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Abstract: According to data of the International Agency for Research on Cancer and the World Health
Organization (Cancer Incidence in Five Continents, GLOBOCAN, and the World Health Organization
Mortality), bladder is among the top ten body locations of cancer globally, with the highest incidence
rates reported in Southern and Western Europe, North America, Northern Africa and Western Asia.
Males (M) are more vulnerable to this disease than females (F), despite ample frequency variations
in different countries, with a M:F ratio of 4.1:1 for incidence and 3.6:1 for mortality, worldwide.
For a long time, bladder cancer was genetically classified through mutations of two genes, fibroblast
growth factor receptor 3 (FGFR3, for low-grade, non-invasive papillary tumors) and tumor protein
P53 (TP53, for high-grade, muscle-invasive tumors). However, more recently scientists have shown
that this disease is far more complex, since genes directly involved are more than 150; so far, it has
been described that altered gene expression (up- or down-regulation) may be present for up to 500
coding sequences in low-grade and up to 2300 in high-grade tumors. Non-coding RNAs are essential
to explain, at least partially, this ample dysregulation. In this review, we summarize the present
knowledge about long and short non-coding RNAs that have been linked to bladder cancer etiology.
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1. Introduction

As stated by the US National Cancer Institute (NCI) [1], bladder cancer (BC) is the sixth most
frequent type of cancer in the Western world, especially in the USA, in which it represents 4.7% of all
new cancer cases. According to statistical projections, in 2017, there will be 79,030 new cases of BC
and an estimated 16,870 individuals will die because of it. BC is most commonly diagnosed among
people aged 75–84, with a median age of 73 years, meaning that the rising life expectancy of the older
population itself is increasing the number of BC cases, turning them into a bigger problem for the
healthcare [2]. BC is more frequently diagnosed in men than in women and its five-year survival rate,

Genes 2017, 8, 339; doi:10.3390/genes8110339 www.mdpi.com/journal/genes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/304663554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0001-7584-2171
http://dx.doi.org/10.3390/genes8110339
http://www.mdpi.com/journal/genes


Genes 2017, 8, 339 2 of 34

based on data from “Surveillance, Epidemiology, and End Results Program” (SEER), is estimated at
77.3% [1]. BC is the ninth leading cause of cancer death in the USA with 4.4 deaths per 100,000 men
and women per year (time frame: 2010–2014), according to SEER data.

2. Classification and Etiology of BC

There are two main types of BC, according to its histopathology: about 90% of them begin
in the urothelium (the transitional epithelium that lines much of the urinary tract including the
renal pelvis, the ureters, the bladder and parts of the urethra) and are classified as transitional
cell carcinoma or urothelial cell carcinoma; additionally, approximately 5% of BC are squamous
cell carcinoma and less than 2% are adenocarcinoma [3]. BC can also be classified considering its
invasion of the muscularis propria in the bladder wall: at the time of diagnosis, 75–80% cases of BC
are classified as non-muscle-invasive bladder cancer (NMIBC), consisting of the pathologic stages
Ta (papillary), T1 (invading into the lamina propria), and carcinoma in situ (CIS) [4]. The remaining
cases are characterized by a variable grade of infiltration of the bladder wall and are known as
muscle-invading BC (MIBC), which are a more serious condition: in fact, while patients with NMIBC
can often be safely managed with transurethral resection of the tumor (with or without intravesical
chemotherapy or immunotherapy), neoadjuvant chemotherapy followed by radical cystectomy (RC)
with bilateral pelvic lymph-node dissection (PLND) is the standard of care for patients with MIBC [5].

Many studies focused on possible etiologies of BC, demonstrating that both genetic and epigenetic
pathways are correlated with the development of this disease, and that BC is also strongly influenced
by environmental factors [6]. In past studies, BC was commonly linked to two main genetic pathways,
one involving FGFR3 (fibroblast growth factor receptor 3,) mutations, often associated with low-grade
tumors and favorable prognosis, and one characterized by TP53 (tumor protein P53) mutations, mainly
identified in advanced tumors with poor prognosis [7]. Currently, numerous other genetic causes
have been discovered, concerning several categories of oncogenes and tumor suppressor genes whose
altered activities promote carcinogenesis: (i) genes controlling apoptosis [8] such as Caspase-3 [9],
FAS (Fas cell surface death receptor) [10], BCL-2 (B-Cell CLL/Lymphoma 2) [11] and Survivin [12];
(ii) genes controlling angiogenesis such as vascular endothelial growth factors (VEGFs) [13],
basic fibroblast growth factor and thrombospondin 1 [14]; and (iii) genes controlling signaling
and cell–cell interactions as uroplakins [15] and RAS (Rat sarcoma viral oncogene homolog) [16].
Many genes involved in other cellular functions seem to play a role in BC development [17] and, for this
reason, it may be useful to analyze as many of them as possible to define prognosis and treatments.

Among the most important risk factors, there are cigarette smoking, occupational exposures
(especially to aromatic amines), water arsenic, Schistosoma haematobium infestation, and external beam
radiation therapy (EBRT) for urogenital malignancies, which increases the rate of secondary bladder
malignancies [17,18]. Cigarette smokers have approximately threefold higher hazard of urinary tract
cancer than non-smokers [19]. It has been discovered that cigarette smoke extract exposure induces
morphological changes of human BC T24 cells, with enhanced cell migration and invasion, reduced
epithelial marker expression and increased mesenchymal marker expression, resulting in the activation
of the ERK1/2 (Extracellular Signal-regulated Kinase 1 and 2) pathway as well as of the activator
protein 1 (AP-1) [20]. About 20% of BC cases is occupationally related, a much larger percentage
compared to other types of cancer which have, in some cases, a work-dependent etiology (4%) [21].
Workers in leather tanneries have a higher hazard to develop BC, likely because of their exposure
to chemicals contained in the leather dust [22]. Evidence of higher BC risk was also shown in dye
workers, rubber workers, painters, truck drivers and aluminum workers [23]. Many studies focused on
the personal use of hair dyes, which contain several chemicals: p-phenylenediamine and aminophenyl,
for example, have been suggested as possible carcinogens or mutagens. These molecules, when used
over a long period of time and in the presence of specific genetic polymorphisms, may increase BC
risk [24], sometimes up to 22–50% vs. non-use [25]. It has been established the fundamental role that
aromatic amines, such as 2-naphthylamine, 4-aminobiphenyl and benzidine, play as occupational



Genes 2017, 8, 339 3 of 34

risk factors associated with BC [26]. Another important hazard is the exposure to arsenic in drinking
water: an arsenic concentration of 10 µg/liter may increase by 40–100% the risk of bladder and kidney
cancers [27]. There are also some world regions in which BC is linked to environmental factors that
almost make it an endemic disease: for example, in the Middle East and parts of Africa (especially
Egypt), carcinomas of the urinary tract are the most common malignancies, due to S. haematobium
infections [28].

3. Epigenetics and BC

Many scholars have been asked about the meaning of the term ‘epigenetic’: hence different
definitions and points of view emerged. Overall, ‘epigenetics’ includes all the biochemical processes
that alter gene activity without changing the DNA sequence and that may lead to inheritable
modifications [29]. Therefore, epigenetic changes can alter the way a cell interacts with its genetic
information, without altering the DNA sequence, at the physiological level.

The hunt for gene variants or mutations that can explain the personal susceptibility to diseases,
from autism to cancer to Alzheimer’s disease, has been mostly inconclusive. For this reason, epigenetics
may be the key to find a more complete pathogenetic explanation for diseases that do not have clear-cut
genetic causes [30]. There are many biochemical processes, which determine epigenetic changes.
However, most studies focused on two of them: DNA methylation and histone modifications [31].
DNA methylation (the addition or removal of a methyl group) has been the focus of much research
ranging from a developmental and imprinting perspective to its contribution to diseases such as
cancer [32]. Aberrant histone modifications, or the dysregulated activity of the enzymes that catalyze
these modifications, may affect the genome integrity and chromosome segregation, leading to the
possible development of many maladies, including cancer [33]. Even though these phenomena have
been known for decades, studies investigating the impact of epigenetic changes on human diseases
have only recently intensified.

Remarkably, epigenetic changes mediated by non-coding RNAs (ncRNA) are of extreme
importance for understanding the neoplastic transformation of the urothelium. Indeed, there is not
only a direct relationship between activity and mutations of these molecules, intended as members of
a complex epigenetic system [34], and BC formation [35], but also a known association between some
chemicals and changes of ncRNA structures [36]. In particular, benzo(a)pyrene (produced during
coal gasification, aluminum smelting and tobacco smoking, in all cases as a result of incomplete
combustion), 2-nitrofluorene (a by-product of combustion) and 4-nitrosomorpholine (a contaminant in
rubber products) can potentially impair the function of some ncRNA and, probably, induce BC [37].

4. Non-Coding RNAs: An Overview

Modern studies and technologies allowed pointing out that only a small portion (about 10–15%)
of the mammalian genome is functional [38], and only 3% consists of protein-coding genes [39].
The greatest part of the human genome, which does not encode for proteins, is known as ‘non-coding
DNA’: in fact, it does not lead to the biosynthesis of specific proteins. However, additional studies have
demonstrated that non-coding DNA holds a very important role in many other biochemical processes.
Indeed, it carries the information that is required to synthesize specific RNA molecules, which are
not translated into proteins (ncRNA). Among others, transfer RNAs (tRNA) and ribosomal RNAs
(rRNA) represent the most abundant ncRNA molecules, confirming the central role played by this
huge part of the human genome. ncRNA, other than rRNA and tRNA, are usually categorized based
on their length: there are long non-coding RNAs (lncRNA), which are longer than 200 nucleotides [40]
and small non-coding RNA, which are usually 20–25 nucleotides long and are further subdivided
according to their function and/or role (Table 1 and References therein).



Genes 2017, 8, 339 4 of 34

Table 1. Main non-coding RNA (ncRNA) classes, listed according to increasing length (in nucleotides (nt)).

