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Abstract

Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) through forced 

expression of cardiac lineage-specific transcription factors holds promise as an alternative strategy 

for cardiac regeneration. To facilitate research in iCM reprogramming, we generated a suite of new 

tools. We developed a transformed cell line derived from mouse embryonic fibroblasts (MEF). 

This fibroblast cell line (MEF-T) harbors an αMHC-eGFP reporter transgene for rapid detection of 

newly derived iCMs. The MEF-T cell line is highly proliferative and easily transfected and 

transduced, making it an ideal tool for transgene expression and genetic manipulation. 

Additionally, we generated a Tet-On inducible polycistronic iCM reprogramming construct for the 

temporal regulation of reprogramming factor expression. Furthermore, we introduced this 

construct into MEF-T and created an inducible reprogrammable fibroblast cell line. These tools 

will facilitate future research in cell fate reprogramming by enabling the temporal control of 

reprogramming factor expression as well as high throughput screening using libraries of small 

molecules, non-coding RNAs and siRNAs.
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 Results and Discussion

Direct cardiac reprogramming of fibroblasts into cardiomyocyte-like cells offers additional 

strategies for cardiac regeneration and disease modeling. The expression of three cardiac-

lineage transcription factors – Mef2c, Gata4, and Tbx5 (MGT) – is sufficient to convert 

fibroblasts directly into induced cardiomyocytes (iCMs) in vitro (Ieda et al., 2010) and in 
vivo (Qian et al., 2012). A polycistronic construct with the three transcription factors 

separated by peptide cleavage sites yields stoichiometrically optimal ratios of the three 

reprogramming factors (Wang et al., 2015a). This polycistronic MGT construct produces 

improved reprogramming efficiency in vitro (Wang et al., 2015a) and improved 

reprogramming efficiency and cardiac function in vivo (Ma et al., 2015). To facilitate studies 

in direct cardiac reprogramming, we developed a suite of tools for iCM research including a 
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transformed fibroblast cell line with a cardiac reporter, an inducible polycistronic 

reprogramming construct, and an inducible reprogrammable fibroblast cell line.

First we developed a cardiac reporter fibroblast cell line. We isolated mouse embryonic 

fibroblasts (MEF) at embryonic day 13.5 from α muscle heavy chain-green fluorescent 

protein (αMHC-GFP) cardiac reporter strain mice (Ieda et al., 2010; Qian et al., 2012) (Fig. 

1a). This transgenic strain drives GFP reporter expression with the cardiac αMHC promoter. 

Cardiomyocytes from αMHC-GFP mice are GFP positive, while fibroblasts are GFP 

negative. Consequently, primary MEFs isolated from αMHC-GFP embryos are GFP 

negative; however, MEFs that have been reprogrammed into iCMs through the forced 

expression of cardiac lineage specific transcription factor cocktails are GFP positive. We 

transformed primary αMHC-GFP MEFs with retroviral delivery of SV40 large T antigen 

(Hahn et al., 2002) and selected transformed cells with Zeocin (Fig. 1a). The transformed 

mouse embryonic fibroblast cell line, MEF-T, is morphologically similar to parental primary 

MEF (Fig. 1b). However, MEF-Ts are more prolific than primary MEFs and have a shorter 

population doubling time (Fig. 1c). Accordingly, a higher proportion of MEF-Ts are active 

in the cell cycle compared to primary MEFs (Fig. 1d). Propidium iodide staining and DNA 

content analysis reveal that 31% of MEF-Ts are in S phase compared to only 9% of primary 

MEFs (Fig. 1d). Additionally, nucleotide analog EdU incorporation confirms that more 

MEF-Ts are actively synthesizing DNA than MEFs (Fig. 1e). A 2.5 hour EdU pulse labeled 

49% of MEF-T cells compared to 19% of primary MEFs. The proportion of MEF-T cells 

positive for the proliferation marker Ki67 is also over 2-fold higher than primary MEFs (Fig. 

1f). These data demonstrate that MEF-T is a transformed, highly proliferative fibroblast cell 

line.

