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Abstract

Current treatment of glaucoma relies on administration of daily drops or eye surgery. A gene 

therapy approach to treat steroid-induced glaucoma would bring a resolution to millions of people 

worldwide that depend on glucocorticoid therapy for a myriad of inflammatory disorders. 

Previously, we had characterized a short-term Adh.GRE.MMP1 gene vector for the production of 

steroid-induced MMP1 in the trabecular meshwork and tested reduction of elevated intraocular 

pressure (IOP) in a sheep model. Here we conducted a trial transferring the same transgene 

cassette to a clinically safe vector (scAAV2), and extended the therapeutic outcome to longer 

periods of times. No evidence of ocular and/or systemic toxicity was observed. Viral genome 

distributions showed potential re-inducible vector DNAs in the trabecular meshwork (0.4 vg/cell) 

and negligible copies in six major internal organs (0.00002-0.005 vg/cell). Histological sections 

confirmed successful transduction of scAAV2.GFP to the trabecular meshwork. Optimization of 

the sheep steroid–induced hypertensive model revealed that topical ophthalmic drug difluprednate 

0.05% (durezol) induced the highest IOP elevation in the shortest time. This is the first efficacy/

toxicity study of a feasible gene therapy treatment of steroid-induced hypertension using clinically 

accepted scAAV vectors in a large animal model.

INTRODUCTION

Glucocorticoids, a class of steroid hormones, are potent immunosuppressants and the 

preferred treatment for many inflammatory disorders, including ocular inflammation. A 

wide segment of the worldwide population receives glucocorticoids treatments via various 

routes of administrations, such as oral, topical, systemic injection, inhalation, etc. 

Glucocorticoids have in addition, anti-angiogenic and anti-permeability properties and 

because of that, they are also being widely used in the eye for the treatment of retinal 

diseases, such as macular edema, age-related macular degeneration and diabetic 

retinopathy.
1
 However, glucocorticoids elicit significant secondary effects in the eye, 
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including the development of cataracts and elevated intraocular pressure (IOP).
2
 For 

instance, treatment of uveitis with glucocorticoid intravitreal implants results in elevated IOP 

in 78% of the patients, about half of them requiring IOP-lowering surgeries.
3
 Topically, 

ocular treatment with glucocorticoids produces a dose-dependent IOP increase in 30% to 

40% of the population,
4-6 and in 90% of patients with primary open angle glaucoma 

(POAG).
7,8 Steroid responsive individuals (termed “steroid responders”) are more likely to 

develop POAG than the non responder counterparts.
9
 The ocular hypertensive effect of 

glucocorticoids is also significantly greater in older age groups.
10

 Although it is reversed 

when the steroid treatment is stopped,
8,10

 this adverse effect of glucocorticoids continues to 

be a major impediment on the clinical management of eye diseases. Because of the essential 

need to use steroids for serious eye disorders, the search for a treatment to control steroid-

induced hypertension is of major importance for the eye.

Glaucoma is a complex optic neuropathy that, if left untreated, results in irreversible 

blindness. Glaucoma is currently the leading cause of irreversible blindness worldwide. It is 

estimated that by 2020 there will be 79.6 million cases of glaucoma
11

 which will increase to 

111.8 million by 2040.
12

 The disease is caused by the death of retinal ganglion cells (RGC) 

and degeneration of the optic nerve. It is well-established that elevated IOP is the main risk 

factor associated with the development of the disease.
13,14

 Physiological and/or elevated IOP 

is determined by the resistance offered to aqueous humor flow by the trabecular meshwork. 

The elevated IOP generated in the anterior segment is transmitted to the back of the eye 

where the sclera senses the pressure fluctuations and exerts a biomechanical strain on the 

optic nerve, contributing to the death of RGCs.
15,16

 The trabecular meshwork is a 

spongiform soft tissue, located at the angle formed by the iris and cornea, and is formed by 

different types of endothelial-like cells which use a variety of functions to regulate IOP. One 

of its most relevant functions is the one that controls extracellular matrix (ECM) 

composition and deposition levels, which has been shown to have a direct correlation with 

increased aqueous humor flow resistance and glaucoma.
17,18

In searching for mechanisms to understand and reduce the hypertensive outcome of 

glucocorticoids, their effects on the trabecular meshwork have been extensively studied. 

Dexamethasone decreases trabecular meshwork phagocytosis,
19

 increases ECM 

deposition, 
20-22

 and decreases expression of matrix metalloproteinase 1 (MMP1),
23,24

 all 

leading to the obstruction of the aqueous humor outflow pathway and to increased IOP. A 

treatment addressing these cellular and molecular adverse consequences could counteract the 

glucocorticoid’s elevated IOP effect. In particular, a long-term, regulated, gene therapy 

treatment could provide an attractive solution to the high number of people affected by the 

high IOP steroid response.

MMP1 is an interstitial collagenase and an integral component of the trabecular meshwork 

scaffold. MMP1 has been the subject of outflow facility studies.
25,26

 In the trabecular 

meshwork, MMP1 is downregulated by dexamethasone
23,24

 and upregulated by latanoprost, 

a commonly used glaucoma drug.
26-28

 Recently we have shown that a glucocorticoid 

inducible MMP1 adenoviral vector Adh.GRE.MMP1 delivered and secreted active MMP1 to 

the trabecular meshwork of human postmortem eyes placed on perfused anterior segment 

organ cultures.
29

 The vector contained a minimal promoter from the Herpes Simplex Virus 
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(HSV) thymidine kinase gene (pTAL) followed by the insertion of three tandem copies of 

glucocorticoid response elements (GRE) on the 5’ of the MMP1 cDNA.
29

 Active protein 

delivery was inducible by dexamethasone and remained silent once the steroid was removed 

from the cultures.
29

 Further, when the adenoviral inducible vector was injected into the 

anterior chamber of the eye in a sheep model of steroid-induced hypertension, it reduced and 

prevented elevated IOP for approximately 10 days.
30

In our quest to develop a potential clinical vector for the treatment of steroid-induced 

glaucoma, and taking into account the need for an extended on and off glucocorticoid 

treatment, here we investigate the same steroid-inducible MMP1 cassette under a safer, 

longer term delivery protocol. We also sought to confirm the effect on different types of 

sheep on site and to investigate newer glucocorticoids drugs. The vectors used in the first 

study, replication-deficient adenovirus vectors, have proven to be very efficient for 

trabecular meshwork delivery studies in vitro and in small and large animals.
31-34

 However, 

their short length of expression and their immune response precluded them for gene therapy 

based eye treatments. Instead, because of their long-term expression, low immunogenicity 

and success in clinical trials, adeno-associated vectors (AAV) have been the vectors of 

choice for gene therapy of the eye.
35,36

 Although AAV vectors are unable to transduce 

trabecular meshwork cells,
37

 our laboratory has shown that their lack of transduction was 

due to the inability of its cells to convert the viral single stranded DNA to double stranded, 

and as consequence, it was overridden by the use of self-complementary AAV (scAAV).
37,38 

In monkeys, a single intracameral dose of scAAV2.GFP conferred expression to the 

trabecular meshwork for over two years, with an early onset and a safe clinical profile.
37 

Thus, for this study, the same inducible MMP1 cassette was transferred to a scAAV2 viral 

backbone for the assay in a sheep steroid-induced hypertension model.

