20,794 probes in HM27, 

leaving the remaining 373,358 as our potential imputation targets.
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When training and using our model, we required data from HM450 and HM27, respectively. 

However, we noted that as HM27 and HM450 employ different biochemical methods to 

measure methylation levels, platform-specific effects might negatively impact imputation 

performance. To alleviate this systematic effect, we fitted a LOESS (locally weighted 

scatter-plot smoothing) regression model [Cleveland, 1979] between two platforms, 

stratified by the number of CpGs in the probe (#CpG = 0, 1, 2, 3, 4, 5, 6, 7+), using 14 

randomly chosen samples and normalized the HM27 data against the HM450 data [The 

Cancer Genome Atlas Research Network, 2013].

Penalized Functional Regression Model

We employed the penalized functional regression model [Goldsmith et al., 2011] with minor 

modifications detailed below to quantify the relationship between DNA methylation from 

HM450 probes and the DNA methylation density function estimated from HM27 probes 

together with other covariates. Specifically, assume for each target HM450 probe, we have n 
observations and for each sample i = 1, 2, …, n, we have data [Yi, Xi(t), Zi], where Yi is the 

transformed DNA methylation level at the target HM450 probe, Xi(t) is the sample-specific 

density function of the DNA methylation level measured by HM27 probes, denoted as Ti, 

and Zi is a p-dimensional vector of covariates. We consider a functional linear regression 

model:

Here, α is the overall mean, β(t) is the functional coefficient that characterizes the effect of 

density function Xi(t) when Ti = t, γ is the regression coefficient vector for covariates, and εi 

~ N(0, σ2).

To improve imputation accuracy, we incorporated functional predictors Xi(t) into our model 

to capture information such as nonlinear relationships from nonlocal probes. Based on the 

assumption that probes with similar properties tend to show similar methylation profiles, we 

divided the probes into several property groups. Here, we divided the probes among five 

groups according to their relative location to a CpG island. The five groups are “CpG 

Island,” “North Shore,” “South Shore,” “North Shelf,” and “South Shelf” [Bibikova et al., 

2011]. Then, we estimated the DNA methylation function Xi(t) for a particular target probe 

with the DNA methylation data from HM27 probes in the same group as the target probe. 

Assume the target probe is in group g and there are q HM27 probes in the same group. The 

observed DNA methylation data are denoted as , where  is the DNA 

methylation value at jth HM27 probe in group g and j = 1, …, q. Instead of estimating Xi(t) 
by expanding into the principal component basis obtained from its covariance matrix 

[Goldsmith et al., 2011], we used the kernel density estimation to obtain Xi(t) with  so that 

it is specific to group g.

To perform the model fitting, the functional coefficient β(t) was expanded by a linear spline 

basis , where δk is the knot along the interval [0,1] and (t – 

δk)+ is an indicator function, taking a value of 1 if t > δk and 0 if t ≤ δk. We further defined a 
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spline basis vector φ(t) = {φ1(t), φ2(t), …, φKb (t)} = {1, t, (t – δ3)+, …, (t – δKb)+} and a 

coefficient vector b = (b1, …, bKb)′ so that we may induce smoothing by assuming 

b~N(0,D), where D is a penalty matrix corresponding to the particular spline basis ϕ(t).

Finally, we had . For ease of notation, 

we denoted JXϕ as the n×Kb matrix with the (i,k)th entry equal to  and Z as 

the n × p matrix with the ith row equal to Zi, where p is the number of covariates. The model 

can be written in matrix format as:

This is a mixed effect model with Kb random effects b and penalty matrix:

Typically, Kb = 30 is sufficient to avoid under-smoothing in most applications [Goldsmith et 

al., 2011]. Consistent with previous work [Fan et al., 2015a,2015b], choice of Kb has little 

impact on performance (Supplementary Fig. S2).

Selection of Local Covariates

We exploited linear correlation with neighboring probes by including methylation values of 

HM27 probes near the target HM450 probe as local covariates Z in our imputation model. 

For simplicity, we selected the five nearest upstream probes and the five nearest downstream 

probes to each target probe as these local covariates.

Quality Filter

Because most probes showed nearly constant methylation levels across samples, we found 

for many probes, the imputation model is formed without sufficient information. Thus, it 

tends to be underfitted and yields inaccurate imputation results. It is therefore desirable to 

have quality metrics for gauging the imputation quality. As such a quality metric, we 

proposed an under-dispersion measure defined as the ratio of the variance of fitted 

methylation values to its expected value (the variance of the true methylation values in the 

training set). If this ratio is below a certain threshold for a probe, it indicates an underfitted 

model for that probe, and we discard imputed values for the probe before subsequent 

analysis. A more stringent threshold can provide more accurate results, although at the cost 

of more probes discarded after imputation.