We next determined the potential of the MEF-T cell line for transgene expression using three 

common laboratory techniques: a lipid-based transfection reagent (Lipofectamine3000), 

lentiviral transduction, and retroviral transduction. First, we used Lipofectamine3000 to 

transfect primary MEF and MEF-T. Following transfection with a GFP-expressing plasmid, 

35% of MEF-T expressed the GFP transgene compared to 7% of primary MEF (Fig. 2a), 

indicating that MEF-T is significantly more susceptible to transfection using lipid-based 

transfection reagents than primary MEF. Second, we used a lentiviral vector to transduce 

primary MEF and MEF-T. A GFP-expressing lentivirus transduced 97% of MEF-T but only 

57% of primary MEF (Fig. 2b), indicating that MEF-T is also significantly more susceptible 

to transduction by lentiviral vectors. Third, to test a large construct encoded in a retroviral 

construct, we took advantage of our polycistronic system. We designed a retroviral construct 

to serve as a control for our polycistronic reprogramming construct Mef2c-Gata4-Tbx5 

(MGT) (Wang et al., 2015b) by replacing the transcription factor Mef2c with the fluorescent 

reporter GFP to create the polycistronic construct GFP-Gata4-Tbx5 (GGT). GGT transduced 

94% of MEF-T but only 61% of primary MEF (Fig. 2c). MEF-T is significantly more 

susceptible to retroviral transduction, lentiviral transduction, and Lipofectamine transfection. 

Finally, we assessed the duration of transgene expression of constructs of different sizes in 

the MEF-T cell line. The small GFP lentivirus produced sustained transgene expression, 

while the large GGT retrovirus produced a transient transgene expression (Fig. 2d and e). 

The cardiac reporter fibroblast cell line MEF-T is the first reported of its kind and will be a 

valuable tool for in vitro studies involving activation of cardiac markers such as αMHC.
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As an additional tool to facilitate studies in direct cardiac reprogramming, we incorporated 

the Tet-On inducible gene expression system (Das et al., 2004; Gossen et al., 1995; Zhu et 

al., 2002) into our MEF-T cell line to permit the temporal regulation of factor expression 

during the reprogramming process. With constitutive expression of the engineered reverse 

tetracycline-controlled transcriptional activator (rtTA), transcription of genes under the 

control of the tetracycline responsive element tetO in the promoter can be regulated by the 

addition or removal of the tetracycline derivative doxycycline. In the absence of 

doxycycline, rtTA does not bind to the tetracycline responsive element in the promoter and 

fails to initiate transcription of the target genes. However, in the presence of doxycycline, 

rtTA binds to the promoter and initiates transcription of the target genes. We generated a 

MEF-T cell line that constitutively expresses rtTA for the temporal regulation of transgene 

expression, called MEF-T-rtTA (inducible MEF line-iMEF). We tested the TetOn system in 

iMEF using lentiviral infection with a tetracycline responsive RFP reporter construct (Fig. 

3a). iMEFs transduced with RFP do not express RFP in the absence of doxycycline; 

however, with the addition of doxycycline to the culture media, 87% of iMEFs robustly 

express the RFP reporter (Fig. 3b). The spectral peak of uninfected iMEF overlaps 

completely with RFP infected iMEFs in the absence of doxycycline, indicating that the 

TetOn system is not leaky (Fig. 3b and c). The iMEF cell line is a valuable tool for temporal 

regulation of gene expression during reprogramming. One application of the iMEF cell line 

is to control RNA interference during reprogramming. Tetracycline-responsive short hairpin 

RNA can be used in combination with standard retroviral MGT to test the role of a gene of 

interest by knocking it down at specific times during the reprogramming process. 

Additionally, the initiation and duration of reprogramming factor expression can be 

controlled in MEF-T-rtTA if tetracycline-responsive promoters are used to drive 

transcription factor transcription. This system can be applied to the standard MGT cocktail 

or direct cardiac reprogramming cocktails utilizing additional factors such as Hand2, 

myocardin, SRF, Nkx2.5, or miR-133 (Addis et al., 2013; Christoforou et al., 2013; 

Jayawardena et al., 2012; Muraoka et al., 2014; Protze et al., 2012; Song et al., 2012). 