Name Acronym Length (nt) Notes Refs

Long non-coding RNAs lncRNA >200 Non-protein coding transcripts;
heterogeneous class of RNAs [41]

Transcribed
ultraconserved region T-UCR ≈50–570

Frequently located at fragile sites and
cancer-associated genomic regions;
possibly regulated by miR

[42]

Circular RNA circRNA ≈100–1600 Covalently closed RNA rings; some have coding
functions; potential gene regulators and miR “traps” [43]

Small interfering RNA siRNA 20–25
Double-stranded RNAs similar to miR, operating
through RNA interference (RNAi) pathway;
promote mRNA degradation

[44]

Y RNA Y RNA 21–24
Necessary for DNA replication through interactions
with chromatin and initiation proteins; target of
autoimmune antibodies

[45]

Micro-RNA miRNA; miR 21–24
Function in RNA silencing and post-transcriptional
regulation of gene expression; may have an
extracellular localization

[46,47]

Piwi-interacting RNA piRNA 26–31
Epigenetic and post-transcriptional gene silencing of
retrotransposons and other genetic elements in germ
line cells

[48]

Small nucleolar RNAs snoRNAs 60–300 Guide chemical modifications of other RNAs
(rRNA, tRNA, snRNA) [49]

Small nuclear
ribonucleic acid snRNA; U-RNA ≈150

Function in the processing of pre-messenger RNA
(hnRNA) in the nucleus; aid in the regulation of
transcription factors; telomere maintenance

[50]

Over the years, many roles have been attributed to ncRNA. It has been proposed that ncRNA
play a crucial role in maintaining genomic stability, which is essential for cell survival and prevent
tumorigenesis [51], by finely tuning DNA expression [52] and forming complexes with other molecules
(lncRNA, microRNA (miR) and proteins) to maintain the physiologic homeostasis [53].

5. Long Non-Coding RNA

Long Non-coding RNA are involved in many important biochemical processes such as the major
pathways of cell growth, proliferation, differentiation and survival. Consequently, they are considered
essential regulators of the genetic information and for this reason, in the last years, several studies
focused on their activities. Their deregulation can promote tumor formation, progression and
metastasis in bladder tissues, showing that they play a crucial role in the carcinogenesis of the
urothelium [54]. lncRNA can sustain proliferative signaling, allow evading growth suppression,
promote apoptosis resistance, support replicative immortality, activate invasion and metastasis,
and induce angiogenesis [55]. These findings are a great step forward for understanding cellular
pathways and defining the prognosis of a large variety of tumors; indeed, many studies aim to
translate this evidence into actionable clinical steps, for example using specific lncRNA as biomarkers
or therapeutic targets [41]. Transcribed ultraconserved region (T-UCR) RNAs are a specific class
of lncRNA possibly involved in tumorigenesis; notably, one out of the approximately 480 T-UCR
identified so far has a recognized role in BC formation [56]. The lncRNA that we have collected
(Table 2) and commented have been described as having a role in BC and were retrieved from PubMed
and the database ‘Lnc2Cancer’ available at http://www.bio-bigdata.com/lnc2cancer/home.jsp [57].
Their role as oncogenes or tumor suppressor is summarized in Figure 1A.

http://www.bio-bigdata.com/lnc2cancer/home.jsp
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Table 2. Synopsis of the lncRNA with a role in BC formation. These lncRNA were collected either
performing a keyword-based PubMed search or from the database Lnc2Cancer; additional information
was retrieved from the original papers or from the GeneCards [58] and OMIM [59] databases.

Name Acronym Map Approx.
Length in Kb

Regulation
in BC Notes

Urothelial cancer-associated 1 UCA1 19p13.12 1.4 Up
Cell cycle regulation, cell
proliferation, cell migration, cell
invasion, apoptosis inhibition

Metastasis-associated lung
adenocarcinoma transcript 1 MALAT1 11q13.1 7 Up

Alternative splicing, nuclear
organization, modulation of
gene expression

Imprinted maternally
expressed noncoding
transcript H19

H19 11p15.5 6 Up Modulation of gene expression
pre- and post-translation

Taurine Upregulated Gene 1 TUG1 22q12.2 3.3, 5.9, 6.4, 9.7 Up Cell proliferation and migration

Maternally expressed gene 3 MEG3 14q32.2 1.6 plus other
putative sizes Down

Maternally imprinted gene,
chromatin function,
angiogenesis, autophagy

MiR-31 host gene MIR31HG 9p21.3 2.2 Down Gene expression through DNA
methylation, chromatin structure

Long intergenic noncoding
RNA upregulated in bladder
cancer 1; Bladder Cancer
Associated Transcript 1

Linc-UBC1,
BLACAT1 1q32.1 3 Up

Cell proliferation, cell motility,
invasiveness, colony formation,
chromatin structure

LOC572558 LOC572558 9q13 2.6 Down Cell proliferation, cell motility

Promoter of CDKN1A
antisense DNA
damage-activated RNA

PANDAR 6p21.2 1.5 Up Apoptotic response to DNA damage

Gastric carcinoma high
expressed transcript 1 GHET1 7q36.1 2.5 Up Cell proliferation, cell invasion, EMT

(epithelial to mesenchymal transition)

Non-coding RNA expressed
in aggressive neuroblastoma ncRAN 17q25.1 2.1, 2.2 Up Cell proliferation, cell migration, cell

invasion, chemotherapy resistance

Growth-arrest-specific
transcript 5 GAS5 1q25.1 0.67 (exons

only) Down Cell division through CDK6 (cyclin
dependent kinase 6) control

Antisense noncoding RNA in
the INK4 locus

ANRIL,
CDKN2B-AS1 9p21.3 2.7, 3.8 Up

Co-expressed with CDKN2A (cyclin
dependent kinase inhibitor 2A); cell
proliferation and apoptosis

Hypoxia inducible factor 1
alpha antisense RNA-2

HIF1A-AS2,
aHIF 14q23.2 1.6 Up Cell proliferation,

cell migration, apoptosis

HOX transcript antisense
RNA

HOTAIR,
HOXAS 12q13.13 2.2 Up Regulation of cyclin J via

inhibition of miR-205

HOXD antisense
growth-associated long
non-coding RNA, HOXD
cluster antisense RNA 1

HAGLR,
HOXD-AS1 2q31.1 15.8 Up

Regulation of tumor size, histological
grade and TNM
(tumor-node-metastasis) stage

Mediator of DNA damage
checkpoint protein 1
antisense RNA 1

MDC1-AS1 6p21.33 N/A Down DNA damage checkpoint, apoptosis

Prostate cancer
associated transcript 1 PCAT-1 8q24.21 2 Up Cell proliferation, apoptosis

Plasmacytoma variant
translocation 1
(Pvt1) Oncogene

PVT1 8q24.21 N/A Up
Co-expression with MYC
(myelocytomatosis viral oncogene
homolog), cell proliferation, apoptosis

SWI/SNF complex
antagonist associated with
prostate cancer 1

SChLAP1 2q31.3 1.7, 1.4, 1.3, 1.1
(major forms) Up Cell proliferation, apoptosis,

cell migration

SPRY4 intronic transcript 1 SPRY4-IT1 5q31.3 0.7 Up Cell proliferation, cell migration,
cell invasion

ZEB2 Antisense RNA 1, Zeb2
natural antisense transcript

ZEB2-AS1,
ZEB2NAT 2q22.3 0.7 Up

TGFβ1 (transforming growth
factor beta 1) signaling and
epithelial to mesenchymal
transition (EMT) control
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Table 2. Cont.

Name Acronym Map Approx.
Length in Kb

Regulation
in BC Notes

Ultraconserved RNA 8+,
translated ultraconserved
region 8+

uc.8+,
T-UCR 8+ 1p36.22 0.2 Up Interaction with miR-596; cell

invasion, migration, and proliferation

Nuclear enriched
abundant transcript 1 NEAT1 11q13.1 3.2 Up Cell proliferation, miR-101 interaction

Apoptosis associated
transcript in bladder cancer AATBC 21q22.3 4.6 Up Cell proliferation, apoptosis

LncRNA-n336928 lncRNA-
n336928 N/A N/A Up N/A

Up-regulated in non-muscle
invasive bladder cancer

lncRNA-
UNMIBC N/A N/A Up Tumor relapse, chromatin structure

Tenascin XA pseudogene TNXA 6p21.33 4.6 Down N/A

CADM3 antisense RNA 1 CADM3-AS1,
CTA-134P22.2 1q23.2 n/a Down N/A

C5orf66 antisense RNA 1 C5orf66-AS1,
CTC-276P9.1 5q31.1 1.2 Down N/A

Keratin 19 pseudogene 3 KRT19P3 4q25 0.9 Up N/A

AB074278 AB074278 17q23.2-23.3 N/A Up

Possible functional interactions with
TANC2 (tetratricopeptide repeat,
ankyrin repeat and coiled-coil
containing 2) and EMP1 (epithelial
membrane protein 1)
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(i) miR that are upregulated (in red; 16/65); (ii) miR that are downregulated (in green; 44/65); and (iii) 
miR that have been described both as up- and downregulated and, as such, cannot be univocally 
classified using the available data (in grey; 5/65). Notably, while 75% of the BC-related lncRNA are 
upregulated (i.e., they act as oncogenes), more than 70% of these miR are potentially downregulated 
(considering all downregulated and half of the non-univocally classified miR), i.e., act as tumor 
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and is 1413 bases long [60]. It belongs to the family of oncogenic lncRNA involved in BC progression 
because of its role in cell cycle regulation. It is believed to promote BC indirectly acting on the 
PI3K-AKT (phosphatidylinositide 3-kinase – Ak thymoma) pathway through the CREB (cAMP 
response element-binding protein) protein deregulation [60]. Under hypoxic conditions, the 
upregulation of UCA1 promotes cell proliferation, migration, and invasion; furthermore, it inhibits 
apoptosis [61]. It has been shown that in ovarian cancer UCA1 interacts with the microRNA 
miR485-5p, inhibiting its function [62]. In this system, the knockdown of UCA1 or the 
overexpression of miR485-5p reduce mRNA and protein levels of the target matrix metalloprotease 
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Figure 1. Classification of long non-coding RNA (lncRNA) and micro-RNA (miR) involved in bladder
cancer (BC) etiology based on their regulation. (A) lncRNA classes according to their levels of expression
in BC vs. normal urothelium. lncRNA are divided into two classes: (i) lncRNA that are up-regulated
(in red; 24/32); and (ii) lncRNA that are down-regulated (in green; 8/32). To date, BC-related lncRNA
have been univocally described as up- or downregulated. (B) miR classes according to their levels of
expression in BC vs. normal urothelium. miR are split into three classes: (i) miR that are upregulated
(in red; 16/65); (ii) miR that are downregulated (in green; 44/65); and (iii) miR that have been described
both as up- and downregulated and, as such, cannot be univocally classified using the available
data (in grey; 5/65). Notably, while 75% of the BC-related lncRNA are upregulated (i.e., they act as
oncogenes), more than 70% of these miR are potentially downregulated (considering all downregulated
and half of the non-univocally classified miR), i.e., act as tumor suppressors.