Animal models of steroid-induced hypertension have been traditionally difficult. The 

requirements of eye drops several times daily for several weeks, together with a response in 

only a given percentage of the animals, posed an important limitation.
39

 In small animals, 

such as rats, steroid eye drops to both eyes 4× at day resulted in significant elevation of IOP 

after 2-4 weeks.
40

 Likewise, mice dosed 4× a day showed IOP elevation beginning at 2 

weeks and continuing up to 7 weeks of continuous drops.
41

 Also in mice, surgical 

subcutaneous implantation of osmotic minipumps induced 30% IOP elevation by 3 weeks 

requiring 20-32 animals to reach significance.
42

 In large animals, non-human primates 

trained to receive the steroid 4× a day for 4 weeks showed significant IOP elevation starting 

at 1 week. Interestingly, the IOP increase response occurred only in 40% of the monkeys, 

similarly to the response seen in the ophthalmology clinic.
43

 Instead, sheep exhibit 100% 

response to steroids and thus have been identified as a good animal species for a steroid-

induced ocular hypertension model.
44

 In addition, because of their docile nature, uncaged 

upkeep and easy handling, steroid treatment and IOP evaluations can be conducted on awake 

animals. Their lower cost than monkeys adds to the advantages of the sheep as a large 

animal model.

Integrating all the past findings together, in this study we investigated the possibility of 

developing a potential clinical treatment of steroid glaucoma using the sheep model and 

scAAV2 vectors. No scAAV vectors had been previously tested for a long-term IOP 
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reduction on a steroid-induced hypertensive animal. This is also the first study of a systemic 

biodistribution of viral particles (VP) after injection of scAAV2 into the anterior chamber of 

the sheep or any other large animal.

Results

Large animal clinical model of steroid-induced glaucoma

Eyes (n=20) in a total of 10 sheep, ages 7 months to 3 years, breeds Katahdin and Corriedale 

were used in this study. As a first approach to evaluate the therapeutic effect of MMP1 on 

steroid-induced elevated IOP, we searched for the optimal steroid-induced model in sheep. 

We compared three types of steroids and three routes of administration, all of which are 

currently used in the clinic for the treatment of ocular diseases. Difluprednate 0.05% 

(Durezol) and Prednisolone acetate 1% (Pred Forte) were administered topically as 0.05 ml 

eye drops three times daily during working hours (8:00 am, 1:00 pm and 4:00 pm) for the 

duration of the experiment. Triamcinolone acetonide 4% (Kenalog-40) was administered as 

single 1 ml injections either to the periocular sub-tenon or intraocular vitreous 

compartments. Pressures were taken one to two times per week. All measurement values 

from each week were averaged and reported as IOP average per week. Eyes used for 

controls were treated with PBS and IOPs assessed at the same time points. Comparison of 

the effects of steroid types and routes of administration on the sheep IOP with time are 

summarized in Figure 1.

The durezol treatment was conducted in a group of n=11 eyes belonging to seven sheep. The 

average baseline value on these eyes was 13.8 ± 0.7 mmHg. We found that the IOP elevation 

effect of durezol occurred very fast and was significantly different from baseline at all time 

points. Two days after the initial dose, IOPs raised 5.6 mmHg, to an average of 19.4 ± 1.1 

mmHg (P = 0.0004). After one week, pressures raised to 20.6 ± 0.4 mmHg (P = 2 × 10−7) 

and further reached 23.0 ± 1.1 mmHg at the end of the second week (P = 5 × 10−7). Three 

and four weeks from the first topical administration, IOP values continued to show a slight 

increase and achieved 23.7 ± 0.8 mmHg (P = 7 × 10−7) and 24.0 ± 0.0 mmHg (P = 5 × 10−7) 

respectively (Figure 1a). At the same time points, eyes treated with PBS drops (n = 4 eyes) 

had IOPs of 13.3 ± 0.5 mmHg (baseline), 12.0 ± 0.0 mmHg (day 2), 12.8 ± 0.4 mmHg 

(week 1), 13.7 ± 0.3 mmHg (week 2), 13.0 ± 1.0 mmHg (week 3) and 12.3 ± 1.2 mmHg 

(week 4) (Figure 1a). At every time point, PBS IOP values were not significantly different 

than those of their own baseline (P = 0.5 to 0.8). Figure 1b shows similar IOP results from a 

representative single sheep whose right eye (OD) was treated with PBS while the left eye 

(OS) was treated with durezol for almost 2 weeks and then stopped. Comparing IOPs from 

both eyes of the same sheep (n=3) also revealed that the steroid did not have any 

contralateral effect.

Although with a positive response, three other steroids’ administration resulted in a lower 

IOP elevation and somewhat more variable response among each of the sheep. Thus, 

treatment with 1% prednisolone (n=6 eyes) was elevated to 15.5 ± 0.6 mmHg at 4 days over 

a baseline of 13.8 ± 0.5 mmHg and (P = 0.09). Eye drops were stopped at 16 days and 

values returned to baseline 24 hours after that time. Administration of kenalog via sub-tenon 

injection (n=2) induced a moderate, albeit significant elevation of IOP at the end of 3 weeks, 
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reaching 17.4 ± 0.4 mmHg over 12.5 ± 0.3 mmHg of their own baseline (P = 2 × 10−9) 

(Figure 1c). When kenalog was injected intravitreally (n = 4) the IOP response was higher, 

reaching 15.8 ± 0.8 mmHg at 3 weeks and 19.6 ± 1.4 mmHg at 4 weeks over their own 

baseline of 12.3 ± 0.4 mmHg (P = 2 × 10−4 and 2 × 10−6 respectively) (Figure 1d).

Altogether, there results indicate that administration of durezol induces the fastest, higher 

and uniformly sustainable steroid-induced elevated IOP and would thus serve as a good 

model for this type of glaucoma in a large animal. Response to the steroid was 100%, with 

highly significant elevation of 6.8 mmHg after one week and 10.2 mmHg after four weeks. 

IOP values after durezol administration exhibited less variability among the eyes. Neither 

age nor breed had a significant effect on the IOP response to durezol. For example, at the 

end of the first week, old Katahdin sheep (n = 5 eyes) exhibited an IOP increase of 21.0 

± 0.6 mmHg over a baseline of 15.2 ± 1.0, while young Katahdin (n = 3) exhibited an IOP 

increase of 19.3 ± 1.2 mmHg over a baseline of 11.7 ± 0.3 (P between old and young = 

0.16). Similarly, old Corriedale sheep (n = 3 eyes) exhibited an IOP increase of 19.8 ± 0.8 

mmHg over a baseline of 14.0 ± 1.2, while old Katahdin exhibited an IOP increase of 21.0 

± 0.6 mmHg over a baseline of 15.2 ± 1.0 (P between Corriedale and Katahdin = 0.2).