Furthermore, the iMEF-cell line has broad applicability in direct lineage reprogramming 

over and above direct cardiac reprogramming, as it can be employed to regulate the temporal 

expression of reprogramming cocktails for other lineages such as hepatocyte or neuron.

To complement the iMEF cell line, we designed a tetracycline-responsive MGT 

reprogramming factor construct for use in the Tet-On inducible gene expression system. We 

put the polycistronic MGT construct (Ma et al., 2015; Wang et al., 2015b) under the control 

of a tetracycline responsive promoter for temporal control of MGT reprogramming factor 

expression, creating an inducible polycistronic MGT construct (iMGT) (Fig. 3d). In the 

absence of doxycycline, the reprogramming factors are not expressed; however, with the 

addition of doxycycline, stoichiometrically optimal ratios of the three transcription factors 

are expressed for optimal reprogramming efficiency (Fig. 3d). When iMGT is co-expressed 

with rtTA in HEK 293T cells by either transfection or lentiviral delivery and doxycycline is 

supplied, the reprogramming factor protein expression is similar to that from the retrovirally 

expressed polycistronic MGT construct (Fig. 3e). In the absence of doxycycline, the three 

reprogramming factors are not detected.
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Finally, we incorporated the iMGT construct into the iMEF cell line to generate a new cell 

line (icMEF) that can be reprogrammed simply by the addition of doxycycline to the culture 

media. The αMHC-GFP cardiac reporter in the icMEF cell line indicates reprogramming 

with GFP reporter expression. Within three days of doxycycline addition, 23% of icMEF 

cells are GFP positive (Fig. 3f and g). With doxycycline addition, icMEF also upregulate 

expression of cardiac genes, including sarcomere components Actc1 and Tnnt2 and ion 

channel subunits Slc8a1, Kcna5, and Scn5a (Fig. 3h). Similarly, inducible MGT expression 

in primary MEFs turns on αMHC-GFP reporter expression and cardiac marker cTnT 

expression detected by immunocytochemistry (Fig. 3i). It is possible that the icMEFs that 

remain cardiac marker negative after doxycycline addition have undergone 

transdifferentiation to some extent but have not yet turned on these markers. Such 

phenomenon is inherent in cell fate reprogramming due to the existence of a series of 

molecular barriers and the asynchronous conversion among starting cells that are not 

completely identical at the molecular and epigenetic levels. Single cell genomics will be the 

ultimate approach to determine how cell heterogeneity and the asynchronous nature of this 

process impact cardiac fate acquisition in fibroblasts.

In iPSC reprogramming, increased cellular proliferation through the inhibition of cell cycle 

regulation improves reprogramming efficiency (Hong et al., 2009; Kawamura et al., 2009; Li 

et al., 2009; Marión et al., 2009; Utikal et al., 2009; Zhao et al., 2008). In a similar manner, 

it is possible that SV40 T antigen-mediated transformation and increased proliferation of the 

icMEF cell line contributes to these relative higher rates of reporter expression and 

reprogramming efficiency when compared to the primary CF reprogramming. While we 

recently demonstrated that deletion of p53, p19, and p16 did not result in a significant 

increase in the percentage of generated iCMs (Zhou et al., 2016), the use of retroviruses to 

introduce the reprogramming factors inevitably links proliferation rate to reprogramming 

efficiency. Future experiments using quiescent fibroblasts will be performed to test the 

potential role of cellular proliferation in iCM reprogramming.

In summary, the icMEF cell line described here will facilitate high-throughput and 

combinatorial screening using libraries of small molecules, pharmacological reagents and 

non-coding RNAs to further accelerate research in the field. The rapid and simple single 

GFP reporter read-out is ideal for such purposes since it reduces potential noise and 

complications from additional markers. Primary screening using the icMEF cell line has the 

advantage of high thoughput and high yield, but can inevitably yield false positives. In 

addition, icMEFs cannot be reprogrammed into fully matured, beating cardiomyocytes. 