Imputation Quality Assessment

We assessed imputation quality using fivefold cross-validation. Within each split, the full 

dataset was randomly divided into a training set consisting of 80% of the samples and a 

testing set comprised the remaining 20%. For each testing set, we only retained HM27 data 
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that contain a subset of HM450 probes, and masked methylation values of other HM450-

specific probes. For the training set, we used methylation measurements on probes shared 

between the two arrays as predictors to impute methylation values at HM450-specific 

probes. Because most HM27 probes were measured by both HM27 and HM450, the 

predictors used in our model can be methylation levels for these shared probes measured 

from either array. Note that our prediction model was built under the realistic (more 

challenging) scenario where we used as predictors the measurements from HM450 array 

instead of those from HM27 array, which would require the training dataset had 

measurements from both arrays. Specifically, we fitted the functional regression model 

based on the training set, learned the relationship between methylation values of the shared 

and HM450-specific probes, and used the fitted model to impute the masked values of 

HM450 probes from the HM27 data in the testing set. Finally, we evaluated the imputation 

performance by averaging quality measures across splits.

As quality measures, we selected the mean squared error (MSE) and the squared Pearson 

correlation (R2) between the imputed and the true methylation values in the testing sets. 

Although R2 is a more intuitive measure of quality directly related to power and sample size 

in downstream analysis, we would like to note that this metric could easily be affected by a 

few outliers. Additionally, if the variance of methylation values for a specific probe is small, 

R2 can be dramatically affected even by small imputation errors.

Simulation of Association Study

To assess the potential improvement of statistical power when using well-imputed 

methylation values for epigenetic association studies, we performed several simulated 

association studies for continuous and binary traits. Specifically, we randomly selected 100 

HM450 probes with imputation R2 between 0.1 and 0.3 based on our functional model, and 

simulated a dataset with 180 samples for each probe. In the continuous trait setting, for each 

probe, a trait value  was simulated from the methylation level of this probe according to 

the linear model  for sample i, where  is true methylation β value, the effect 

size c ∈ {0, 0.1, 0.2, …, 0.9, 1.0}, and , where  is the sample standard 

deviation of . In the binary trait setting, we first calculated , 

and simulated  from Bernoulli( ), where β̄* is the mean value of , and the effect size c 
∈ {0, 0.5, 1.0, …, 4.5, 5.0}.

We repeated the simulation 2000 times. For each simulated dataset, we performed 

association tests (linear regression for the continuous trait, and logistic regression for the 

binary trait) based on the true methylation values, as well as imputed values from the simple 

linear model and our proposed penalized functional model. The empirical power of each 

method was calculated as the proportion of observed P values that fall below the significance 

threshold, α = 0.05. Finally, we evaluated the empirical power for each effect size c by 

averaging results across 100 probes.
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Results

Evaluation of Imputation Quality

Most probes showed nearly constant methylation levels in populations, making imputation 

trivial for them. We therefore focused on probes showing large variations and chose the top 

20,000 such probes to evaluate the imputation quality. The time complexity of our method 

increases linearly with the number of target probes. However, since the imputation for each 

target probe is independent, we can accelerate it by running imputation in parallel. In the 

fivefold cross-validation experiment, 14 samples used for normalization were removed at 

first. Among the remaining 180, 144 individuals were chosen at random as the training set 

and 36 as the testing set within each split. The empirical cumulative distribution of 

imputation MSE and R2 are shown in Figure 1. The baseline method we used is the “tag” 

approach, where for each target probe, we calculated the Euclidean distance between the 

target probe and local probes, chose the local probe with the smallest distance as the tag 

probe, and directly copied its methylation values as imputed values for the target probe. We 

also compared the two models with and without functional predictors and found that 

incorporating functional predictors lead to significantly improved imputation MSE and R2 

(P < 2.2 × 10−16 for both metrics, paired Wilcoxon test). Table 1 summarizes some basic 

statistics. As expected, the “tag” method performs worst and we have therefore focused in 

subsequent text only the two models with and without functional predictors.

We used the target probe cg00288598 as an example to illustrate how the functional 

predictors improve the imputation quality. As shown in Figure 2A, the selected local probes 

showed much smaller variation than the target probe, leading to an underfitted linear 

regression model and thus low imputation quality. In contrast, the methylation profile of the 

target probe is strongly associated with the distribution of methylation levels from all HM27 

probes in its assigned North Shelf group, as indicated in Figure 2B. Therefore, after the 

functional predictors are added, the model can utilize the information from these nonlocal 

probes, including probes on different chromosomes, to alleviate the underfitting problem.