Selection of viral vector and combinatory elements

We generated a glucocorticoid inducible scAAV2 vector where the full human MMP1 cDNA 

with Kozak sequences was driven by a 148 bp TATA-like region from the HSV thymidine 

kinase promoter (PTAL),
45

 commonly used for the assay of transcriptional enhancers. The 45 

bp glucocorticoid response element (GRE) used here contained two directs and one inverse 

repeat in between (repeat sequence: GGTACATTTTGTTCT) inserted in a BglII site 

upstream of the PTAL element. Upstream of the GRE, the vector contains a 153 bp synthetic 

transcription blocker composed of polyA and transcription pause sites for reducing 

background.
46

 The cassette contained a 33 bp MCS in between the transcription blocker and 

the GRE, and a 247 bp SV40 polyA signal at the 3’ end. This cassette was isolated from an 

adenovirus shuttle vector (pMG17)
29

 and inserted into a the pHpa-trs-SK plasmid
47 

containing the adeno-associated vector (AAV) wild-type and mutated- terminal repeats and 

an additional 196 bp bovine growth hormone (BGH) polyA signal (pMG21). This vector 

comprising an entire transgene expression cassette of 2,249 bp (Figure 2) was used for the 

generation of the self-complementary vector serotype 2 (scAAV2.GRE.MMP1). 

Characterization of the steroid inducibility of the enzyme MMP1 was conducted in vitro by 

infecting primary human trabecular meshwork (HTM) cells with the viral vector and 

analysis of MMP1 expression by TaqMan real time RT-PCR. Addition of 10−7 M 

dexamethasone to the HTM cells induced expression of MMP1 478-fold after 4 days.

Single dose of scAAV2.GRE.MMP1 reduces steroid-induced elevated IOP long-term

To investigate whether a single dose of the inducible MMP1 viral vector was able to 

specifically reduce the steroid-induced elevated IOP long-term, a series of complementary 

experiments were performed in a total of 10 sheep (7-36 months of age) with scAAV2 

viruses, which are known to transduce the trabecular meshwork in vivo for at least 2 years.
38 

At different times after steroid-induced elevation (from 4 to 17 days), sheep eyes were 

injected into the anterior chamber with 0.3-1 ×1011 viral genomes (vg) (maximum 100 µl 
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volume) of either scAAV2.GRE.MMP1 (treated group), scAAV2.GFP, or left uninjected 

(control groups). One sheep received adenoviral vectors. Reduction of steroid-induced IOP 

of the treated versus the control was observed in all sheep that received the MMP1-carrying 

vectors. Results are summarized in Figures 3 and 4.

After baselines measurements, the first set, pre-control eyes (n=4) and pre-viral treated (n=4) 

received topical durezol 3× a day to obtain elevation of IOP, which was assigned as time 

zero (T=0). All eyes exhibited IOP increases. In the pre-control group IOP rise was from 

14.2 ± 1.4 mmHg (baseline) to 21.5 ± 0.9 (P = 0.005) and in the pre-viral treated group it 

went from 13.0 ± 1.0 mmHg (baseline) to 21.5 ± 1.3 (P = 0.005). At this time (T=0), eyes 

from one group were injected with the scAAV2.GRE.MMP1 therapeutic vector (treated) 

while the eyes from the second group were left naïve (control). Durezol dosing continued in 

the eyes of both groups to the end of the experiment. Pressures in the control group stayed 

high with values of 21.5 ± 1.0, 25.0 ± 1.5 and 24.0 ± 0.5 mmHg after 1, 2 and 3 weeks 

respectively. Pressures in the viral-treated group were significantly reduced with values of 

18.3 ± 0.3, 16.0 ± 1.5 and 15.4 ± 1.3 mmHg at the same time points (P = 0.002, 5 × 10−8, 

and 1 × 10−10 respectively) (Figure 3).

Additional experiments under different steroids and routes of administration confirmed the 

finding. In one sheep, where topical durezol was stopped after attaining the high response 

and after viral injections (Figure 4a), the scAAV2.GFP-injected control eye IOPs went from 

23.3 ± 0.9 mmHg at T=0 to 20.7 ± 0.3 mmHg after 1 week. In contrast, the therapeutic 

MMP1-treated contralateral eyes IOPs went from 22.7 ± 0.3 mmHg at T=0 to 13.3 ± 0.3 

mmHg at 1 week (viral-treated vs control P = 0.0001) (Figure 4a). In this sheep, 2 weeks 

after stopping the durezol, eyes returned to near baseline in the control eye (17.5 mmHg 

from 16.3 mmHg baseline) or to lower than baseline in the MMP1-treated eye (12.0 mmHg 

from 14.0 mmHg baseline) (Figure 4a). This result indicates that, while in the control eye 

the durezol effect was lasting over two weeks, the MMP1 transgene was able to cause a 

rapid decrease to baseline as soon as one week, and probably earlier.

In another sheep, where pressure elevation in both eyes was induced by intravitreal 

injections of kenalog followed by a viral injection in one eye (Figure 4b), the non viral-

treated, control eye maintained the elevated IOP (24.7 ± 0.9 mmHg) at 2.6 weeks post-

steroid elevation (23.0 ± 0.6 mmHg). At the same time points, the IOP of the contralateral, 

scAAV2.GRE.MMP1-injected eye, was reduced from 23.0 ± 0.9 to 14.0 ± 0.6 mmHg 

(treated vs control P = 0.0001) (Figure 4b). In this animal, IOP reduction was observed at 

0.6 weeks and become significant at 1.2 weeks (treated vs control P = 0.008) (Figure 4b).

The effect of the therapeutic vector in reducing the elevated IOP induced by sub-tenon 

injection of kenalog was tested in an additional sheep with the short-term adenoviral vectors, 

AdhGRE.MMP1 therapeutic and Ad.GFP control (Figure 4c). The post-steroid IOP 

elevation by this route of administration was lower, reaching 18.0 ± 0.5 and 16.8 ± 0.4 

mmHg in the pre-control and pre-viral treated. In the control eye, IOP was maintained to 

18.5 ± 0.4 mmHg at 6 days post-Ad.GFP injection, while in the contralateral MMP1-treated 

eye (AdhGRE.MMP1), IOP was reduced from 16.8 ± 0.4 mm Hg to 14.8 ± 0.3 mmHg at the 

same time period (treated vs control P =4E-5) (Figure 4c). The IOP reduction effect was 
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more pronounced at three days post-viral injection but started to wear off after that time 

(Figure 4c).

Effects on IOP of the control vectors, both the long- and the short-term ones were tested in 

one sheep (Figure 4d). Neither scAAV2.GFP (OD, right eye) nor Ad.GFP (OS, left eye) 

induced IOP changes from baseline at 1 and 2 weeks post-injection. The IOPs of the 

scAAV2.GFP-injected eye were 10.7 ± 0.5 mmHg at baseline and 11.7 ± 0.2 and 11.3 ± 0.7 

mmHg at 1 and 2 weeks respectively (P = 0.1 and 0.7 respectively). The IOPs of the 

Ad.GFP-injected eye were 13.3 ± 0.3 mmHg at baseline and 12.8 ± 0.5 and 11.0 ± 1.0 

mmHg at 1 and 2 weeks respectively (P = 0.5 and 0.2 respectively). (Figure 4d).