Candidate factors identified from large screens in icMEFs will need to be validated and 

further characterized through secondary screens in primary fibroblasts using additional read-

outs, including supplemental markers and functional parameters. The icMEF cell line was 

designed as a tool for the rapid, high-throughput identification of novel factors involved iCM 

reprogramming for better understanding of CM biology and potential applications in 

regenerative medicine.
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 Methods and Materials

All cell lines and constructs described here will be made available to the research 

community.

 Primary Cell Culture and Immortalization

Mouse embryonic fibroblasts (MEF) were isolated as previously described (Jozefczuk et al., 

2012) from αMHC-GFP reporter mice (Ieda et al., 2010; Qian et al., 2012). Animal care was 

performed in accordance with the guidelines established by University of North Carolina, 

Chapel Hill. MEF were seeded at a density of 5×104 cells per well in a 6 well plate coated 

with 0.01% gelatin. The following day, cells were lentivirally infected with large T-antigen 

with Zeocin resistance (AddGene #1779). Two days later, cells were re-plated in media with 

300 μg/mL Zeocin. Antibiotic selection was maintained until all uninfected cells in control 

wells had died.

 Propidium Iodide Cell Cycle Analysis

MEF and MEF-T were seeded at a density of 4×104 cells per well in 24 well plates coated 

with 0.01% gelatin. After 48 hours of culture, cells were dissociated with 0.025% Trypsin-

EDTA, washed once with 2% FBS in PBS and once with PBS, and fixed in 70% ethanol 

overnight at −20°C. Fixed cells were pelleted, washed twice in 1% BSA in PBS, 

resuspended in PBS with 10 μg/mL RNaseA and 50 μg/mL PI, and analyzed immediately by 

flow cytometry. Data was collected on an Accuri C6 cytometer (BetaDickson) and analyzed 

using FlowJo software (Tree Star).

 Ki67 Nuclear Antibody Staining

MEF and MEF-T were seeded at a density of 4×104 cells per well in 24 well plates coated 

with 0.01% gelatin. After 48 hours of culture, cells were dissociated with 0.025% Trypsin-

EDTA, washed once with 2% FBS in PBS and once with PBS, and fixed in 70% ethanol 

overnight at −20°C. Fixed cells were pelleted, washed in 1% BSA/PBS, resuspended in 50 

μL rabbit anti-Ki67 antibody (1:500, Abcam) in 1% BSA/PBS for 30 minutes at room 

temperature, washed twice in 1% BSA/PBS, resuspended in 50 μL Alexa Fluor 488–

conjugated donkey anti-rabbit IgG (1:500, Jackson ImmunoResearch, Inc.) in 1%BSA/PBS 

for 30 minutes at 4°C, washed twice in 1% BSA/PBS, resuspended in PBS, and analyzed by 

flow cytometry. Data was collected on an Accuri C6 cytometer (BetaDickson) and analyzed 

using FlowJo software (Tree Star).

 EdU Incorporation and Staining

MEF and MEF-T were seeded at a density of 4×104 cells per well in 24 well plates coated 

with 0.01% gelatin. After 48 hours of culture, EdU was added to the cell culture media to a 

final concentration of 10 μM and incubated for 2.5 hours. For flow cytometry analysis, cells 

were harvested and EdU incorporation was visualized using a Click-iT Plus EdU Flow 

Cytometry Assay Kit (Life Technologies, C10632) according to the manufacturer’s 

instructions. Cells were counted on an Accuri C6 cytometer (BetaDickson) and analyzed 

using FlowJo software (Tree Star). For immunocytochemistry, cultures were washed with 

3% BSA in PBS three times and fixed with 4% paraformaldehyde (EMS) at room 
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temperature (RT) for 15 min. After permeabilization with 0.2% Triton in PBS for 20 min at 

RT, EdU incorporation was visualized with 500 μL of Click-iT Plus reaction cocktail (Life 

Technologies, C10632) according to the manufacturer’s protocol incubated for 30 minutes. 

After washing with PBS three times, nuclei were stained with Hoechst 33342 (Life 

Technologies). Images were acquired using EVOS® FL Auto Cell Imaging System (Life 

Technologies).