Performance of Quality Metrics

Because not all target probes can be imputed with the same level of accuracy, we tried to use 

the under-dispersion measure described in the Methods section to filter out inaccurate 

imputation results. We examined the relationship between imputation MSE/R2 and the 

under-dispersion measure. We observed a negative correlation between the imputation MSE 

and this quality measure (Fig. 3A, Pearson correlation coefficient, R = −0.65), and a positive 

correlation between imputation R2 and the measure (Fig. 3B, Pearson correlation coefficient, 

R = 0.93). Therefore, when performing imputation, we can calculate the under-dispersion 

measure and use it to filter out low-quality imputation results. Figure 3 indicates that by 

choosing an appropriate threshold, we can remove most probes imputed with low-quality 

while simultaneously retaining nearly all probes imputed with high-quality. Based on our 

results, we suggest a threshold of 0.8 for the under-dispersion measure, which removes all 

badly imputed probes (defined as true R2 < 0.2) at the cost of 1.24% well-imputed probes 

(true R2 > 0.8). Table 2 shows the number of probes passing post-imputation quality filter at 
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varying thresholds of the under-dispersion measure and we see that our penalized functional 

model results in up to 86.0% more probes that can be used for further analysis.

Power Gain in Association Study

It is not surprising to find relatively little difference in the performance of the two models at 

the two ends of the distribution (Fig. 1A and B) because of probes that are either trivial or 

impossible to impute. Therefore in our work, we focus on the ~34% probes with imputation 

R2 between 0.1 and 0.3, where our model demonstrates advantages over simpler models. As 

shown in Figure 4, using imputed values from the penalized functional model for association 

tests is consistently more powerful than using values from the simple linear model, while the 

type I error rate (when c = 0) was still under proper control. These results suggest that even 

using probes with moderate imputation quality can substantially improve the statistical 

power of association test while maintaining the desired type I error rate.

Discussion

In summary, we propose a penalized functional regression framework for across-platform 

imputation of methylation probes. Although a number of methods exist for predicting 

methylation levels at single CpG resolution, none of these directly apply to the across-

platform imputation that we consider in this work. Moreover, we model information from 

nonlocal probes and have found such information considerably increase imputation 

performance. Our real data analysis demonstrates that by incorporating functional predictors 

from these nonlocal probes, our model can produce accurate imputation results when the 

reference panel (training set) and target panel (testing set) characterize the same tissue under 

similar conditions.

Because DNA methylation profiles are highly tissue and condition specific [Laurent et al., 

2010; Lister et al., 2009; Varley et al., 2013], our method will not work well if the two 

datasets are from different tissues or very different conditions. Recent studies suggest some 

statistical models to predict methylation profile in target tissue from a surrogate tissue [Ma 

et al., 2014], which might be helpful in this case. Moreover, other systematic errors such as 

batch effect may also harm imputation quality. Therefore, we suggest using techniques such 

as principal component analysis to check for obvious discrepancies between reference and 

target panels before applying our method.

In various settings, a different way to construct predictors may further improve the 

performance of our model. For example, nonlocal probes can be categorized based on other 

properties, such as their relative location to a gene [Bibikova et al., 2011]. Another possible 

approach to select nonlocal probes is to choose HM27 probes highly correlated with the 

target probe (see Supplementary Methods). Supplementary Figure S1 shows that this 

approach can lead to better imputation performance, but the computational cost will be much 

higher. We can also explore other approaches to select local covariates, such as using a 

different number of probes, or choosing the local covariates as the 10 local probes that have 

the highest correlation with the target probe.
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Because most CpG sites display stable DNA methylation levels, imputation error is low on 

average (the median imputation root MSE for beta values of all probes is ~0.05). 

Dichotomizing at beta value of 0.5 following Zhang et al. [2015], our prediction accuracy is 

94.9%, largely consistent with their reported 92% prediction accuracy. However, researchers 

may consider dynamic CpG sites to be of more interest, as these sites often colocalize with 

key regulators, such as enhancers and transcription factor binding sites [Ziller et al., 2013]. 

Therefore, we calculated quality metrics for individual probes, facilitating the evaluation of 

imputation quality for each probe and removing probes with low imputation quality for 

downstream analysis.