All together, these studies demonstrate that the transgene human MMP1 cDNA, delivered by 

scAAV2 gene therapy vectors, is able to counteract the elevated pressure induced by steroids 

in the sheep eyes. Single treatment with the virus also prevented IOP elevation despite 

continuing steroid administration. This efficacy is extended to all steroids and all routes of 

administrations studied. Likewise, the effect is observed in young and older animals, and in 

all the breeds studied. The effect of a single dose lasted for at least 3 weeks, which was the 

last time point studied.

Toxicity effects: clinical signs and histopathology

No adverse clinical signs were observed in the eyes of any of the sheep during the 

experiments. No redness or tearing occurred, and cornea and lens remained clear. No 

formation of cataracts was observed. The morphology of the outflow pathway area was 

assessed by light microscopy in paraffin embedded quadrants of the anterior segment 

sectioned on the meridional plane. Five µm sections from a total of 15 blocks (naïve, durezol 

and durezol/ MMP1-treated eyes) were analyzed. We first observed that the outflow pathway 

area of the sheep eye exhibited a unique shape. The trabecular meshwork tissue is 

meridionally wider than in most described species. It crosses the angle and extends 

inferiorly deep into the iris root, which is thinner to make space for this part of the 

meshwork. The tissue appears to have a more reticular configuration than the higher defined 

beam structure observed in humans, but areas reminiscent of the classical three layers of this 

tissue are distinguishable. The area underneath the Schlemm’s canal appears to be compact, 

while the corresponding trabecular meshwork area shows the appearance of some beams and 

wide spaces in between which become more prominent in the corresponding uveal layer. 

The Schlemm’s canal is present and occasionally looked fragmented (Figure 5, top row). In 

contrast, the outflow pathway of the sheep eye administered topically with durezol looked 

very different. The angle remained open but the intercellular spaces in all layers of the 

trabecular meshwork appeared obstructed due to the expected deposition of excessive 

extracellular material. The whole area looked significantly more compact (Figure 5, middle 

row). After intracameral injections of the therapeutic vector scAAV2.GRE.MMP1, the 

outflow pathway reverted to a morphology which was closer to the naïve animal trabecular 

meshwork. The intercellular spaces became more open as in what could be an indication of 

clearing of the ECM by the action of MMP1. The overall architecture, and the opened 

Schlemm’s canal was preserved. Results from this morphology study provide an 

explanation, and nicely agree with the physiological IOP results obtained above. After the 
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administration of the steroid, an obstructed outflow pathway would lead to an increase 

aqueous humor flow resistance and elevated IOP (Figures 5 and 1), while clearance of the 

extracellular material by the extra levels of delivered MMP1 will allow aqueous humor to 

flow freely and the eye to return to physiological pressure.

Viral genome distribution

Distribution of human MMP1 viral DNA vg in the sheep internal organ tissues after the 

single intracameral injection was analyzed by quantitative TaqMan PCR on six major organs 

(brain, heart, kidney, liver, lung and spleen) from three sheep, where one of the two eyes was 

injected with 8 ×1010 VP of scAAV2.GRE.MMP1 while the contralateral eye was naïve or 

injected with PBS. Tissues were also collected from the different compartments of the eye: 

trabecular meshwork, iris/ciliary body, cornea, and retina. Tissues were collected at necropsy 

at 12, 22 and 30 days post-injection respectively, and stored at −80ºC until use. For the 

genomic DNA (gDNA) determination, standard curves were obtained with sheep 

commercial gDNA (Zyagen, San Diego, CAL, USA) and the single copy human RPPH1 

(Applied Biosystems / Thermo Fisher Scientific, Waltham, MA, USA) probe. Because of the 

reduced homology between the sheep and human genomes, sheep DNA concentrations 

(NanoDrop ND-100 spectrophotometer, Thermo Fisher) were previously adjusted to obtain 

CT values between 26 and 36, which corresponded to concentrations between 180-0.3 ng/µl 

(R square ≥ 0.98). All CT values from each of the sheep gDNA experimental samples fell 

inside the standard curve. For the determination of the number of vg in the sample, the same 

volume from the same tube used for the gDNA determination was hybridized to the 

transgene human MMP1 cDNA TaqMan probe (Applied Biosystems/ Thermo Fisher). The 

standard curve for the vg was obtained with the purified plasmid vector DNA (pMG21) 

adjusted to detect from 68,000 to 6.8 plasmid copies which yielded CT values between 22 to 

37 (R square ≥ 0.98). Results were expressed in vg/ cell. The results of a representative 

sheep shown in Figure 6a-left indicate that negligible to no viral genomes per cell were 

found in the major organs of the three sheep at all time-points after viral injection.

Determination of vg in four main eye tissues was conducted in four sheep also at harvesting. 

Figure 6a-right shows eye tissues results from the same sheep shown in Figure 6a-left. Since 

eyes were injected intracamerally (diagram in Figure 6b-left), the posterior segment (retina) 

showed negligible vg copy numbers/ cell. Likewise, as expected, the anterior segment tissues 

showed detectable number of vg. The highest number was observed in the target outflow 

tissue, the trabecular meshwork, and ranged from 0.4 ± 0.01 vg/ cell (Figure 6a right) to 5.2 

± 0.10 /cell. The iris and cornea tissue values were about ten times lower with ranges of 

0.025 ± 0.0002 (Figure 6a right) to 0.85 ± 0.02 and 0.016 ± 0.002 (Figure 6a-right) to 0.03 

± 0.002 vg/ cell, respectively. Together these results indicate that no detectable viral DNA 

spread to unwanted parts of the body after intracameral injection, while a small amount of 

these genomes are able to persist in the targeted trabecular meshwork tissue.

Fluorescent microscopy of one sheep eye injected with 1×1011 vg of scAAV2.GFP revealed 

intense fluorescence only in the cells of the trabecular meshwork region, confirming the 

targeting of the virus (Figure 6b-right).
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Discussion

Clinical management of steroid induced hypertension requires close monitoring of IOP 

elevations and the concomitant use of glaucoma drugs and/or surgery.
48

 In some cases, it 

requires cessation of the treatment.
48

 Although all steroid administrations have been shown 

to lead to steroid-induced glaucoma, the recent popular use of triamcinolone acetonide 

intravitreal injections for macular edema and choroidal neovascularization has resulted in a 

higher incidence of steroid-induced hypertensive cases,
49,50

 all of them with limited 

treatment possibilities.
51

 A gene therapeutic approach, based on molecular findings of the 

recent years would offer new options for the management of the disease.

Of the several gene targets that could have been selected for the treatment of steroid-induced 

glaucoma, the gene encoding the MMP1 enzyme proved to be a successful one. In our 

original studies, we showed that MMP1 was highly efficient in reducing steroid-induced 

ECM accumulation and the subsequent obstruction of the trabecular meshwork outflow 

pathway leading to elevated IOP.
29

 In there, adenoviral MMP1 vectors, designed to be 

inducible only in the presence of the steroid, demonstrated their molecular and functional 

properties in vitro and in perfused human organ cultures,
29

 and reduced IOP in a steroid 

sheep model at the University of Corrientes (Argentina).
30,44

 To continue towards the 

development of a potential gene therapy treatment in humans, here we investigated the 

feasibility of establishing the sheep model on site, the induction of elevated IOP by different 

steroids and routes, the efficacy of the inducible MMP1 cassette long-term in a scAAV2 

vector, and the systemic distribution of the viral particle after delivery to the eye.