 Viral Transduction and Efficiency Determination

MEF and MEF-T were seeded at a density of 2×104 cells per well in 24 well plates coated 

with 0.01% gelatin and infected with virus the following day in iCM media (4:1 

DMEM:M199 with 10% FBS) with 4 μg/mL polybrene. Three days post infection, cells 

were dissociated with 0.025% Trypsin-EDTA, washed and resuspended in PBS. 

Transduction efficiency was analyzed immediately by flow cytometry. Data was collected on 

an Accuri C6 cytometer (BetaDickson) and analyzed using FlowJo software (Tree Star).

 Characterization of iMEF by Flow Cytometry

iMEF were seeded at a density of 2×104 cells per well in 24 well plates coated with 0.01% 

gelatin and infected with virus the following day in iCM media (4:1 DMEM:M199 with 

10% FBS) with 4 μg/mL polybrene and 1 μg/mL doxycycline. Three days post infection, 

cells were dissociated with 0.025% Trypsin-EDTA, washed and resuspended in PBS. 

Transduction efficiency was analyzed immediately by flow cytometry. Data was collected on 

an Accuri C6 cytometer (BetaDickson) and analyzed using FlowJo software (Tree Star).

 Inducible Polycistronic Reprogramming Construct (iMGT) Cloning

A modified pTRIPZ (Thermo Scientific, now Dharmacon) vector described previously 

(Zheng et al., 2014) was a kind gift from Qing Zhang. Our polycistronic MGT construct 

(Wang et al., 2015a) was cloned into the vector behind the tet operator sites and minimal 

CMV promoter using the AgeI and ClaI restriction enzyme sites. WPRE was amplified from 

the vector with primers to include flanking KpnI and MluI cleavage sites. Digestion of the 

vector with the enzymes MluI and KpnI removed a segment from base pairs 4064 to 8019 

that included WPRE, rtTA3, PuroR, and the shRNAmir insertion site. This removal of the 

second KpnI site at bp 6543 leaves a single KpnI site at bp 8019. The WPRE PCR amplicon 

was digested with KpnI and MluI and ligated into the vector. The resulting construct 

contains polycistronic MGT in frame behind the tet operator sites and minimal CMV 

promoter and lacks rtTA3 and PuroR. For the co-expression of rtTA with the iMGT 

construct, a pTRIPZ vector was digested with the enzymes XbaI and MluI and re-ligated to 

remove the tet operator sequences and minimal CMV promoter. In this construct, rtTA3 is 

constitutively expressed under the human ubiquitin C promoter. The transcriptional activator 

rtTA3 is sensitive to doxycycline dosage and can be titrated to regulate transcriptional 

activity (Das et al., 2004).

 Cardiac Reprogramming Using the icMEF Cell Line

icMEF were seeded at a density of 2×104 cells per well in 24 well plates coated with 0.01% 

gelatin. The following day, media was changed to iCM media (4:1 DMEM:M199 with 10% 
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FBS) with 1 μg/mL doxycycline. Three days post infection, cells were dissociated with 

0.025% Trypsin-EDTA, washed and resuspended in PBS. Transduction efficiency was 

analyzed immediately by flow cytometry. Data was collected on an Accuri C6 cytometer 

(BetaDickson) and analyzed using FlowJo software (Tree Star).

 Growth Curve

MEF-T were seeded at a density of 1×105 cells per well in 6 well plates coated with 0.01% 

gelatin. Wells were harvested in triplicate and cells counted by hemocytometer at 24 hour 

intervals for eight days.

 Immunocytochemistry

Cells were washed with PBS three times and fixed with 4% paraformaldehyde (EMS) at 

room temperature (RT) for 15 min. After permeabilization with 0.2% Triton/PBS for 15 min 

and blocking in 5% BSA for 1 hour, cells were treated with primary antibody at 4°C 

overnight, secondary antibody for 1 hour at RT, and nuclei staining with Hoechst 33342 

(Life Technologies). The following antibodies were used: Rabbit anti-Ki67 (1:500, Abcam), 

rabbit anti-GFP (1:500, Life Technologies), Alexa Fluor 488–conjugated donkey anti-rabbit 

IgG (1:500, Jackson ImmunoResearch, Inc.). RFP reporter fluorescence was imaged without 

antibody staining. Images were acquired using EVOS® FL Auto Cell Imaging System (Life 

Technologies).

