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Functional brain network (FBN) has been becoming an increasingly important way to

model the statistical dependence among neural time courses of brain, and provides

effective imaging biomarkers for diagnosis of some neurological or psychological

disorders. Currently, Pearson’s Correlation (PC) is the simplest and most widely-used

method in constructing FBNs. Despite its advantages in statistical meaning and

calculated performance, the PC tends to result in a FBN with dense connections.

Therefore, in practice, the PC-based FBN needs to be sparsified by removing weak

(potential noisy) connections. However, such a scheme depends on a hard-threshold

without enough flexibility. Different from this traditional strategy, in this paper, we propose

a new approach for estimating FBNs by remodeling PC as an optimization problem,

which provides a way to incorporate biological/physical priors into the FBNs. In particular,

we introduce an L1-norm regularizer into the optimization model for obtaining a sparse

solution. Compared with the hard-threshold scheme, the proposed framework gives an

elegant mathematical formulation for sparsifying PC-based networks. More importantly, it

provides a platform to encode other biological/physical priors into the PC-based FBNs.

To further illustrate the flexibility of the proposed method, we extend the model to a

weighted counterpart for learning both sparse and scale-free networks, and then conduct

experiments to identify autism spectrum disorders (ASD) from normal controls (NC) based

on the constructed FBNs. Consequently, we achieved an 81.52% classification accuracy

which outperforms the baseline and state-of-the-art methods.

Keywords: functional brain network, functional magnetic resonance imaging, Pearson’s correlation, sparse

representation, scale-free, autism spectrum disorder

INTRODUCTION

Autism spectrum disorder (ASD) is a neural developmental syndrome defined by the defect in
social reciprocity, restricted communication, and repetitive behaviors (Lord et al., 2000; Frith
and Happé, 2005; Baio, 2014; Wee et al., 2016). The prevalence rate of ASD is fast growing in
the worldwide. According to the report supported by the USA Centers for Disease Control and
Prevention (Baio, 2014), 1.47% of American children was marred by some forms of ASD with

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
https://doi.org/10.3389/fninf.2017.00055
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2017.00055&domain=pdf&date_stamp=2017-08-31
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:zxiawang@163.com
mailto:dgshen@med.unc.edu
https://doi.org/10.3389/fninf.2017.00055
http://journal.frontiersin.org/article/10.3389/fninf.2017.00055/abstract
http://loop.frontiersin.org/people/401717/overview
http://loop.frontiersin.org/people/172970/overview


Li et al. Remodeling Pearson’s Correlation

a nearly 30% increasing rate in the last 2 years. However,
the standard ASD diagnosis methods (e.g., parent interview
and participant interview) are highly based on behaviors, and
symptoms of the disease (Gillberg, 1993; Lord and Jones, 2012;
Segal, 2013), resulting in missing the best cure opportunity.
At the same time, the measurement at the gene level (Wang
et al., 2009; O’Roak et al., 2012) can benefit an early diagnosis,
but it is less popular due to high costs and complexity. Recent
evidences show that the unusual brain activity (Brambilla et al.,
2003; Ecker et al., 2010; Lo et al., 2011; Nielsen et al., 2013) and
abnormal functional disruptions in some brain regions (Allen
and Courchesne, 2003; Anderson et al., 2011; Delmonte et al.,
2012) such as, hippocampus and frontal region have a high
correlation with ASD. Thus, it is possible to discover informative
biomarkers and then help identify ASD by analyzing the activity
data of brain.

Functional magnetic resonance imaging (fMRI) is currently
a widely-used non-invasive technique for measuring brain
activities (Brunetti et al., 2006; Kevin et al., 2008; Jin et al.,
2010). However, it is hard to identify patients from normal
controls (NC) by direct comparison of the fMRI data (i.e., time
courses), since the spontaneous brain activities are random and
asynchronous across subjects. In contrast, the functional brain
network (FBN) constructed by, for example, the correlation of
the time series can provide a more stable measurements for
classifying different subjects (Smith et al., 2011; Sporns, 2011;
Wee et al., 2012; Stam, 2014; Rosa et al., 2015). In fact, FBN
identifies functional connections between brain regions, voxels,
or ROIs (Horwitz, 2003), which has already been verified to be
highly related to some neurological or psychological diseases
such as, ASD (Theije et al., 2011; Gotts et al., 2012), mild cognitive
impairment (Fan and Browndyke, 2010; Wee et al., 2012, 2014;
Yu et al., 2016), Alzheimer’s disease (Supekar et al., 2008; Huang
et al., 2009; Liu et al., 2012) and so on.