The use of small animals such as rodents to study steroid glaucoma can provide useful 

molecular information about mechanisms. However the development of a human treatment 

for steroid glaucoma would require large animals whose size, structures, and 

pharmacokinetics would mimic better that of humans. Of the current large animals available 

for eye research, only cow and sheep appeared to be amenable for the study of steroid-

induced hypertension. There was just some moderate IOP response in cats,
52

 and dogs, and 

in these, only in those dogs with inherited glaucomatous
53

 (reviewed in
39

). In the non-

human primate, which is the favorite species for glaucoma studies, the glucocorticoid 

response occurs in just 40% of the animals,
43

 while in the cow and sheep the response is 

100%.
44,54

 Of the two, sheep are logistically the easiest animal to keep, because of their 

docile nature, easy training and because of being able to conduct IOP evaluations in non-

sedated animals. The current study using sheep from local North Carolina farmers showed 

no significant difference among the breed or the age of the sheep. The ten sheep used here 

were from the Katahdin and Corriedale breeds and range from 7 months to 3 years of age. 

We did find a difference, though, on the response to different type of steroids and among the 

route of administrations used.

The majority of steroid induced studies in the literature have used dexamethasone (either 

0.1% topical 
40,41,43,51

 or 4% systemic 
42,55

) or prednisolone at 0.5%.
44

 In our studies, 1% 

prednisolone induced elevated IOP at a later time and lower level than it did in the Argentina 

sheep model.
30,44

 Instead, the newer topical steroid drug durezol resulted in a rapid and 

consistently higher response, with significant average IOP elevation of 5.6 mmHg after 2-4 
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days. Neither topical prednisolone, nor periocular sub-tenon, nor intravitreal kenalog 

injections induced a similarly high IOPs at an early time. The durezol findings in sheep 

appear to correlate with results reported in an uveitis treatment clinical trial where durezol 

IOP elevation response was high and early even in patients considered to be no responders to 

prednisolone.
56

 In such study, response was higher in children than in adults, while we saw 

no difference between the young and older sheep in our study. The durezol induced IOP 

response increased with time, reaching average elevations of 9.2 mmHg at 2 weeks and 10.2 

mmHg at 4 weeks, when the experiment was terminated. In our sheep, kenalog intraocular 

injections induced also elevated IOP albeit at a slower rate, and to a lower end point. The 

sub-tenon route, in contrast to the quick and high response of the Argentine model,
30 

induced an elevation of only 5 mmHg after 3 weeks. The intravitreal route exhibited a 

significant, although small elevation of 1.5 mmHg at 2 weeks and reached 7.3 mmHg at 4 

weeks. Results from a recent 4-years clinical trial at 75 sites on intravitreal triamcinolone 

have reported a mean 34-52 days from time of injection to IOP increases larger than 10 

mmHg,
57

 which coincides quite well with the result in sheep. In addition, and consistent 

with what it has been reported for prednisolone administrations on the sheep,
44

 and with a 

chart’s review study on steroid treated patients,
58

 we did not observe any steroid effect in the 

contralateral eye using durezol. Altogether, these findings plus logistics associated with the 

experimental procedure, including daily maintenance costs, place the sheep durezol model 

as the preferable translational model for steroid-induced gene therapy experiments.

We previously reported in vivo short efficacy of the inducible MMP1 cassette carried in 

adenoviral vectors.
30

 While adenoviruses contribute to demonstrate proof of principle, they 

do not provide the same stable transduction and lack of toxicity than AAVs. Here, the 

inducible MMP1 transgene inserted in the scAAV2 vector resulted in a reduction of the 

steroid-induced IOP in every sheep treated. After a single dose injection of the therapeutic 

vector, the reduction occurred very quickly and was maintained for at least four weeks, when 

the experiment was terminated. Although we showed efficacy, in this study we did not 

examine amounts of transgene MMP1 RNA in the trabecular meshwork. However, a 

qualitative positive transduction was indirectly assessed by the presence of the GFP 

fluorescence in the sheep trabecular meshwork of an eye injected with the same viral 

serotype carrying the reporter protein. At the present time we don’t know for how much 

longer we could obtain efficacy with a single dose, but based on our published reports 

looking at a reporter GFP in monkeys,
38

 one would expect to last for at least two years. For 

this study, we used the higher dose allowed by the titer of the virus, that is, we injected the 

maximum volume allowed into the small anterior chamber compartment. That translated 

into using 0.3-1 × 1011 vg per dose. Having seen efficacy, dosing studies will follow to 

determine the minimal effective dose.

Together these results suggest that a gene therapy approach for the treatment of this 

crippling secondary effect would result in a much more effective treatment than the use of 

daily conventional glaucoma drugs, which suffers from the serious compliance issue of the 

older population. The on and off switch inserted in the MMP1 cassette will additionally 

protect the trabecular meshwork from an excessive thinning of the ECM when the steroid is 

not present and ECM build up is not occurring. At the same time, the presence of the switch 

would allow a sole administration to protect the individual from future high IOP responses 
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resulting from future steroid treatments. We have shown that this on and off cycle occurs in 

vitro.
29

 Experiments that would test the latency in the sheep are in progress.

A literature review of the steroid-induced elevated IOP shows that the IOP elevation seen in 

the clinic appears to peak quite higher than the peak ΔIOP observed on the sheep. In 

patients, ΔIOP ranges have been reported to be from 10 mmHg to up to greater than 30 

mmHg
57

 while the maximum ΔIOP observed here in sheep was 13 mmHg. We do not know 

whether, when encountered with a higher clinical IOP response, MMP1 would be able to 

reduce the same absolute mmHg values observed here or, as also seen in the sheep, to reduce 

the pressure to closer to baseline. In any case, when the treatment is safe, a 20-30% 

reduction target is quite desirable and the possibility of higher reduction would be an added 

benefit.

Existing and completed clinical trials using AAV viral vectors have established the long-

term safety of ocular gene therapy approach.
36

 In this study we performed gross clinical 

examination of the eye. Eyes were monitored for signs of inflammation, redness, tearing, 

visual cues and formation of cataracts. No adverse signs were observed and lenses appeared 

clear at euthanization. Neither the topical administration of the steroid, the intracameral 

injection or the therapeutic viral vector caused apparent toxicity. After the steroid treatment, 

the histopathology of the trabecular meshwork showed a thickening of the ECM compared 

to the naïve eye, which agrees with the numerous reports stating increase of ECM deposition 

after exposure to glucocorticoids.
20-22

 We then observed a less dense ECM after the delivery 

of the MMP1 enzyme, a morphology which appeared to practically revert to the naïve state. 