5.1. UCA1

Urothelial cancer-associated 1 (UCA1) is encoded in a locus that maps on chromosome 19p13.12
and is 1413 bases long [60]. It belongs to the family of oncogenic lncRNA involved in BC
progression because of its role in cell cycle regulation. It is believed to promote BC indirectly
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acting on the PI3K-AKT (phosphatidylinositide 3-kinase—Ak thymoma) pathway through the CREB
(cAMP response element-binding protein) protein deregulation [60]. Under hypoxic conditions,
the upregulation of UCA1 promotes cell proliferation, migration, and invasion; furthermore, it inhibits
apoptosis [61]. It has been shown that in ovarian cancer UCA1 interacts with the microRNA miR485-5p,
inhibiting its function [62]. In this system, the knockdown of UCA1 or the overexpression of miR485-5p
reduce mRNA and protein levels of the target matrix metalloprotease MMP14, which is involved
in pathologic invasion and metastasis. A similar pathway has been demonstrated in BC as well,
in an article showing that miR485-5p is a tumor suppressor [63]. Further studies are needed to verify
that UCA1 and miR485-5p interact also in the bladder. Several studies have investigated the reliability
of the UCA1 presence in the urine as a biomarker for urothelial cancer, demonstrating its great
diagnostic value in BC (specificity: 91.8%; sensitivity: 80.9%) [64,65]; however, its role in the follow-up
of recurring tumors remains limited [66]. Moreover, growing subsequent evidence suggests that the
aberrant overexpression of UCA1 is associated with high risk of poor outcome or clinicopathological
features in several types of cancer, including BC [67]. UCA1 activity is strictly related to aggressive
BC phenotypes; in fact, UCA1 can promote the transdifferentiation of epithelial cells into motile
mesenchymal cells, a process known as epithelial–mesenchymal transition (EMT) [68]. This feature can
be explained by the effect that UCA1 produces through the hsa-miR-145–ZEB1/2–FSCN1 (Homo sapiens
miR-145—Zinc Finger E-box binding homeobox 1 and 2—fascin actin-bundling protein 1) pathway.
It has been demonstrated that hsa-miR-145 inhibits BC cell migration and invasion [69]; consequently,
the overexpression of UCA1 is linked to marked repression of hsa-miR-145, and vice versa, resulting
in a stimulus that may make cancer more aggressive. In addition, UCA1 induces EMT and increases
the migratory and invasive abilities of BC cells also by upregulating the expression levels of the zinc
finger E-box binding homeobox 1 and 2 (ZEB1 and ZEB2) [70].

5.2. MALAT1

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), also known as
nuclear-enriched abundant transcript 2 (NEAT2), is encoded in a locus that maps on chromosome
11q13.1 and its length is around 7 Kb [71]. Interestingly, the 3′ end of the main transcript contains
a conserved tRNA-like sequence that is cleaved off and processed to generate a short tRNA-like
ncRNA called mascRNA (MALAT1-associated small cytoplasmic RNA; 61nt long); consequently,
the post-transcriptional processing of MALAT1 produces two ncRNAs from a single, original
transcript [72]. Both transcripts are widely expressed in all human tissues analyzed so far.
MALAT1 is often associated with multiple physiological processes, such as alternative splicing,
nuclear organization, and epigenetic modulation of gene expression. However, this lncRNA is
also involved in pathological processes, ranging from diabetes complications to different types of
cancer [73]. The role of MALAT1 in tumorigenesis has been deeply investigated; its overexpression
has been associated with the promotion of malignancy, while its knockdown is linked to the inhibition
of cell proliferation and invasion in different cancer types [74]. However, the implications of MALAT1
in carcinogenesis have not yet been fully clarified because of the controversial results that emerged
from numerous studies. The overexpression of MALAT1 is generally associated with poor prognosis
in patients with various types of cancer, even though the mechanisms underlying this relationship
remain unclear [75]. The upregulation of MALAT1 promotes cell migration in BC by inducing EMT;
its downregulation results in a decrease of this process [76]. These findings suggest an important
role for MALAT1 in regulating metastasis in BC patients and its possible therapeutic use as a target
molecule. Since cancer patients expressing high levels of this lncRNA have a poorer clinical outcome,
MALAT1 can be considered a potential prognostic biomarker for various cancers, including BC [77].

5.3. H19

H19 is a locus mapping on chromosome 11p15.5 (inside a genomic region that is approximately
6 Kb long), which encodes for a lncRNA and is also known as ASM (because of its expression
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in rats’ Adult Skeletal Muscle) or BWS (since its aberrant expression can be involved in the
Beckwith-Wiedemann syndrome). H19 is an imprinted transcript, expressed exclusively from
the maternal allele, and is only found in mammalian genomes [78]. It is expressed during fetal
development, in particular in mesoderm- and endoderm-derived tissues [79], and its expression ends
at birth; in adults, it is found almost exclusively in a number of cancers, including BC [80,81]. As for the
bladder, Ariel et al. demonstrated that H19 is abundantly expressed in the fetal bladder mucosa
and in the carcinoma of the urinary bladder [82]. H19 is a potent oncogene: its aberrant expression
is associated with BC tumorigenesis, metastasis, and poor prognosis, since it is one of the most
upregulated lncRNA in cancerous cells compared with adjacent noncancerous tissue [83]. The search
for H19-positive urinary cells has become a highly sensitive screening test for urothelial cancer;
in fact, H19 has been detected in the urine of 90.5% of patients and only in 25.9% of controls [84].
The molecular organization and mechanisms of action of this ncRNA are quite complex and not
fully understood. The primary transcript of H19 also acts as the primary transcript for miR-675,
a 23nt long microRNA harbored between nucleotides 1014 and 1036 of the main transcript [85].
In addition, the H19/IGF2-imprinting control region, which is located just upstream of H19, coordinates
the expression of both H19 and IGF2 (insulin like growth factor 2), the latter being expressed exclusively
from the paternal allele [86]. H19 knockout causes loss of IGF2 imprinting, suggesting a control
mechanism at the transcriptional level [87,88]; in addition, both sense and antisense transcripts from the
H19 locus bind the PRC2 (polycomb repressive complex 2) chromatin modification complex in mouse
embryonic stem cells [89]. However, H19 also binds the IGF2 mRNA binding-protein (IMP) family
members that, in turn, regulate IGF2 translation, thus suggesting for H19 also a post-transcriptional
regulation of target genes [90]. One of the pathological mechanisms involved in the H19 activity is
linked to the expression of miR-675: notably, miR-675 levels were remarkably increased in BC tissues,
where this miR is able to inhibit the activation of the tumor suppressor TP53, resulting in the abnormal
proliferation of BC cells and increased cancer growth [91]. miR-675 also downregulates the tumor
suppressor retinoblastoma (RB) protein in human colorectal cancer [92]. However, it is likely that
H19 has also functions that are independent of miR-675, since it harbors secondary structures that are
widely conserved and may act as a stable docking platform for a regulatory ribonucleoprotein (RNP)
composed of the 3′ half of the H19 transcript and of up to four IMP1 molecules [93].

5.4. TUG1

Taurine Upregulated Gene 1 (TUG1) maps on chromosome 22q12.2, in a locus of approximately
10 Kb. Three splice variants of TUG1 were identified in mouse, while in man there are four possible
splice variants, whose cDNA lengths are 3.3, 5.9, 6.4, and 9.7 kb, respectively [94]. Human TUG1
is ubiquitously expressed in tissues and cells and localizes in nuclear and cytoplasmic foci in
human fetal foot fibroblasts [95]. TUG1 is another lncRNA whose aberrant overexpression is
commonly linked to urothelial carcinoma of the bladder, as well as to B-cell malignancies, esophageal
squamous cell carcinoma, hepatocellular carcinoma and osteosarcoma [96]. TUG1 knockdown
suppresses proliferation and promotes apoptosis of BC cells, by inhibiting the activation of the
Wnt/β-catenin (wingless-type MMTV integration site/beta-catenin) pathway and by affecting Zinc
finger E-box-binding homeobox 2 (ZEB2) expression [97]. A research demonstrated the oncogenic role
and association with worse overall survival of this lncRNA, especially in high-grade muscle-invasive
BC: in this study, TUG1 silencing in vitro led to 34% decrease in cancer cell proliferation and 23%
reduction in the migration capacity of cancer cells [98]. The role of TUG1 in high-grade BC may be
related to its interaction with TP53, a well-known marker of these tumors [17]. Indeed, TUG1 expression
is induced by TP53 in response to DNA damage [99], and the artificial depletion of TUG1 via small
interfering RNA (siRNA) results in the upregulation of genes involved in cell cycle regulation in both
fetal lung and foot fibroblasts [95]. Further studies are needed to better understand the importance of
TUG1, though its potential roles as biomarker and therapeutic target in bladder urothelial carcinoma
seem to be well established.
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5.5. MEG3

There are also cases in which the reduced expression of a certain lncRNA can lead to several
pathologies, and cancer is one of them. One example is represented by Maternally Expressed
Gene 3 (MEG3) lncRNA, whose cytogenetic band is 14q32.2 (a site that putatively contains a tumor
suppressor gene involved in the pathogenesis of meningiomas) and which has a complex organization,
being ca. 1.6 kb long in humans with a number of splice isoforms and evidence of retained introns
that create longer transcripts [100]. In addition, in this case, there is an example of an imprinted,
maternally expressed locus [101] that is part of a larger cluster of imprinted genes, named DLK1-DIO3
(delta like non-canonical notch ligand 1—iodothyronine deiodinase 3); like the IGF2/H19 domain,
the MEG3/GTL2/DLK1 locus has areas of differential methylation-hypermethylation on the paternal
and hypomethylation on the maternal allele [102]. MEG3 expression is highly regulated temporally
and spatially in mouse as well as in man. In humans, it is expressed in the adult brain [103] and normal
pituitary gland (but not in pituitary adenomas) [104]; it is upregulated in the nucleus accumbens of
heroin abusers [105] and downregulated in the caudate nucleus of Huntington’s disease patients [106].
MEG3 localization may be either nuclear or cytoplasmic; when it is nuclear, it has been found
associated with chromatin [107]. The downregulation of MEG3 is commonly associated with the
progression of different types of cancer; in fact, MEG3 has the strong ability to inhibit the proliferation
of several malignant human carcinoma cell lines [104]. It has been demonstrated that this anti-oncogene
contributes to the activation of TP53, one of the most important tumor suppressor genes, probably
through secondary structural motifs [108]. Furthermore, MEG3 is able to inhibit cell proliferation even
in the absence of TP53 [109]; in addition, it can also control gene expression at imprinted loci through
the recruitment of the PRC2 complex [89]. Experiments aimed at elucidating its role in cellular growth
further demonstrated that its ectopic expression inhibits growth and stimulates TP53 expression [108].
On the other hand, MEG3 knock-out promotes the expression of VEGF (vascular endothelial growth
factor) signaling pathway genes in the brain, suggesting that MEG3 function as tumor suppressor may
in part be due to angiogenesis inhibition [110]. As in other tissues, also in BC MEG3 levels are lower
than normal controls. This lncRNA is able to suppress autophagy activation, while downregulated
MEG3 activates autophagy and increases cell proliferation in BC cell lines [111]. The downregulation
of MEG3 is based on the epigenetic silencing of the 14q32 imprinted gene cluster [112]. All biochemical
processes in which MEG3 is involved make it an excellent marker for BC prognosis: circulating MEG3
status in tumors may be useful also for selecting patients who are most likely to benefit from adjuvant
therapy, which is used to reduce the risk of cancer recurrence [113].