For probes showing a large variation of methylation levels, we notice that even after 

incorporating functional predictors, the imputation quality is still low for a significant 

portion of these probes. Possible reasons are the following: first, the DNA methylation 

profile alone does not provide sufficient information for accurate imputation. We may need 

to incorporate other information to improve imputation quality, such as local DNA context 

and the binding profile of regulatory proteins [Bhasin et al., 2005; Bock et al., 2006; Zheng 

et al., 2013], although this requires additional data sources in the same or similar tissue type 

that are rarely available. Second, HM27 has a much lower resolution than HM450. In 

addition, a large proportion of HM27 probes showed nearly constant methylation levels 

across samples. As such, an extreme case is that if the target HM450 probe is not correlated 

with any HM27 probes, the model will be underfitted with the predicted methylation levels 

for all samples close to the average, thus leading to smaller variance than expected, similar 

to under-dispersion observed with imputed SNP data [Li et al., 2009]. We expect to observe 

better performance if we impute from a denser microarray. For example, researchers are now 

replacing the HM450 array with the Illumina EPIC 850K array. We anticipate that 

imputation from 450K probes to 850K probes will exhibit a much better quality. Third, our 

normalization procedure does not fully eliminate the inconsistency of measurements 

between HM27 and HM450, which also affects the performance of our model. Here, we 

assumed only HM450 data are available for the training dataset, which is a more realistic 

setting. However, if the training set contains both HM27 and HM450 data in a real case, we 

can treat HM450 data as response and use HM27 data to construct predictors. Thus, 

predictors from both training and testing set are constructed from HM27 data and the 

inconsistency between HM27 and HM450 is automatically learned by the model. In this 

case, our model will show higher imputation accuracy.

Because a considerable proportion of CpG probes on HM450 overlap with SNPs (hereafter 

referred to as SNP-probes), we also examined whether imputation quality for these SNP-

probes differs from that for non-SNP probes. Our annotation [Barfield et al., 2014] includes 

98,741 CpGs that have an SNP somewhere underneath the 50 bp probe, among which 

62,777 are QC+ HM450-specific sites. We found that the SNP-probes are slightly less 

varying than the non-SNP probes (e.g., median variance of β values is 0.00310 and 0.00356, 

respectively; Table 3). Analogous to rarer variants in SNP imputation [Duan et al., 2013; Li 

et al., 2009; Liu et al., 2012; Pistis et al., 2015], it is not surprising to find that these SNP-

probes appear slightly easier to impute when measured using MSE (e.g., median MSE is 

0.00236 and 0.00263, respectively), but actually slightly more challenging to impute when 

Zhang et al. Page 9

Genet Epidemiol. Author manuscript; available in PMC 2016 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measured using the more honest information content R2 metric (median R2 is 0.162 and 

0.182, respectively).

The focus of the present work is on imputation per se rather than association analysis. After 

accurate imputation, we can combine data from multiple platforms to obtain methylation 

levels of more CpG sites for downstream analysis such as detecting methylation quantitative 

trait loci or EWAS [Heyn and Esteller, 2012; Rakyan et al., 2011]. Such analysis can take 

imputation uncertainty into account similarly as for imputed SNPs [Huang et al., 2014]. In 

this work, we evaluated the statistical power under the mostly commonly observed change in 

mean values, however, other forms of changes have been observed. For example, several 

studies [Gervin et al., 2011; Hansen et al., 2011] reported differences in the variation (in 

addition to the mean) of methylation values between cancer and healthy groups. Our 

simulation studies (Supplementary Methods S2) show a power improvement even using the 

standard logistic regression to test the mean difference under such variation differences. 

Regardless of the epigenetic architecture of the phenotype, we expect our imputation 

method, by allowing in higher resolution and more powerful exploration of the epigenome, 

will lead to rapid advances in understanding the functional role of normal DNA methylation 

and the impact of its aberration. Our method is implemented in R and freely available at 

https://github.com/Leonardo0628/pfr.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Empirical cumulative density function of (A) imputation MSE and (B) imputation R2 for 

probes showing large variations in the AML dataset.
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Figure 2. 
(A) Methylation profiles of a North Shelf probe cg00288598 (left) and 10 selected local 

probes (middle). (B) The individual-specific density plot of methylation values from all 

HM27 probes in North Shelf regions. Each line represents one individual and is colored 

based on the methylation level of the cg00288598 probe.
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Figure 3. 
Scatter plot of under-dispersion measure and (A) imputation MSE and (B) imputation R2.

Zhang et al. Page 16

Genet Epidemiol. Author manuscript; available in PMC 2016 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Empirical power of simulated association tests for (A) continuous trait and (B) binary trait 

across a spectrum of effect size c.
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Table 2

Number of probes passing post-imputation quality filter

Under-dispersion measure threshold 0.6 0.7 0.8 0.9

Among top 20,000 probes

Covariates only 2,113 1,592 1,174 681

Covariates + functional predictor 2,677 1,691 1,226 719

Improvement 26.7% 6.2% 4.4% 5.6%

Among all probes

Covariates only 14,479 8,796 5,123 2,417

Covariates + functional predictor 26,924 13,117 6,526 2,684

Improvement 86.0% 49.1% 27.4% 11.1%
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