We also observed a more reticular morphology of the trabecular meshwork region than the 

more beam-like structure seen in humans and primates and which is similar to the one 

observed in bovine.
21,59

 We see a Schlemm’s canal, which appears to be more elongated 

than the outflow loops described as a Schlemm’s canal substitute in the bovine.
21 

Interestingly, we observed that the trabecular meshwork of sheep extends inferiorly and 

seems to occupy an area of the iris root. This morphology had been also observed, albeit not 

described, in angle photographs of the fresh bovine eyes,
60

 and by personal communication 

(Lütjen-Drecoll). The aqueous humor route of outflow does not seem though to be using the 

iris-extended trabecular meshwork region. Our data showing fluorescence of a scAAV2.GFP 

reporter virus injected in the anterior chamber in vivo, which would be indicative of the 

aqueous humor outflow pathway, shows that the lower trabecular meshwork-iris region is 

not transduced. This could be an indication that this region of the trabecular meshwork has 

no part on the filtering function of the tissue and that all outflow occurs only through the 

“classical” trabecular meshwork site, located at the angle above the iris. Additional 

experiments would need to be conducted though, to further elucidate whether this 

observation could be due to other reasons such as that the virus is not able to transduce the 

lower region.

The systemic biodistribution of the viral particles which were injected into the anterior 

chamber is a key toxicity parameter to determine the safety of the system and thus the 

feasibility of taking the treatment to the clinic setting. The aqueous humor leaves the eye 

through the trabecular meshwork/ Schlemm’s canal and drains into the systemic circulation 

going through, the aqueous veins, episcleral veins, superior ophthalmic vein and superior 
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vena cava, to the heart. We conducted biodistribution studies not only in the heart but in 

lung, liver, spleen, kidney and brain. To calculate the number of viral genomes per cell, we 

developed a protocol using a human MMP1 cDNA probe to quantify the number of viral 

genomes, and a conserved human single copy gene RPPH probe to quantify the number of 

sheep cells in the analyzed sample. Validations were carefully conducted, selecting exon-

spanning (MMP1) and single-exon (RPPH) probes, performing standards curves with the 

MMP1 original plasmid vector, with commercial sheep DNA, and running all reactions at 

the same CT thresholds. Results showed negligible to none viral genomes within the major 

internal six organs collected at euthanasia 22 days after intracameral injection. Inside the 

eye, that is, at the local site of injection, the individually analyzed anterior segment tissues 

were able to retain small number of viral molecules, in particular, the trabecular meshwork. 

This finding would be of great advantage for the planned steroid treatment proposed here. 

Since the MMP1 is only transcribed in the presence of the steroid, a number of silent 

particles remaining inside the trabecular meshwork would be innocuous under standard 

conditions, and could re-start producing the therapeutic transgene in the event of a next 

occurrence of steroid treatment. Our studies thus corroborated the safety of the intraocular 

AAV vectors,
61

 and reinforce the concept that the availability of a clinically safe proven 

steroid-inducible expression vector would meet requirements to address the adverse ocular 

effects of steroid treatment of patients

MATERIALS AND METHODS

Experimental Animals

All animal procedures were approved by the Institutional Animal Care and Use Committee 

at the University of North Carolina and were conducted in accordance with the tenets of the 

declaration of Helsinki and the Association for Research in Vision and Ophthalmology 

(ARVO) statement on the Use of Animals in Ophthalmic Research. Ten healthy (female) 

sheep (Katahdin and Corriedale breed) between 7 and 36 months of age, and weighing 35 to 

80 kg each, were selected from local farms in the eastern region of USA, for this study. The 

sheep and their eyes were examined to be in good health and tested negative for Q-fever 

upon arrival. Sheep were tagged for individual identification on their ear lobes and kept 

uncaged, allowing them to room freely in a temperature-controlled 140 square feet animal 

room, under 12 h light cycling (7 am to 7 pm). Groups of 2 or 3 sheep were used at all times 

and provided with food and water at libitum. The room was equipped with a showing rail 

containing a head rest (Vittetoe, Inc, Keota, IA) and custom-adjusted to have just one animal 

at a time (Figure 7). The room also counted with enrichment toys to enhance the life of the 

animals. Sheep were adjusted during the first week of arrival with daily petting and training 

to enter the show rail. Animals were very gentle and non-threatening. After each non-

invasive procedure (drops instillation or IOP measurements), sheep were rewarded with 

raisins which they eat out of the operators hand.

Measurement of IOP on Conscious Sheep with the Handheld Tonometer

For the IOP measurements, sheep were guided to the rail one at a time, heads placed on the 

head rest and gently restrained by two loose chains around the neck and snout. This 

arrangement allowed one person to secured the sheep from behind and gently hold the eye 
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lids opened, while the second operator measured the IOP from both sides outside the rail 

(Figure 7). IOPs measurements were conducted by the use of the TonoVet rebound 

tonometer (Colonial Medical Supply, Franconia, NH) positioning the visual axis horizontal 

to the probe and following manufacturer’s recommendations. Before the IOP measurement, 

2 drops of topical 0.5% tetracaine (Bausch & Lomb, Tampa, FL) were instilled. Three sets 

of five measurements were taken on each eye. Only mean values with a SD (expressed as 

percentage of the mean) less than 5% were accepted. All IOP measurements were taken 

between 1 pm and 3 pm every 2-3 days. The whole operation took between 5 to 10 min. 

Baseline IOPs from each eye were taken at one week post-arrival, and two to three times at 

several days before any treatment. Values were averaged and taken as related to the baseline 

of the given eye.

Administration of Steroids

Steroids drops were topically applied by a single operator after guiding the sheep to the rail 

or to the rail corner of the room, secure them from behind and gently opening their eye lids. 

Two to three days after determination of baseline IOPs, two drops of 1% prednisolone 

acetate ophthalmic suspension (Pred Forte, Alcon Laboratories Fort Worth, TX) or two 

drops of 0.05% difluprednate ophthalmic emulsion (Durezol, Alcon Laboratories) were 

topically instilled three times daily at 8 am, 12 pm and 5 pm Monday to Friday and for the 

durations indicated in each of the experiments. In some experiments, the steroid was 

administered to both eyes; in others, only one eye received the steroid.

Ocular hypertension was also induced by periocular injection into the sub-tenon space. After 

topical instillation of two drops of tetracaine 0.5% (Bausch and Lomb), a single 1-ml 

injection of sterile triamcinolone acetonide (Kenalog, 40 mg/mL or 4%; Bristol-Myers 

Squibb, Princeton, NJ) was injected into the sub-tenon space, 5 mm from the limbus using a 

30-G, ½ inch needle.

For intravitreal injections of the triamcinolone, sheep were anesthetized with an 

intramuscular injection of a ketamine/xylazine (Butler Schein, Columbus, OH) cocktail to 

achieve a concentration of 3.5 mg/kg (ketamine) 0.6 mg/kg (xylazine) respectively. 

Occasionally, sheep received a buster of 2 mg/ kg ketamine. A 100 µl of the steroid 

suspension was loaded into a 100 µl 710LT Hamilton syringe (Hamilton, Reno, NV, #80601) 

equipped with a 30 G, ½ inch needle. The needle was inserted at 5 mm posterior from 

limbus at an 80ºC angle towards the posterior pole. Once inside, an assistant pushed slowly 

the plunger to deliver the steroid into the vitreous compartment of the eye.