5.6. MIR31HG

MIR31HG (also known as LOC554202) is another example of lncRNA whose inactivation promotes
the progression of BC, as well as of other types of cancer. MIR31HG maps on chromosome 9p21.3 [114]
and its locus spans more than 106 kb, although the final transcript is only 2246 bp long; exon 1 contains
a CpG island, and intron 1 harbors miR31 [115]. Interestingly, the regulation of this lncRNA depends on
the cancer type. The CpG island is responsible for gene expression control through DNA methylation
in triple-negative breast cancer (TNBC) cell lines [115]. It has also been shown that MIR31HG
is upregulated in breast cancer tissues compared with normal tissues and that higher MIR31HG
expression positively correlates with tumor size and staging. On the contrary, its knockdown via
siRNA reduces proliferation, migration, and invasion in breast cancer cell lines, with accumulation of
cells in the G0/G1 phase and loss of cells in S phase, and at the same time increases apoptosis [114].
The relationship between decreased expression of MIR31HG and development of BC suggests its role
as tumor-suppressor in bladder, and its expression levels in BC patients are negatively correlated with
advanced TNM (tumor-node-metastasis) stage [116]. Thus, MIR31HG is a new candidate biomarker
for patients with BC, although the molecular mechanism by which it is regulated in the bladder has
still to be elucidated.
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5.7. Linc-UBC1

Long intergenic non-coding RNA upregulated in bladder cancer 1 (linc-UBC1, approved
by Human Genome Organization (HUGO) Gene Nomenclature Committee (HGNC) symbol:
BLACAT1) is a lncRNA that is overexpressed in BC and was found to be over-expressed in about
60% of invasive BC tissue specimens; it was correlated with lymph node metastasis and poor
survival [117]. The gene maps at position 1q32.1 in a locus longer than 20 Kb, but its final
transcript is only 3 Kb long (a single exon); this transcript localizes mainly inside the nucleus [117].
RNA immunoprecipitation experiments revealed that linc-UBC1 interacts with two components of
the PRC2 complex; thus, this RNA probably functions, at least partially, by modulating the histone
methylation and chromatin structure, and consequently influencing gene expression [117].

5.8. LOC572558

LOC572558 (cytogenetic band of its gene: 9q13) has been recently identified in BC specimens [118]
and is one of the most deregulated lncRNA in BC; it can be considered an important tumor
suppressor, which regulates the p53 signaling pathway in BC by dephosphorylating AKT and MDM2
(mouse double minute 2 homolog) and phosphorylating TP53 protein. Available data show that it is
able to inhibit cell proliferation and motility; in fact, it can induce S phase arrest of the cell cycle and
promote apoptosis [119].

5.9. PANDAR

Promoter of CDKN1A antisense DNA damage-activated RNA (PANDAR) is a lncRNA that
regulates the expression of genes involved in the apoptotic response to DNA damage [120]; the coding
gene maps at position 6p21.2 and its transcript is approximately 1.5 Kb long. PANDAR is significantly
upregulated in BC tissues, compared with adjacent non-tumoral tissues; moreover, its high levels were
correlated with higher histological grade and advanced TNM stage. It was shown that, after silencing
PANDAR, cell proliferation and migration are inhibited, while apoptosis is induced [121]. Hung et al.
suggested that the DNA damage induces TP53-mediated transcription at the locus containing both
CDKN1A and PANDAR; this transcription mediates cell cycle arrest and inhibits NFYA (nuclear
transcription factor Y subunit alpha, a transcription factor involved in the activation of pro-apoptotic
genes) [120]. A recent report also shows the role of PANDAR in the stabilization of TP53 protein
without influencing the TP53 mRNA stability [122].

5.10. GHET1

Gastric carcinoma high expressed transcript 1 (GHET1), is a recently identified lncRNA, originally
isolated in patients affected by gastric carcinoma, where it is upregulated; the high expression levels of
this RNA are directly correlated with tumor size, tumor invasion and poor survival [123]. The gene
location is 7q36.1. GHET1 is upregulated in BC as well [124]; indeed, Li et al. showed its involvement
in the proliferation and invasion of BC cells in vitro and in the EMT of BC cell lines, and that its
upregulation is directly related with tumor status and size, but not with other variables such as age or
gender. They conclude that GHET1 contributes to the tumor progression and may be used as a novel
diagnostic BC marker.

5.11. ncRAN

Another recently discovered, upregulated lncRNA involved in BC formation is ncRAN
(non-coding RNA expressed in aggressive neuroblastoma) [125], a long ncRNA originally isolated in
patients affected by aggressive neuroblastoma [126]; its gene maps at position 17q25.1 and has two
similarly sized transcripts, whose lengths are 2.1 and 2.2 Kb, respectively. Both ncRAN transcripts are
significantly more expressed in invasive bladder tumor cell lines than in superficial tumor cell lines,
where they promote cell proliferation, migration, and invasion [125]. It is currently unknown if the two
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isoforms differ in some way with respect to cancer, including BC cases. Similarly, the targets of ncRAN
are currently unknown. Therefore, ncRAN, despite being a promising BC biomarker, is still considered
only a ‘potential’ oncogene and further research is needed to clarify its biological role [125].

5.12. GAS5

Growth arrest specific 5 (GAS5) is a gene mapping at position 1q25.1. The GAS5 primary transcript
(technically, a lncRNA) contains 12 exons in both man and mouse. However, these exons are poorly
conserved, and the specific search of putative polypeptides derived by alternative splicing has been
so far inconclusive [127,128]. Instead, its introns are highly conserved, and their analysis, comparing
human and mouse GAS5 sequences, revealed that they contain several small nucleolar RNA (snoRNA)
(that are small non-coding RNAs (sncRNA)) in the same number and order, i.e., 11 introns containing
nine conserved snoRNA arranged in the same way [127]. In 2013, Liu et al. demonstrated that,
in most BC samples, GAS5 transcription is significantly downregulated [129], as in breast cancer [130],
allowing classifying this gene as a tumor suppressor. Instead, GAS5 overexpression in proliferating
cells is sufficient to stop the cell division [129]. Interestingly, in the same paper it is reported that
Cyclin-dependent kinase 6 (CDK6) is specifically associated with GAS5, thus permitting assigning this
transcript to at least one target gene and a specific role in the BC formation.

5.13. ANRIL

Antisense non-coding RNA in the INK4 locus (ANRIL) is encoded by a gene that maps on
chromosome 9p21.3; two splicing forms are known, of 2.7 and 3.8 Kb. It was originally discovered by
searching EST (expressed sequence tag) databases in a region of chromosome 9, which is frequently
deleted in the melanoma-neural system tumor (NST) syndrome [131]. ANRIL seems to be ubiquitously
expressed in human tissues (in 20 tissues examined), at the same level and always together with
CDKN2A/INK4/ARF (cyclin-dependent kinase inhibitor 2A—inhibitor of CDK4—alternate reading
frame), whose genes map next to that of ANRIL and might be regulated by the same factors [131].
ANRIL is dysregulated in several cancers, including BC; in bladder, it regulates cell proliferation and
apoptosis through the intrinsic pathway, since its knockdown corresponds to decreased expression
of BCL-2, increased expressions of BAX (BCL2 Associated X), cytoplasmic cytochrome c and SMAC
(second mitochondria-derived activator of caspases), and cleavage of Caspase-9, Caspase-3 and PARP
(poly ADP ribose polymerase) [132].

5.14. HIF1A-AS2

Hypoxia inducible factor 1 alpha antisense RNA-2 (HIF1A-AS2) was originally discovered in
samples of human renal cancer; its gene maps on chromosome 14q23.2 and, reportedly, produces a
AU-rich transcript of 1577 nucleotides [133]. The 3’ 882 nucleotides of HIF1A-AS2 are completely
complementary to the 3’-UTR of HIF1A, which is transcribed in the opposite orientation, and indeed
its upregulation corresponds to a downregulation of HIF1A in a lymphocyte cell line under
hypoxia stress [133]. These results, which are cell line specific, were subsequently further validated
upon camptothecin treatment [134,135]. Recently, HIF1A-AS2 upregulation was found also in BC
samples, where its expression levels are positively associated with advanced clinical pathologic grade
and TNM stage [136].

5.15. HOTAIR and HOXD-AS1

HOX (homeobox) transcript antisense RNA (HOTAIR/HOXAS) belongs to a ncRNAs family,
identified in human fibroblast, which has roughly 200 HOX [137]. This RNA is transcribed from
a locus mapping on chromosome 12q13.13; it was described that the gene encodes a 2158 nt
long ncRNA whose function is to provide a modular scaffold for multiple histone modification
complexes [138]. Interestingly, its pattern of expression is position-dependent as it happens for the
HOX genes, i.e., HOTAIR is more expressed towards the posterior and distal sites in the adult human
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body [137]. Its depletion through RNA interference causes the upregulation of several HOX genes,
as well as several HOX ncRNA, and loss of the histone-3 trimethylation on lys27 over the HOXD locus;
the contemporary loss of SUZ12 (suppressor of zeste 12) in the same chromosome domain supports the
hypothesis that HOTAIR might regulate the polycomb repressive complex-2 (PRC2) localization and
HOXD silencing [137]. Dysregulation of HOTAIR has been linked to several cancer types, including
malignancies of the breast and of epithelial types, and is associated with more aggressive tumor
behaviors and metastasis formation [139]. Its connection with BC has been demonstrated recently:
in particular, its upregulation is a hallmark of recurrence in stage Ta/T1 [140] probably because of
its modulation of the cancer epigenome [141]. This possibility is further supported by the fact that
HOTAIR contributes to change the balance of histone modification between H3K4me3 and H3K27me3
on the miR-205 promoter, thus causing the silencing of miR-205, which in turn has a role in the
inhibition of cell proliferation, migration and invasion by direct targeting of the cyclin J (CCNJ) gene,
a regulator of cell cycle progression [142].