The commonly used scheme to estimate FBNs is based on
the second-order statistics that tend to work better than the
high-order counterparts (Smith et al., 2011). The typical second-
order estimation methods include Pearson’s correlation (PC),
and sparse representation (SR), etc. PC estimates FBNs by
measuring the full correlation between different brain regions
(ROIs1). The full correlation is simple, computationally efficient
and statistically robust, but tends to include confounding
effects from other brain regions. In contrast, the partial
correlation can alleviate this problem by regressing out the
potential confounding influence. However, calculating the partial
correlation involves an inverse operation on the covariance
matrix, which is generally ill-posed, especially when the number
of time points is fewer than the number of brain regions.
Therefore, regularization techniques such as, SR (with a L1-norm
regularizer) are generally used to achieve a stable solution (Lee
et al., 2011).

In this paper, we mainly focus on the PC-based methods,
because we empirically found that, in our experiments, the PC-
based (full correlation) methods work better than the SR-based

1In this paper, we will interchangeably use regions of interest (ROIs) and brain

regions to denote network/graph nodes for the convenience of presentation.

(partial correlation) counterpart. However, the original PC
scheme always results in FBNs with a dense topological structure
(Fornito et al., 2016), since the BOLD signals commonly contain
noises, micro head-motion (Power et al., 2013; Yan et al., 2013)
and/or mind wandering (Mason et al., 2007). In practice, a
threshold is commonly used to sparsify the PC-based FBNs
by filtering out the noisy or weak connections. Although it
is simple and effective, the threshold scheme is hard without
enough flexibility. To address this problem, in this paper, we
reformulate the estimation of PC network as an optimization
problem, and motivated by the SR model (see Section Related
Methods), we introduce an L1-norm regularizer for achieving
a sparse solution. Different from the traditional hard-threshold
scheme, the proposed method is more flexible, and can in
principle incorporate any informative prior into the PC-based
FBN construction. Specifically, the main contributions of this
paper can be summarized as follows.

(1) We propose a novel strategy to estimate PC by remodeling
it in an optimization learning framework. Consequently,
biological/physical priors can be incorporated more easily
and naturally for constructing better PC-based FBNs.

(2) We introduce an L1-norm regularizer into the proposed
framework for estimating sparse FBNs, and further extend
it to a weighted version for constructing both sparse and
scale-free FBNs. These two instantiations illustrate that the
proposed method is more flexible than the traditional hard-
threshold scheme.

(3) We use the PC-based FBNs constructed by our framework
to distinguish the ASDs from NCs, and achieve 81.52%
classification accuracy, which outperforms the baseline and
state-of-the-art methods.

The remainder of this paper is organized as follows. In Section
Materials and Methods, we introduce the material and methods.
In particular, we first introduce the participants and review two
related methods, i.e., PC and SR. Then, we reformulate PC
into an optimization model and propose two specific PC-based
FBN estimationmethods, including themotivations, models, and
algorithms for these twomethods. In Section Results, we evaluate
the two proposed methods with experiments on identifying ASD.
In Section Discussion, we discuss our findings and prospects of
our work. In Section Conclusion, we conclude the entire paper
briefly.

MATERIALS AND METHODS

Data Acquisition
In this paper, we have the same data set as the one in
a recent study (Wee et al., 2016). Specifically, the data set
includes resting-state fMRI (R-fMRI) data of 45 ASD subjects
and 47 NC subjects (with ages between 7 and 15 years old).
All these data are publicly available in the ABIDE database
(Di et al., 2014). The demographic information of these
subjects is summarized in Table 1. The ASD diagnostic was
based on the autism criteria part in Diagnostic and Statistical
Manual of Mental Disorders, 4th Edition, Text Revision (DSM-
IV-TR). The psychopathology for differential diagnosis and
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TABLE 1 | Demographic information of the subjects.

ASD(N = 45) NC(N = 47) p-values

Gender (M/F ) 36/9 36/11 0.2135∗

Age (year ± SD) 11.1± 2.3 11.0± 2.3 0.7773†

FIQ (mean± SD) 106.8± 17.4 13.3± 14.1 0.0510

ADI− R (mean± SD) 32.2± 14.3‡ – –

ADOS (mean± SD) 13.7± 5.0 – –

ASD, Autism Spectrum Disorders; NC, Normal Control; FIQ, Full Intelligence Quotient;

ADI-R, Autism Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observation

Schedule.
*The P-value was obtained by chi-squared test.
†The P-value was obtained by two-sample two-tailed t-test.
‡Two patients do not have the ADI-R score.