Construction of the viral vector scAAV2.GRE.MMP1

The three recombinant plasmids used for the generation of the scAAV2.GRE.MMP1 virus 

were: pXX6-80, carrying the adenoviral helper function genes 
62

, pXX2, carrying the AAV 

virus rep and cap genes to confer serotype 2 
62

, and pMG21, containing the AAV terminal 

repeats and the transgene expression cassette encoding a steroid-inducible human matrix 

metalloproteinase 1 (MMP1). Plasmids pXX6-80 and pXX2 were obtained from the 

University of North Carolina (UNC) Vector Core facility (http://genetherapy.unc.edu/

services.htm) and pMG21 was generated in our laboratory.

Borrás et al. Page 13

Gene Ther. Author manuscript; available in PMC 2016 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://genetherapy.unc.edu/services.htm
http://genetherapy.unc.edu/services.htm


Plasmid pMG21 was derived from pMG17, which has been described.
29

 Plasmid pMG17, 

containing a transcription blocker, GRE sequences, a TATA-like PTAL minimal promoter, a 

human MMP1 cDNA and a SV40 polyA, was linearized with NotI, blunted and further 

digested with SalI (Figure 2). The plasmid vector backbone was pHpa-trs-SK,
47

 which 

contains one wild-type and one-deleted AAV terminal repeat to allow the generation of a 

double stranded AAV (scAAV) upon co-infection of HEK293 cells with pXX2 and 

pXX6-80. This plasmid was provided by the UNC Gene Therapy center.

To make pMG21, the 2,054 bp gel purified 5’-Not1.blunt/ Sal1-3’ fragment from pMG17 

was inserted into the pHpa-trs-SK vector backbone fragment obtained by gel purification of 

a 4,177 bp 5’-KpnI.blunt/ Sal1-3’ fragment DNA. Thus, the resulting pMG21 (6,231 bp) 

contains one wild type and one deleted terminal repeats, the inducible MMP1 expression 

cassette and an additional polyA site from the cloning vector (Figure 2). Triple transfection 

with pXX6-80, pXX2 and pMG21 for the generation of the recombinant virus serotype 2, 

scAAV2.GRE.MMP1, was conducted at the UNC Vector Core as previously described.
62 

Viral preparations used in this study had, for controls: 1×1012 vg/ml (scAAV2.GFP) and 

1.6×1012 vg/ml (Ad.GFP), and for the transgene: 2.4×1011 vg/ml (AdhGRE.MMP1) and 

2.5×1011 vg/ml and 7.6×1011 vg/ml (scAAV2.GRE.MMP1).

Intraocular Administration of Recombinant Viral Vectors

Sheep were anesthetized with a ketamine/ xylazine cocktail as indicated above for the 

intravitreal injection of kenalog. While resting on its side on the surgical table, the 

correspondent sheep eye was facing upward and placed under a KL 1500 LCD light source 

(Zeiss, Peabody, MA). The corneas were anesthetized with one drop of 0.5% tetracaine 

(Bausch and Lomb). Up to 100 µl of the viral vector solution was loaded into a 710LT 

Hamilton syringe with a 30-G, ½ inch needle. For the intracameral vector delivery, the 

needle was inserted through the superior cornea a few mms anterior to the limbus, with the 

bevel up to gently reach the center of the anterior chamber. Once inside, the sample was 

delivered by the assistant over 30 seconds and fluid entrance monitored by direct 

visualization. Because of the size of the eye, the injections were performed with the use of 

GL4, 2.5 magnification × 340 mm working distance loupes (Ted Pella, Redding CA) without 

the need of the ophthalmic microscope. The needle was left in place for 1 to 2 min and 

gradually withdrawn to minimize leaking. Topical antibiotic ointment (neomycin 3.5 mg/g, 

polymyxin B 10,000U/g, and bacitracin 400 U/g; Akorn, Lake Forest, IL) was placed on the 

eye, and animals were returned to the pen and kept with their head propped up until recovery 

(between 15 to 30 min).

Histology and Fluorescence Histochemistry

Eyes were enucleated immediately after euthanasia and immersed in fresh 4% 

paraformaldehyde (PFA) for 30 min. Eyes were subsequently dissected above the equator, 

the lens removed and wedge shape specimens containing the trabecular meshwork were 

post-fixed to assess morphology and green fluorescent protein (GFP). For morphology, 

tissue wedges were immersed in 4% PFA/ 2.5% glutaraldehyde/ 0.1M cacodylic acid, pH7.3 

at 4ºC overnight. Specimens were then rinsed in distilled water for 10 min and transferred to 

70% ethanol for delivery to the UNC Histology Core facility for paraffin embedding. 
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Meridional sections 5 μm sections were mounted on microscope slides (Superfrost Plus, 

Thermo Fisher Scientific) and stained with hematoxylin and eosin.

To evaluate GFP fluorescence, tissue wedges were post-immersed in fresh PFA for 4-18 h, 

then consecutively immerse in 10% sucrose (6 hours) and 30% sucrose overnight and 

embedded in Optimal Cutting Temperature (OCT) compound (Tissue-Tek; Sakura Finetek, 

Torrance, Cal). Frozen meridional 10 μm sections were mounted on Superfrost Plus 

microscope slides with Fluoromount G (SouthernBiotech, Birmingham, AL) and GFP 

visualized on a fluorescence microscope (model 1X71, Olympus, Center Valley, PA). Images 

were captured with a digital camera (DP70, Olympus) and accompanying software.

Tissue harvesting, DNA extraction, Quantitative TaqMan PCR and Biodistribution

Animals were anesthetized with a ketamine/ xylazine cocktail (3.5 mg/kg and 0.6 mg/kg 

respectively) and euthanized by overdose of sodium pentobarbital. To assess biodistribution 

of the human MMP1 viral particles, major organ tissue samples (brain, heart, kidney, liver, 

lung and spleen) were collected from three sheep. Likewise, relevant eye tissues (cornea, 

iris, retina, and trabecular meshwork) were dissected from both eyes of four sheep. Tissue 

DNA was purified using a DNeasy tissue kit (Qiagen, Valencia, CAL). Equal aliquots from 

each extracted sample were used to quantify gDNA and vg. Taqman PCR reactions were 

performed in duplicate in a total of 20 μl using 10 μl of either Taqman or Taqman Fast 2× 

universal PCR master mixes (Applied Biosystems/ Thermo Fisher), 1 µl of the 

corresponding probe and 1 to 9 μl aliquots of template experimental sample. Non-template 

controls were run in parallel. Quantifications were performed by TaqMan real time PCR in a 

StepOnePlus instrument (Applied Biosystems/ Thermo Fisher). For the gDNA, samples 

were hybridized to a single copy human RPPH1 single-exon probe (AB, Hs03297761_s1) 

and quantified against a standard curve of RPPH1 with commercial sheep DNA (Zyagen). 

For the vg, samples were hybridized to a human exon-spanning MMP1 cDNA probe 

(Applied Biosystems, Hs0023958_m1) and quantified against a standard curve of hMMP1 

with the plasmid DNA which carried the transgene (pMG17, Figure 2) and had been used 

for the generation of the viral vectors. To allow comparisons among runs, all RPPH1 runs 

were analyzed at a CT at threshold of 0.4 and all MMP1 runs were analyzed at a CT at 

threshold of 0.18. Data is reported as the number of double-stranded vector DNA molecules 

per diploid cell. Amount of sheep genomic DNA (1.7 × 1012 MW) is calculated to be of 168 

ng/ cell.