HOXD cluster antisense RNA 1 (HOXD-AS1, also known as HOXD antisense growth-associated
long non-coding RNA, HAGLR) belongs to the HOXD cluster on chromosome 2 (at position 2q31.1)
and has been recently associated to BC formation and progression; in particular, Li et al. demonstrated
that its synthetic tetracycline-controllable shRNA targeting is sufficient to inhibit the progression of
BC, although it is unclear how this happens [143].

5.16. MDC1-AS1

Mediator of DNA damage checkpoint protein 1 (MDC1) is a regulator of the intra-S phase and
G2/M cell cycle checkpoints whose role is recruiting DNA repair proteins to the site of damage.
It is involved in determining cell survival fate in association with tumor suppressor protein TP53.
Mediator of DNA damage checkpoint protein 1 antisense RNA 1 (MDC1-AS1, encoded at location
6p21.33) is the antisense transcript of the same gene. Xue et al. found that the expression levels of
MDC1-AS1 and MDC1 are both downregulated in BC and there is an inhibitory role of this antisense
RNA on the malignant cell behavior of EJ and T24 BC cell lines [144]. Interestingly, the same study
demonstrated that the over-expression of MDC1-AS1 promotes the upregulation of the MDC1 coding
gene both at RNA and protein levels, suggesting that MDC1-AS1 has an inhibitory role on BC cells
proliferation through its upregulation of the tumor suppressor gene MDC1. While this subject is still
under investigation, the easiest explanation found so far is that, in some way, this antisense RNA can
stabilize the MDC1 mRNA.

5.17. PCAT-1

Prostate Cancer Associated Transcript 1 (PCAT-1) was originally identified as a biomarker
of prostate cancer [145], but subsequently it was also found to be involved in the progression of
colorectal cancer [146]. This ncRNA transcript has two exons: exon 1 contains a retroviral long
terminal repeat (LTR) sequence derived from LTR78B, while exon two contains sequences from the
HSMAR1 mariner family transposase that, in turn, internally hosts an AluY repeat element. PCAT-1
maps in the 8q24 locus, which is frequently amplified in prostate cancer; however, it was shown that
PCAT-1 upregulation is not dependent on genomic amplification [145]. PCAT-1 is upregulated in BC
tissues compared to healthy controls, indicating its oncogenic role; moreover, its depletion by shRNA
(small hairpin RNA) treatment in T24 and 5637 BC cell lines causes cell growth arrest and induction of
apoptosis, suggesting that it is a possible BC therapeutic candidate [147].

5.18. PVT1

Plasmacytoma variant translocation (Pvt1) oncogene (PVT1) maps on chromosome 8q24.21,
a locus that is frequently involved in t(2;8) translocations that are present in some human Burkitt
lymphomas. PVT1 RNA and MYC protein expression correlate in several primary human tumors,
and a direct relationship between copy number of PVT1 and MYC copy-increase has been found in
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more than 98% of human cancers. On the contrary, the PVT1 downregulation in the MYC-driven
colon cancer cell line HCT116 reduced its tumorigenic potential, indicating a direct role of PVT1 in
controlling MYC abundance. [148]; instead, the PVT1 overexpression is independent of MYC, at least
in some cancers [149]. Similar studies were performed on BC samples as well, demonstrating that:
(i) in BC, PVT1 is upregulated; indeed, in BC cells this lncRNA is highly correlated with histological
grade and TNM stage. (ii) PVT1 silencing by shRNA inhibits the BC progression and promotes
apoptosis [150]. Since MYC protein is refractory to small-molecule inhibition, the dependence of high
MYC protein levels on PVT1 lncRNA suggests a promising way to therapeutically target this protein
in MYC-positive cancers.

5.19. SChLAP1

The gene of the SWI/SNF complex antagonist associated with prostate cancer 1 (SChLAP1)
maps on chromosome 2q31.3 and produces at least seven transcripts; however, more than 90% of
these transcripts only belong to four splicing variants of 1.7, 1.4, 1.3 and 1.1 kb. It was originally
isolated in aggressive prostate cancer, where its expression is in direct relationship with the metastasis
formation [151]. In the same study, it was reported that the SChLAP1 knockdown in prostate cancer
cell lines altered their gene expression profile in a way that was contrary to that of the SWI/SNF
chromatin-modifying complex. The authors supported this finding by showing that this ncRNA
coprecipitated with SMARCB1 (SWI/SNF related, matrix associated, actin dependent regulator
of chromatin, subfamily B, member 1), a subunit of the SWI/SNF complex and concluded that
SChLAP1 antagonizes the SWI/SNF function by attenuating the binding to its genomic targets.
Similar results were recently obtained in BC; however, the mechanisms of action of SChLAP1 still have
to be elucidated [152].

5.20. SPRY4-IT1

SPRY4 intronic transcript 1 (SPRY4-IT1) is harbored inside the second intron of the SPRY4 (sprouty
RTK signaling antagonist 4) gene (an inhibitor of the MAPK kinase signaling pathway); this gene
maps on chromosome 5q31.3. SPRY4-IT1, reportedly, is an unspliced, polyadenylated lncRNA with
708 nucleotides. It is not conserved among primates and, in normal human tissues, is most highly
expressed in placenta, kidney, and lung [153]. In melanoma patient samples, its overexpression
has been linked to cell proliferation, invasion and mobility; as expected, its knockdown causes
opposite cellular effects, thus allowing classifying it as a potential oncogene [153]. Analogous
results were obtained in other cellular systems, such as renal cancer, esophageal squamous cell
carcinoma and trophoblast cells. Zhao et al. described a similar scenario in urothelial carcinoma of the
bladder, where SPRY4-IT1 is overexpressed and significantly linked to histological grade, tumor stage,
lymph node metastasis and reduced overall survival [154].

5.21. ZEB2-AS1

ZEB2 (zinc finger E-box binding homeobox 2, whose gene maps at position 2q22.3)
is a transcriptional repressor of E-cadherin; it is upregulated after SNAI1-induced EMT.
However, SNAI1 does not affect the synthesis of ZEB2 mRNA, but prevents the processing of a
large intron located in its 5′-UTR region. ZEB2 Antisense RNA 1 (ZEB2-AS1, also named ZEB2 natural
antisense transcript, ZEB2NAT) is the lncRNA contained inside the ZEB2 locus and harbors an internal
ribosome entry site necessary for the expression of Zeb2. The expression of this antisense transcript
overlapping the 5′ splice site in the intron prevents the splicing of the ZEB2 5′-UTR and increases
the quantity of the ZEB2 protein; this outcome downregulates E-cadherin both at the mRNA and
protein levels [155]. In BC patient samples, the tumor invasiveness is driven by the TGFβ1 signaling
pathway that promotes the EMT through cancer-associated fibroblasts (a major component of the
cancer stroma); in this system, TGFβ1 is overexpressed in the presence of an upregulated ZEB2-AS1
(together with ZEB2) [156].
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5.22. T-UCR 8+

Approximately 480 sequences in the human genome show a 100% identity with orthologous
sequences in mice and rats, indicating that they went through a very strong negative selection for
300–400 million years; these regions are called ‘ultraconserved’ and some of them are transcribed
as ncRNA [157]. In many cases, the function of these ncRNA is still to be explained; some are
likely involved in splicing [158], others map next to transcriptional regulators or developmental
genes, suggesting a related role for them [159], others are probably connected with cell proliferation,
since they have copy number abnormalities in cancer tissues [160]. One of them has been linked to
BC, i.e., ultraconserved RNA 8+ (uc.8+), located within the intron 1 of CASZ1 (castor zinc finger 1,
encoding a zinc-finger transcription factor), although it is expressed independently of CASZ1 [56].
uc.8+ is the most upregulated T-UCR in BC tissues, but its expression is lower than in pericancerous
bladder tissues. uc.8+ downregulation significantly reduces cancer cell invasion, migration and
proliferation. Data available strongly suggest that uc.8+ is a natural trap for miR-596; as a result,
the action of uc.8+ would be to deplete the intracellular availability of this miR and induce the
upregulation of its targets, including MMP9 (matrix metalloprotease 9, involved in the degradation of
extracellular matrix molecules), thus promoting cell proliferation and migration [56].

5.23. NEAT1

Nuclear enriched abundant transcript 1 (NEAT1) is a polyadenylated, unspliced ncRNA,
which is abundantly transcribed in several cancers (bladder, lung, and breast) and promotes their
development and progression; the same locus also encodes a short noncoding RNA, TncRNA
(trophoblast-derived non-coding RNA), that originates from the 3’ end of NEAT1 and is exclusively
expressed in trophoblasts [71]. NEAT1 maps in the locus 11q13.1, less than 70 kb apart from MALAT1.
Recently, Qian et al. demonstrated that its action in BC is performed through miR-101 tumor suppressor
direct targeting that, successively, regulates EZH2 (enhancer of zeste homolog 2) function [161],
while Ke et al. reported that NEAT1 is required for BC cell survival through FUS (fused in sarcoma)
and miR-548 [162]. In an interesting recent article, it was described that: (i) NEAT1 is up-regulated in
BC tissues and cell lines; and (ii) the knock-down of this lncRNA inhibits cell proliferation, suppresses
cell migration and induces apoptosis in 5637, T24 and SW780 human BC cell lines [163].

5.24. Other lncRNA Deregulated in Bladder Cancer

For some BC-related lncRNA only preliminary evidence is available and/or data are clearly
incomplete, especially as for mechanisms of action and target identification. In this section, we briefly
mention cases that fall into this category.

Apoptosis-associated transcript in bladder cancer (AATBC, whose cytogenetic band is 21q22.3)
is overexpressed in BC and positively correlates with tumor grade and pT stage; its inhibition causes
cell proliferation arrest in G1 mediated by cyclin D1, CDK4, p18 and phosphorylated RB, as well as
apoptosis induction through the intrinsic pathway [164].