 Western Blotting

Cells were lysed in 2x SDS loading buffer (Bio-Rad). Proteins in cell lysate was separated 

by SDS-PAGE, transferred to nitrocellulose membranes, and probed with the following 

antibodies: Mef2c (1:1000, Abcam), Gata4 (1:200, Santa Cruz Biotechnology), Tbx5 (1:200, 

Santa Cruz Biotechnology), or β-Actin (1:1000, Santa Cruz Biotechnology). The target 

proteins were detected by chemiluminescence (ECL, Thermo Fisher Scientific). The 

membranes were stripped with stripping buffer (Sigma) and re-probed with antibody against 

a second protein or β-Actin as a loading control.

 Real Time Quantitative Polymerase Chain Reaction

Total RNA was harvested from icMEF cultures three days after doxycycline addition by 

standard phenol/chlorophorm isolation using TRIzol reagent (Thermo Fisher Scientific). 

cDNA was obtained by SuperScript III Reverse Transcriptase (Thermo Fisher Scientific) 

according to the manufacturer’s protocol. RT-qPCR was performed on a ViiA 7 Real-Time 

PCR System (Applied Biosystems) with SYBR Green (Thermo Fisher Scientific) or 

TaqMan (Thermo Fisher Scientific) chemistry.

 Statistical Analyses

The statistical significance of differences between groups was analyzed using a two way 

unpaired student’s t-test. A p-value < 0.05 was regarded as significant. Error bars indicate 

standard deviation.
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Figure 1. 
Characterization of the MEF-T cell line. (a) Schematic of cell line development. Embryos 

are harvested from a pregnant female αMHC-eGFP mouse at embryonic day 13.5. Mouse 

embryonic fibroblasts (MEF) are isolated and transformed with lentiviral delivery of SV40 T 

antigen. Transformed cells are selected with Zeocin. (b) Morphology of primary MEF and 

MEF-T cell line. Scale bar is 200 μm. (c) Growth curve for MEF and MEF-T. (d) Propidium 

iodide staining and DNA content analysis. (e) Incorporation of nucleotide analog 5-

ethynyl-2′-deoxyuridine (EdU). Scale bar is 200 μm. P < 0.0001. (f) Nuclear Ki67 

proliferation marker staining. Scale bar is 200 μm. P < 0.0001.
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Figure 2. 
Transgene expression in the MEF-T cell line. (a) Transfection with GFP transgene using 

Lipofectamine3000. Scale bar is 200 μm. P < 0.0001. (b) Lentiviral transduction with GFP 

transgene. Scale bar is 200 μm. P < 0.0001. (c) Retroviral transduction with GFP-Gata4-

Tbx5 (GGT) transgene. Scale bar is 200 μm. P < 0.0001. (d, e) Sustained expression of GFP 

transgenes delivered by lentivirus and retrovirus.
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Figure 3. 
Inducible reprogramming constructs and cell lines. (a) Schematic of the TetOn inducible 

gene expression system. (b) Validation of the iMEF cell line using a tetracycline responsive 

RFP reporter lentiviral infection. P < 0.0001. (c) Immunocytochemistry of controlled RFP 

reporter expression in iMEF. Scale bar is 200 μm. (d) Schematic of the inducible 

polycistronic MGT (iMGT) construct. (e) Western blot of reprogramming factor expression 

from the polycistronic and iMGT constructs. (f) icMEF cell line reprogramming efficiency 

at three days after doxycycline addition. P < 0.0001. (g) Immunocytochemistry of icMEF 

αMHC-eGFP reporter at three days after reprogramming with doxycycline. Scale bar is 200 
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μm. (h) Real time quantitative PCR of cardiac sarcomere protein and ion channel subunit 

upregulation in icMEF three days after doxycycline addition. **** P < 0.0001. *** P = 

0.0003 (i) Immunocytochemistry of αMHC-eGFP reporter and cardiac Troponin T 

expression in primary MEF reprogrammed with iMGT and doxycycline. Scale bar is 20 μm.
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