Data Analysis

Averages values are expressed as mean ± SE. The significance of experimental changes was 

analyzed using Student’s t-test as either paired or unpaired data. For the calculation of P 
values, all technical replicates from all biological replicates were used. The difference was 

considered statistically significant when P-value was < 0.05.
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Figure 1. 
Sheep model of steroid-induced elevated Intraocular Pressure (IOP). Different steroid drugs 

and routes of administration. (a) Durezol (difluprednate 0.05%) and PBS control were 

administered as eye drops 3× daily (n=11 and n=4 eyes respectively). IOP was elevated in all 

durezol-treated eyes and reached 40.6% at 2 days, and 73.9% at 4 weeks (last point). IOP 

from PBS-treated eyes stayed at baseline. (b) a representative sheep was administered with 

durezol in the OS and with PBS in the contralateral OD, same regimen as in A. IOP was 

elevated only in the steroid-treated OS. (c) Kenalog (triamcinolone acetonide 4%) was 

administered by Sub-Tenon injection (n=2). IOP was elevated in both treated eyes and 

reached 21.6% at 1 week and 39.2% at 3 weeks (last point). (d) Kenalog was administered 

by intravitreal injection (n=4). IOP was elevated in two eyes and reached 28.0% at 2 weeks 

and 59.3% at 4 weeks (last point). *: P < 0.0004. OD: right eye, OS: left eye. Eye topical 

administration of Durezol induces the fastest and higher ocular hypertensive response in 

sheep.
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Figure 2. 
Simplified cloning strategy and regulatory elements of plasmid pMG21 used to generate the 

scAAV2.GRE.MMP1 virus. TR, terminal repeat; TB, transcription blocker; MCS, multiple 

cloning site; GRE, glucocorticoid response element; PTAL, HSV thymidine kinase 

promoter; MMP1, human matrix metalloproteinase cDNA; SV40pA & BGHpA, termination 

signals, pMG17, adenovirus shuttle
29

 and pHpa-trs-SK, terminal repeat containing 

plasmid.
47

 pMG21 was co-transfected with pXX6-80 and pXX262 to generate the 

therapeutic virus.
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Figure 3. 
Single intracameral dose of scAAV2.GRE.MMP1 reduced durezol-induced hypertension in 

sheep. After baseline readings, sheep eyes (n=8) were treated topically with durezol 3× a 

day to induce elevated IOP (T=0). Four of the eyes were intracamerally injected with 0.3-1 × 

1011 scAAV2.GRE.MMP1 viral particles (blue bars). The other four eyes were left 

uninjected (grey bars). Durezol administration continued after T0 in all eyes for 3 weeks. 

The ΔP-IOP of viral-treated eyes was reduced from 8.5 mmHg (durezol-T0 minus baseline) 

to 5.3 mmHg (durezol-virus minus baseline) (37.6%) at 1 week, and from 8.5 mmHg 

(durezol T0 minus baseline) to 2.4 mmHg (durezol-virus minus baseline) (71.8%) at 3 

weeks. *: P < 0.0005. Viral injected eyes showed reduction of elevated IOP and continued to 

prevent hypertension for the 3 weeks duration of the experiment.
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Figure 4. 
scAAV2.GRE.MMP1’s reduction of IOP is extended to other regimens. (a) when using 

topical durezol to raise the IOP and removing the steroid at post-viral injection, the MMP1-

virus lowered the ΔP surge from 8.7 mmHg (durezol-T0 minus baseline) to less than 

baseline levels (MMP1-virus minus baseline = −0.7 mmHg) in 1 week. At the same time-

point, the ΔP on the control GFP-virus went from 7.4 mmHg to 4.4 mmHg. The effect of the 

durezol slowly declined and began to disappear at two weeks. (b) when using intravitreal 

(IVT) kenalog injection to raise the IOP, the MMP1-virus reduced the ΔP surge from 10.3 

mmHg (kenalog IVT-T0 minus baseline) to 4.6 mmHg (MMP1-virus minus baseline) (55%) 

in 1.3 weeks. At the same time-point, the ΔP on the control non-virus eyes stayed the same 

(ΔP 12.5 mmHg) (0%). At 2.6 weeks, the ΔP in the MMP-1 virus was reduced to 1.8 mmHg 

(82.5% reduction) while that of the control was reduced just to 10.8 mmHg (13.6%). (c) 
when using Sub-Tenon (S-T) kenalog injection, an AdhGRE.MMP1 virus reduction of ΔP 

was short-lived. At 3 days, it went from ΔP 4.6 mmHg to lower than baseline (ΔP −2.0 

mmHg) but the lowering effect started to wear off at 6 days. The control, Ad.GFP did not 

result in any ΔP reduction. (d) both control viruses, (scAAV2.GFP and Ad.GFP) were 

innocuous in normal eyes. *: P < 0.008. OD: right eye, OS: left eye. MMP-1 carrying 
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viruses reduced the steroid-induced pressure under all steroid and route of administrations 

tried.
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Figure 5. 
Morphology of the sheep’s trabecular meshwork after steroid and viral transgene treatments. 

Representative 5 µm light microscopy meridional sections from paraffin embedded sheep 

eye angle tissue, stained with hematoxylin and eosin. (a. Naive) sheep eye dosed 3× a day 

with PBS for 28 days. The trabecular meshwork in sheep is meridionally wider than in other 

animal species and extends inferiorly to the iris root. Although with some reticular 

appearance, traditional layers are distinguishable. Schlemm’s canal is present and 

occasionally looks fragmented. (b. Durezol) sheep eye dosed 3× a day with durezol for 25 

days. Angle is opened and there is a considerable increase of extracellular material 

deposition in all layers. (c. Durezol + scAAV2.GRE.MMP1) sheep eye dosed with durezol 

3× a day for 30 days. Viral vector was injected at day 9. Architecture is preserved, 

Schlemm’s canal is open, and intercellular spaces are cleared from the increased ECM 

deposition. Original magnification 40× (left), 100× (middle), 200× (right). TM: trabecular 

meshwork, SC: Schlemm’s canal, S: sclera, I: iris. Morphology of the steroid-treated 

trabecular meshwork reverts to that of PBS treated after therapeutic vector injection.
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Figure 6. 
Distribution of the MMP1 vector genomes per cell (vg/cell) in tissues collected at the 

termination of the study. (a) major organs (left) and eye tissues (right) DNA from a 

representative sheep injected intracamerally in one eye with 8 × 1010 VP of the MMP1-

vvirus. Taqman probes were single-exon human RPPH (gDNA) and exon-spanning human 

MMP1 cDNA (viral genomes). Lower limit of the vg/cell is calculated based on the minimal 

detection of the TaqMan run (0.8 vg) (b) (left): diagram of the anterior segment of the eye 

showing delivery site and flow direction and drainage of the aqueous humor (right): 10 µm 

meridional cryosection of the trabecular meshwork from a sheep eye injected intracamerally 

with 1 ×1011 VP scAAV2.GFP. TM: trabecular meshwork; I: iris
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Figure 7. 
Composite image of the sheep experimental set up. Sheep are kept uncaged and gently 

guided to the show rail for IOP measurements. IOP is obtained non-invasively in awake 

sheep by the use of a Tono-Vet.
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