Additionally, the search of new lncRNA is currently exploiting the ‘omics’ sciences, by analyzing
the genome, the transcriptome, chromatin immunoprecipitation samples, etc. In this way, typically
thousands of molecules are analyzed with a single experiment and bioinformatics analyses can be
performed using the experimental output. Zhu et al. performed a microarray screening of lncRNAs in
four pairs of human BC and matched normal tissues [118]. They could identify 110 lncRNA that are
significantly (≥8 times) dysregulated in BC, and went on to validate by quantitative PCR (qPCR) four
possible candidates (TNXA, CTA-134P22.2, CTC-276P9.1 and KRT19P3; Table 2), for which additional
analyses are required to establish their role in this pathology. A similar approach has been used by
Chen et al., who found out that lncRNA-n336928 is upregulated in BC, being positively correlated with
BC grade and stage and negatively with patient survival [165]. Finally, Zhang et al. identified
lncRNA-UNMIBC (long non-coding RNA-Up-regulated in non-muscle invasive bladder cancer)
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through a microarray analysis of lncRNA expression in BC samples. This molecule is upregulated in
non-muscle invasive BC and the authors, through RNA and chromatin immunoprecipitation, showed
that it is physically associated with EZH2 and SUZ12 (which are core components of PRC2), leading to
an altered histone H3 lysine 27 methylation status of the target genes [166].

We conclude this paragraph by citing the articles of Peter et al. [167] and Wang et al. [168] as two
examples of the growing complexity of the research in the field of lncRNA and BC. Both groups
performed a genome-wide analysis of lncRNA differentially expressed in BC cells vs. normal
urothelium. In the first article, the expression of 17,112 lncRNA was evaluated through microarray
analysis; in this way, the authors identified 32 molecules potentially important in BC progression.
They focused on AB074278, which was picked for the following features: “(i) associated with
disease progression; (ii) upregulated in all urothelial cancer phenotypes [. . . ] (iii) had low predicted
protein-coding scores (thus likely to be a ncRNA); (iv) worse outcomes with high expression
(thus a potential oncogenic role); (v) also upregulated in urothelial cancer; and (vi) appeared of
particular interest as it was intronic (sense direction) to a protein coding host gene (sense to TANC2;
as were most validated ncRNAs in GENCODE) also upregulated in urothelial cancer (thus potentially
regulated by the lncRNA [. . . ])” [167]. Notably, while AB074278 met these requirements, still there is no
certainty in defining it as a ‘genuine’ upregulated lncRNA directly involved in the BC etiology and the
identified interactions need further validation, exemplifying the difficulties of the scientists working
in this field. As for the second paper [168], the authors examined the expression of 33,045 lncRNA
through microarray analysis, revealing 3419 lncRNA differentially expressed in BC, with fold changes
between 2 and 43 (1905 upregulated and 1514 downregulated). In addition, in this case, the identified
lncRNA candidates need further, specific validation to understand their potential diagnostic and
prognostic value in BC.

6. Small Non-Coding RNA

The definition of ‘small non-coding RNA’ includes many different, highly heterogeneous
molecules (Table 1). Among them, a pivotal role in BC etiology is played by a specific class of RNAs,
the microRNAs (also abbreviated in the literature as miRNA or miR). The study of miR is considered
a great opportunity to better understand some pathological mechanisms, especially those linked
to carcinogenesis. miR play important regulatory roles in animals and plants by targeting mRNAs
for cleavage or translational repression [169]. Interestingly, these non-coding RNAs partly explain
the (now obsolete) concept of ‘junk DNA’. After the completion of the human genome sequencing,
it was evident that only 2% of the human DNA encodes functional proteins; 50% to 75% of the
genome is transcribed, and 98% of the transcripts are not translated into proteins [170]. Non-coding
RNAs are transcribed from approximately 70% of the genomic regions that used to be considered
‘junk DNA’ [171], i.e., meaningless DNA regions (from a genetic point of view). A significant number
of miR are arranged in groups having an approximate length of 10 kb; this kind of organization is
usually referred as ‘miR cluster’. The miR of a cluster are usually co-expressed, because they are
under the control of a common promoter, and even share some target genes [172]. Moreover, miR also
have some level of functional redundancy, as shown by sequence comparison, which likely is a useful
backup system to protect normal cells from the malignant transformation [173].

As mentioned above, miR are usually ca. 22 nt long and their typical hairpin structure displays
complementary pairing with their target mRNA [174]; therefore, it has been proven that a single
sncRNA is able to target several mRNAs, usually by binding one of its ends or, in some cases, one of its
internal sequences [175]. This field of molecular biology is extensively investigated because of its
multiple implications for medicine (particularly medical oncology). In fact, the presence of miR
not only in tissues but also in extracellular fluids (blood, urine and cerebrospinal fluid) suggests
that these molecules can be used as informative biomarkers for the early diagnosis of diseases and
as diagnostic tools in general [176]. miR can be roughly divided in two broad groups, according
to the biological features and pathological mechanisms in which they are involved. miR which,
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upon upregulation, can be linked to a specific cancer are considered oncogenes; instead, miR whose
downregulation takes part in carcinogenesis, are considered tumor suppressors. Indeed, miR activity
in controlling gene expression, in cancer as well as in various other important diseases, makes them
ideal candidates for therapeutic applications. Notably, miR selective modulation through antisense
inhibition (for upregulated miR) or replacement (i.e., restoring a downregulated miR function by
providing an external source of miR, through a vector overexpressing the targeted miR or transfecting
a double-stranded miR) could significantly affect the prognosis of several diseases [177].

6.1. Micro-RNA and Bladder Cancer

The involvement of different miR in the pathogenesis of BC is the subject of ongoing
research. The goal is to clarify and exploit the use of miR as BC biomarkers, prognostic factors,
and therapeutic targets [178], as well as in other pathological conditions linked to their altered
expression. The list of miR that target genes involved in BC formation and development is
already quite long. In 2011, Zhu et al. [179] reported the results of an NGS analysis that allowed
identifying 226 differentially expressed miR in BC (182 upregulated and 44 downregulated);
of these, 104 upregulated and 20 downregulated sequences were specific for BC, while the
remaining were in common with other genitourinary malignancies (i.e., kidney and testicular
cancer). In addition, Chen et al. [180] found tens of altered miR in BC—33 upregulated and 41
downregulated—when compared with normal bladder epithelium. Zobolotneva et al. described,
through a systematic analysis of scientific reports, 95 differentially expressed miR, of which 48
were upregulated, 35 downregulated and 12 not clearly classifiable [181]. In another study [182],
the number of downregulated miR was 60, with 17 new potential miR identified. A recent meta-analysis
on 473 papers published between 2009 and 2016 shows that at least 118 miR were identified
multiple times in BC samples, or were detected in at least two out of three biological samples
(tissue, blood, urine); of these, 111 miR were found in BC clinical specimens, with 57 downregulated
or silenced, 51 overexpressed and the remaining cases contradictory [183]. Most likely these lists
will become longer in the next few years, because of the great research effort that this field is
producing. Indeed, through these investigations scientists hope to better understand the epigenetic
mechanisms, which contribute to bladder carcinogenesis and to plan effective and targeted therapies.
However, in most of these studies, only the deregulation of miR is considered, without any clue
about the miR role in BC etiology. A recent meta-analysis performed by searching the PubMed and
Google Scholar databases for publications ranging between 1990 and 2016 allowed identifying at
least 35 miR specifically associated with different pathways of cellular dedifferentiation, proliferation,
and progression of BC as well as of other cancers [184]. In this review, we have focused only on miR
with an established role in urothelium neoplastic transformation by means of at least one identified
target gene (Table 3) and have discussed only a few of them as prominent examples. However, since the
choices made by different Authors to characterize miR target genes are based on very heterogeneous
criteria, we have decided to collect all of them in this table as “proposed” targets. The role of these
miR as oncogenes or tumor suppressor, according to their expression, is summarized in Figure 1B.

Table 3. List of microRNA (miR) with an established role in BC and at least one recognized target gene.
miR are ordered according to their first digit, then second digit, and so on; notes are taken from the
OMIM database [59] and describe either the molecular or the cellular function of the target gene.

miR Regulation in BC Proposed Target Gene Notes on Target Gene Refs *

miR-1 Down

SRSF9/SRp30c Splicing, apoptosis [17,173]
TAGLN2 Neuronal protein [173]

LASP1 Oncogene [173]
PNP Purine nucleoside phosphorylase [173]

PTMA Hormone polypeptide precursor [173]



Genes 2017, 8, 339 17 of 34

Table 3. Cont.

miR Regulation in BC Proposed Target Gene Notes on Target Gene Refs *

miR-10 Up

RASSF1 Cell cycle inhibitor [181]
MAPK1 Cell growth, adhesion, survival, differentiation [181]

PKC Kinase [181]
GRB2 Growth factor-induced activation of RAS [181]

FGFR3 Cell cycle control; angiogenesis [181]
ATM DNA repair [181]

MDM2/4 Ubiquitin ligase targeting TP53 [181]

miR-10b Up HOXD10 Homeobox, transcription factor [173]
KLF4 Transcription factor [173]

miR-100 Down
FGFR3 Cell cycle control; angiogenesis [17]
MTOR Protein kinase [173]

miR-101 Down

PLCG Actin organization, cell migration [181]
FGFR3 Cell cycle control; angiogenesis [181]
EZH2 Histone methyltransferase [185]
COX2 Inflammation [173]
MET Oncogene, growth factor receptor [173]

VEGFC Growth factor [173]

miR-103 Up
MSK1 Kinase [181]
PKC Kinase [181]

FGFR3 Cell cycle control; angiogenesis [181]

miR-1182 Down TERT Telomerase [173]

miR-124-3p Down
ROK1/DDX52 Putative RNA helicase [173]

CDK4 Cyclin-dependent kinase [173]

miR-125 Down

RAF1 Kinase, oncogene [181]
KRAS Activation of mitosis [181]
FGFR3 Cell cycle control; angiogenesis [181]

CDKN2A Proliferation [181]
TP53 Proliferation, apoptosis, angiogenesis [181]

miR-125b Down
E2F3 Transcription factor [17,173]

MMP13 Matrix metalloproteinase [173]
SPHK1 Sphingosine kinase [173]

miR-128 Down VEGFC RAS regulator, growth factor [173]

miR-129 Down or up

GALNT1 Post-transcriptional glycosylation [17,173,185]
SOX4 Transcription factor [17,173,185]
SHC4 Acetylcholine receptor clustering [181]
PKC Kinase [181]

GRB2 Growth factor-induced activation of RAS [181]
MDM4 Ubiquitin ligase targeting TP53 [181]
ATM DNA repair [181]

miR-133a Down

EGFR Cell proliferation, differentiation, motility, survival [173]
FSCN1 Actin-bundling [173]
GSTP1 Detoxification [173]
LASP1 Oncogene [173]
PNP Purine nucleoside phosphorylase [173]

PTMA Hormone polypeptide precursor [173]
TAGLN2 Neuronal protein [173]

KRT Keratin [186]

miR-133b Down

AKT1 Protein kinase [173]
BCL2L2 Apoptosis [173]
EGFR Cell proliferation, differentiation, motility, survival [173]
KRT Keratin [186]

miR-135a Down FOXO1 Cell cycle regulation, apoptosis [173]

miR-138 Down ZEB2 Transcription repression [173]

miR-143 Down or up

ERK5/MAPK7 Kinase [17,185]
AKT Kinase [17,173,185]

PDGFB Growth factor [181]
PDGRFB Inorganic phosphate transporter [181]

PKC Kinase [181]
SOS1/2 Positive regulator of RAS [181]
KRAS Activation of mitosis [181]
RAF1 Kinase, oncogene [181]
ATM DNA repair [181]
TP53 Proliferation, apoptosis, angiogenesis [181]

SERPIN Serine proteinase inhibitors [173]
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Table 3. Cont.

miR Regulation in BC Proposed Target Gene Notes on Target Gene Refs *

miR-144-5p/3p Down

CCNE1 Cyclin [173]
CCNE2 Cyclin [173]

CDC25A Phosphatase, cell cycle [173]
PKMYT1 Membrane-associated cdc2-inhibitory kinase [173]

miR-145 Down

PKC Kinase [181]
FGFR3 Cell cycle control; angiogenesis [181]
CBFB Transcription factor [173]

CLINT1 Early and recycling endosomes [173]
FSCN1 Actin-bundling [173]

ILK Protein kinase [173]
PAK1 Protein kinase [173]

PPP3CA Protein phosphatase [173]
SERPIN1 Serine proteinase inhibitors [173]

SOCS7 Cell signaling, cytoskeleton [173]
IGF1R Growth factor receptor [173]

miR-150 Up PDCD4 Tumor suppressor [173]

miR-152 Up DNMT1 DNA methylation [185]

miR-155 Up

CASP3 Apoptosis [185]
TP53BP1 Apoptosis [185]
SOCS1 Cytokine response [185]
PTEN Tumor suppressor gene [185]

PDCD4 Tumor suppressor [185]
SHIP1 Cell differentiation [185]

DMTF1 Transcription factor [173]

miR-16 Down CCND1 Cyclin [173]

miR-182-5p Up RECK Tumor suppressor, cell shape [173,184]

SMAD4 Signal transduction of the transforming growth
Factor-beta [173,184]

miR-186 Down HMGN5 Nucleosome, transcription activation [173]

miR-1826 Down
CTNNB1 Wnt/beta-catenin regulator [17]

MEK1 RAS regulator [17]
VECFG RAS regulator, growth factor [17]

miR-19a Up PTEN Tumor suppressor gene [173]

miR-193a-3p Down
LOXL4 Extracellular matrix formation [173]
PSEN1 NOTCH receptor cleavage [173]
HOXC9 Homeobox, transcription factor [173]

miR-195 Down

CDK-4 Cyclin-dependent kinase [17,173]
RAF1 Kinase, oncogene [181]

MAP2K1/2 Kinase, cell growth [181]
MAPK1 Cell growth, adhesion, survival, differentiation [181]
SOS1/2 Positive regulator of RAS [181]
GRB2 Growth factor-induced activation of RAS [181]

FGFR3 Cell cycle control; angiogenesis [181]
BIRC5 Apoptosis [173]
CDC42 GTPase [173]
GLUT3 Glucose transporter [173]
WNT7A Cell signaling [173]

miR-200b/c Down or up

ERRFI-1 Regulator of EGFR [17,185]
ZEB1 Transcriptional repressor [17,184,185]

MMP16 Matrix metalloproteinase [173]
BMI1 Oncogene [173]
E2F3 Transcription factor [173]

miR-203 Down
BCL2L2 Apoptosis [173,185]
BIRC5 Apoptosis [173,185]

miR-205 Down

TP53 Proliferation, apoptosis, angiogenesis [17,185]
PTEN Tumor suppressor gene [17]

C-ERB-B-3 Receptor tyrosine kinase [17]
CDC42 GTPase [17]

YES Tyrosine kinase [17]
ZEB1/2 Transcription repression [184]
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Table 3. Cont.

miR Regulation in BC Proposed Target Gene Notes on Target Gene Refs *

miR-21 Up

TP53 Proliferation, apoptosis, angiogenesis [17]
TIMP3 Degradation of extracellular matrix [17]
BCL2 Apoptosis [17]
PTEN Tumor suppressor gene [17,185]
TPM1 Tumor suppressor gene [17]
MSH2 DNA repair [17]
E2F3 Transcription factor [17]
ATM DNA repair [181]

VEGFC Growth factor [185]
PDCD4 Tumor suppressor [185]
TPM1 Tumor suppressor [185]

miR-210 Up VEGF Growth factor [185]

miR-214 Down PDRG1 Oncogene [173,185]

miR-218 Down
BMI1 Oncogene [173]

LASP1 Oncogene [173]

miR-221 Down or up

TRAIL Apoptosis [17]
ATM DNA repair [181]

MDM2 Ubiquitin ligase targeting TP53 [181]
STMN1 Microtubule dynamics [173]

miR-222 Up PTEN Tumor suppressor gene [185]

miR-223 Up TP53 Proliferation, apoptosis, angiogenesis [181]

miR-224 Up SUFU Tumor suppressor [185]

miR-23a/b Up

MAPK1 Cell growth, adhesion, survival, differentiation [181]
FGFR3 Cell cycle control; angiogenesis [181]
EGFR Cell proliferation, differentiation, motility, survival [173]
MET Oncogene, growth factor receptor [173]
ZEB1 Transcription factor [173,184]

miR-24 Down
CARD10 Apoptosis [173]
FOXM1 Transcription factor [173]

miR-26a Down
HMGA1 Non-histone chromosomal protein [185]
PLOD2 Collagen crosslinking enzyme [187]

miR-27a Down
SLC7A11 Cystine/glutamate exchanger [173,185]
RUNX1 Transcription factor [173]

miR-27b Down
DROSHA miR biogenesis [173]

EGFR Cell proliferation, differentiation, motility, survival [173]
MET Oncogene, growth factor receptor [173]

miR-27a-3p Down EGFR Cell proliferation, differentiation, motility, survival [185]

miR-29a/b/c Down or up

PDGFRA Growth factor [181]
FGFR3 Cell cycle control; angiogenesis [181]
MCL1 Apoptosis [185]

DNMT3A/B DNA methyltransferase [185]
CDK6 Cyclin-dependent protein kinase [173]

miR-30a/c Down

PLCG Actin organization, cell migration [181]
MAPK1 Cell growth, adhesion, survival, differentiation [181]
PDGFA Growth factor [181]

ATM DNA repair [181]
TP53 Proliferation, apoptosis, angiogenesis [181]

NOTCH1 Cell signaling [173]

miR-31 Down FGFR3 Cell cycle control; angiogenesis [17,185]

miR-320a/c Down
ITGB3 Cell adhesion [173]
CDK6 Cyclin-dependent protein kinase [173]

miR-34a Down
NOTCH1 Cell signaling [173,185]

CD44 Cell adhesion [173]
HNF4G Nuclear receptor [173]

miR-424 Down EGFR Cell proliferation, differentiation, motility, survival [185]

mir-449a Down
CDK6 RB control [17]

CDC25a RB control [17,173]
TP130 RB control [17]

miR-485-5p Down HMGA2 Non-histone chromosomal proteins [173]

miR-490-5p Down FOS Oncogene, transcription factor [173]
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Table 3. Cont.

miR Regulation in BC Proposed Target Gene Notes on Target Gene Refs *

miR-493 Down
FZD4 Transmembrane receptor [17,173]
RhoC G protein [17,173]

miR-497 Down
BIRC5 Apoptosis [173]

WNT7A Cell signaling [173]

miR-574-3p Down MESDC1 Mesoderm development [173]

miR-576-3p Down CCND1 Cyclin [173]

miR-590-3p Down TFAM Mitochondrial transcription factor [173]

miR-7 Down
SHC1 Cell signaling [181]
PKC Kinase [181]

HOXB5 Homeobox, transcription factor [184]

miR-708 Up CASP2 Apoptosis [173]

miR-9 Up
CDH-1 Cell differentiation [185]
CBX7 Chromatin structure, transcription repression [173]

CERS2 Cell signaling [173]

miR-96 Down CDKN1A Proliferation [173]

miR-99a Down FGFR3 Cell cycle control; angiogenesis [17,173]

* To avoid a long list of articles, References (Refs) refer to recent and comprehensive reviews and one scientific
article about miR and BC. The reader can find more information in the shown bibliography. miR are reported using
the names found in the references and related original articles, thus reflecting different types of nomenclature used
in this field.

6.2. The FGFR3 Pathway

Two main genetic pathways predispose to bladder carcinogenesis, for which the altered expression
of miR is very important. Some miR, such as miR-99a, miR-100, miR-101, and miR-145, target the
FGFR3 pathway, determining gain-of-function mutations, which are mostly detected in NMIBC;
on the other hand, miR such as miR-21 and miR-373 cause loss-of-function mutations in the TP53
pathway, which are commonly found in MIBC [188].

The fibroblast growth factor (FGF) family of transmembrane tyrosine kinase receptors mediates
proliferation in response to FGF stimulation and has been implicated in the pathogenesis of
urothelial carcinoma: fibroblast growth factor receptor 3 (FGFR3) is frequently mutated or
overexpressed in NMIBC [189]. For this reason, FGFR3 represents a useful BC biomarker with
low malignant potential [190]. The evaluation of FGFR3 mutational status became relevant for human
diseases when specific point mutations were discovered in various autosomal dominant human
skeletal diseases, including achondroplasia, hypochondroplasia, thanatophoric dysplasia I and II,
and severe achondroplasia with developmental delay and acanthosis nigrans (SADDAN) (reviewed
in [191]). It was later shown that those mutations were also present in human bladder and cervix
carcinomas [192]. Further investigations showed that FGFR3 mutations occurred at a much higher rate
in BC than in other tumor types (e.g., cervix, multiple myeloma, gastrointestinal tract, prostate) [193].
Several miR are involved in the FGFR3 pathway linked to BC formation and development (Table 3).
For example, low levels of miR-100 were correlated with low-grade, non-invasive bladder urothelial
cancer, due to the upregulation of FGFR3, meaning that, under physiological conditions, miR-100
acts as a tumor suppressor [194]. Similar activities are carried out also by miR-31, whose decreased
expression has been described in the urothelial carcinoma of the bladder: miR-31 may contribute
to the BC progression and is associated with unfavorable prognosis, overall and progression-free
survival [195]. In addition, the downregulation of miR-99a leads to the upregulation of FGFR3,
yet it is most commonly linked to low-grade tumors and better outcome [196]. miR-34a negatively
regulates the cell cycle by reducing CCND1 (cyclin D1) and CDK4 (cyclin dependent kinase 4) levels;
its downregulation promotes a more aggressive behavior of FGFR3 in urothelial carcinoma cases [197].
Other miR regulate this pathway, by acting either directly or indirectly on FGFR3 [181], as illustrated
in Table 3; it is likely that the list of miR involved in the control of this gene will become longer in
the future.
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6.3. The TP53 Pathway

The other major genetic trigger, which can predispose to the formation and development of BC
is represented by the loss of function of Tumor Protein p53 (TP53). TP53 is a transcription factor
essential for the prevention of cancer formation in most human tissues. This gene encodes several
protein isoforms, whose study has had a profound impact on our understanding of TP53 activity [198].
TP53 is one of the most important tumor suppressor genes: it provides essential functions in the
cellular response to diverse stresses, safeguards the maintenance of genomic integrity and is a potent
inducer of apoptosis and senescence when expressed in tumor cells [199]. TP53 can induce cell cycle
arrest, DNA repair and, eventually, senescence and/or apoptosis; its mutations have been reported to
occur in almost every type of cancer at rates varying between 10% (e.g., in hematopoietic malignancies)
and almost 100% (e.g., in ovarian high-grade serous carcinoma) [200]. The frequency of molecular
changes of this gene is substantially higher in MIBC (43.4%) than in NMIBC (8.2%), and a strong
association exists between TP53 mutations and high tumor stage [201]. A computational analysis of
the TP53 amino acid sequence has shown that this protein has remarkable similarities with prions [202]
and experimental research has confirmed that amyloid formation can explain the negative dominance
and loss of function of cancer-associated mutant TP53 [203,204]. Additionally, the TP53 pathway
can be impaired by the action of several miR molecules, which may also induce loss-of-function
(Table 3). For example, miR-205 has an ambivalent behavior as for the neoplastic transformation:
indeed, it has many physiological and crucial roles, but its aberrant expression has been linked to
the formation of many malignancies. miR-205 can act either as a tumor suppressive or an oncogenic
miR, by regulating different cellular pathways such as those of cell survival, apoptosis, angiogenesis
and metastasis, depending on its target genes [205]. Indeed, miR-205 is potentially able to target at
the same time TP53, PTEN (Phosphatase and tensin homolog), c-erbB3 (a member of the epidermal
growth factor receptor family of receptor tyrosine kinases), CDC42 (a protein involved in the cell cycle
regulation), and YES (Yamaguchi sarcoma viral oncogene homolog) proto-oncogene 1 [206]. Therefore,
miR-205 is possibly involved in many biochemical processes, including carcinogenesis. miR-205 may
act as a diagnostic and prognostic BC marker, since it has been discovered that a mucosa with a normal
appearance may have molecular changes (that precede phenotypic changes) in the form of varied
expression of this molecule, besides other miR, such as miR-129 and miR-200a [184]. miR-21 targets
many genes that can be involved in the formation and development of cancer, including TP53 [207],
PTEN, TIMP3 (tissue inhibitor of metalloproteinase 3) (both inhibitors of the matrix metalloproteinases),
BCL-2 (regulator of apoptosis) [208], and many others; its overexpression is linked to loss of function
of TP53, which is most commonly observed in high-grade MIBC [209]. The overexpression of
miR-373 is also found in BC, due to its many functions that promote carcinogenesis, cell invasion and
metastasis [210]. Interestingly, miR-373 may act either as an oncogene or a tumor suppressor [210]
and indirectly impairs TP53 function. Finally, some proteins regulated by miR, such as TP53 [211],
the double-stranded RNA-specific endoribonuclease DROSHA and PTEN [212], are in turn able to
regulate miR expression (Table 3); thus, some components of the miR maturation machinery are
themselves under miR control in BC.

6.4. Other Molecular Pathways Causing miR-Mediated BC Formation

It is generally accepted that FGFR3 and TP53 alterations characterize alternative genetic
pathways in the pathogenesis of urothelial cell carcinoma and are hallmarks of specific BC types:
FGFR3 mutations are observed in 59% and TP53 overexpression in 25% of primary BC. These alterations
are almost mutually exclusive, since they overlap in only 5.7% of all tumors [213]; in addition,
15% of BC are normal with respect to both genes. However, it is well known that a single mutation
is not sufficient to induce the neoplastic transformation, and that several tens of genes and different
biochemical pathways are altered in BC samples at the same time, most of which have a direct role in
cell cycle regulation, apoptosis, angiogenesis, cell–cell interaction, DNA repair, chromatin structure,
gene expression, etc. [17]. As shown in Table 3, there are several miR that do not target neither FGFR3
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nor TP53, directly or indirectly [181], yet are deregulated in BC specimens; these data strongly suggest
that the deregulation of several genes at the same time is required for the neoplastic transformation of
the normal urothelium.

6.5. New Approaches for Assessing the miR-Mediated BC Formation

A peculiar point of view about the role played by miR in the formation and development of
BC is that, in some cases, it is more informative to evaluate the ratio between two miR than to
measure the total level of any single miR. For example, the miR-21:miR-205 expression ratio has the
ability to distinguish between invasive and non-invasive bladder tumors with high sensitivity and
specificity, and with the potential to identify superficial lesions that have a high risk of progression [206].
In another report, the ratio between miR-126 and miR-152 in the urine allowed the BC detection with a
sensitivity of 72% and specificity of 82% [214]. Finally, a recent report shows that the miR-182:miR-100
ratio in BC specimens may fulfill several diagnostic requirements. In BC, miR-182 is usually
upregulated, while miR-100 is downregulated. This ratio is associated with pT-stage, histological
grade, BC recurrence and presence of carcinoma in situ; when this ratio is high, it is significantly
correlated with shortened BC survival [215]. As a consequence, the miR-182:miR-100 ratio is a novel,
non-invasive, promising biomarker for the diagnosis and survival assessments of BC patients.

7. Other ncRNA Involved in BC Etiology

As previously described, the epigenetic etiology of BC mostly involves two main categories of
ncRNA, long ncRNA and miR. We conclude our review by mentioning a few other non-coding RNA
molecules that have been linked to this pathology.

7.1. Y RNA

Y RNA were originally identified as the RNA component of soluble ribonucleoproteins (RNPs)
named Ro RNPs. Four human Y RNAs have been identified: Y1, Y3, Y4 and Y5 (Y2 is a truncated
form of Y1). They have two recognized functions: repressors of Ro60 and other Ro proteins and
initiation factors for the DNA replication [216]. In 2008 Christov et al. [217] found that two human Y
RNA, namely hY1 and hY3, are significantly overexpressed in BC and several other tumors, and their
RNA interference (RNAi)-mediated degradation results in a significant cytostatic (but not cytotoxic)
effect in cell lines, probably by inducing a significant inhibition of chromosomal DNA replication in
cultured human cells. These data, coupled with the fact that short fragments of Y RNAs have recently
been identified as abundant components in the blood and tissues of humans and other mammals,
make this class of ncRNA a valuable potential tool not only for diagnostic purposes, but also as a
possible therapeutic target [218].

7.2. circRNA

Circular RNA (circRNA) are a class of RNA molecules that are covalently closed in a loop at the
3′ and 5′ ends. This peculiarity makes them more resistant than linear RNA to exonuclease-mediated
degradation; indeed, their half-life is estimated to be approximately 48 h or more, while linear mRNA
last on average 10 h [43]. circRNA can be generated via splicing from exons (exonic circRNA) or introns
(intronic circRNA); these two classes, as well as a third class, i.e., retained-intron circular RNA,
have distinct biogenesis patterns [219]. To date, their cellular role is still largely unknown. For some of
them, it has been shown a role as miR sponges, i.e., they are able to bind miR without being degraded,
thus preserving the mRNA target of the miR themselves [43]. In other cases, it has been proposed
a role for circRNA, especially exonic ones, in the regulation of transcription or translation by direct
targeting of the mRNA they come from, in such a way that their potential purposes are served through
their mechanism of formation, rather than as final biological molecules [43]. In addition, their role
as scaffold for the formation of RNA binding protein complexes cannot be ruled out [43]. Overall,
circRNA have been described as potential decoys that interfere with the destination and function of
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their molecular counterparts and that have relevance in several cancer types [220]. Studies of circRNA
in BC are still at the beginning, yet they are very promising. Zhong et al. demonstrated that at least
six circRNA are highly expressed in human BC samples; in particular, circTCF25 can upregulate
the levels of CDK6 by acting as a RNA sponge for miR-103a-3p and miR-107, thus promoting both
cell proliferation and metastasis formation [221]. Similarly, circRNA-MYLK (encoded inside the
myosin light chain kinase gene, MYLK) and circRNA-CTDP1 (mapping inside the gene encoding the
subunit 1 of the phosphatase of the C-terminal domain of RNA polymerase II subunit A, CTDP1)
can competitively bind miRNA-29a-3p and increase the expression of its target genes (DNMT3B,
DNA methyltransferase 3 Beta; VEGFA, vascular endothelial growth factor A; HAS3, hyaluronan
synthase 3; ITGB1, integrin subunit Beta 1), while circRNA-PC (inside the pyruvate carboxylase
gene) is a competitor of miR-185-3p, a miR that targets ADD1 (adducin 1) and BAP1 (breast cancer 1
associated Protein 1) [83,222].

8. Conclusions

In the last years, significant steps have been taken towards the understanding of the role of
epigenetics in human diseases in general, and cancer in particular. Far from being ‘junk DNA’, most of
the human genome that does not code for proteins is important for cell homeostasis. Part of this
genome is transcribed into RNA molecules of variable length, whose role in chromatin structure,
gene expression, cell cycle control and (co-)regulation of many important biological pathways is
currently investigated. RNA molecules with an altered expression in BC are many and, likely, their list
will become larger in the future; indeed, important tools to identify and quantify these molecules are
already available. We believe that the biggest challenges in this field will be precisely characterizing
the functions of these RNAs inside the cells and taking advantage of this new knowledge to improve
the health of BC patients.
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