comorbidities with Axis-I disorders was assessed by parent
interview or participant interview. In particular, the parent
interview was based on the Schedule of Affective Disorders
and Schizophrenia for Children-Present and Lifetime Version
(KSADS-PL) for children (<17.9 years old); the participant
interview was based on the Structured Clinical Interview for
DSM-IV-TR Axis-I Disorders, Non-patient Edition (SCID-I/NP)
and the Adult ADHD Clinical Diagnostic Scale (ACDS) for
adults (>18.0 years old). Exclusion of the comorbid ADHD
needs to meet all criteria for ADHD (except for criterion E) in
the DSM-IV-TR. Inclusion as a NC needs to exclude the entire
current Axis-I disorders by KSADS-PL, SCID-I/NP, and ACDS
interviews.

Data Preprocessing
All R-fMRI images were acquired using a standard echo-planar
imaging sequence on a clinical routine 3T Siemens Allegra
scanner. During 6 min R-fMRI scanning procedure, the subjects
were required to relax with their eyes focusing on a white fixation
cross in the middle of the black background screen projected on
a screen. The imaging parameters include the flip angle = 90◦,
33 slices, TR/TE = 2000

15 ms with 180 volumes, and 4.0 mm
voxel thickness. Data preprocessing was made by the standard
software, statistical parametric mapping (SPM8 http://www.fil.
ion.ucl.ac.uk/spm/software/spm8/). Specifically, the first 10 R-
fMRI images of each subject were discarded to avoid signal
shaking. The remainder images were calibrated as follows: (1)
normalization to MNI space with resolution 3 × 3 × 3 mm3;
(2) regression of nuisance signals (ventricle, white matter, global
signals, and head-motion) with Friston 24-parameter model
(Friston et al., 1996); (3) band-pass filtering (0.01–0.08 Hz); (4)
signal de-trending. After that, the pre-processed BOLD time
series signals were partitioned into 116 ROIs, according to the
automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002). At last, we put these time series into a data matrix
X ∈ R170×116.

Functional Brain Network Estimation
After extracting the data matrix X from the R-fMRI data, we
construct FBNs for these subjects based on the methods that will
be given in the following subsections.

Related Methods
It is well known that PC is possibly the most popular method to
estimate FBNs (Smith et al., 2013). The mathematical expression
of PC is defined as follows:

Wij =

(

xi − xi

)T
(xj − xj)

√

(

xi − xi

)T (

xi − xi

)

√

(xj − xj)
T
(xj − xj)

, (1)

where xi ∈ Rt is the observed time course associated with ith
brain regions, t is the number of time nodes, xi ∈ Rt has all
entries being the mean of the elements in xi, i = 1, 2, · · · , n, and
n is the number of ROIs. Consequently, xi − xi is a centralized
counterpart of xi.

As discussed previously, PC always generates dense FBNs.
Thus, a threshold is often used to sparsify the PC-based FBNs
(namely PCthreshold), which can be expressed as follows:

Wij
(new) =

{

Wij, Wij > threshold
0, otherwise

(2)

whereWij
(new) denotes the connection value between nodes i and

j after thresholding.
Different from PC that measures the full correlation, SR is one

of the widely-used schemes for modeling the partial correlation
(Lee et al., 2011). The model of SR is shown as follows:

minW

n
∑

i = 1

∥

∥

∥

∥

∥

∥

xi −
∑

j 6= i

Wijxj

∥

∥

∥

∥

∥

∥

2

+ λ
∑

j 6= i

∣

∣Wij

∣

∣, (3)

or equivalently, its matrix form is

minW ‖X − XW‖2F + λ ‖W‖1 (4)

s.t.Wii = 0,∀i = 1, · · · , n,
where X = [x1, x2, · · · , xn] ∈ Rt×n represents the fMRI data
matrix associated with a certain subject. Each column of X
corresponds to the time course from a certain brain region. Note
that the L1-norm regularizer in Equation (4) plays a key role in
achieving a sparse and stable solution (Lee et al., 2011).

Our Methods
As two typical examples, PC and SR have been demonstrated
to be more sensitive than some complex higher-order methods
(Smith et al., 2011). Therefore, in this paper, we mainly focus
on these two methods, and we empirically found that PC tends
to work better than SR in our experiments. However, compared
with SR that controls the sparsity in an elegant mathematical
model, the PC sparsifies the networks using an empirical hard
threshold. Thus, a natural goal is to develop a new FBN
estimation method that can inherit the robustness of PC and
meanwhile has a flexible sparsification strategy as in SR. To this
end, we first formulate the PC scheme as an optimization model,
and then introduce an L1-norm regularizer into the model for
achieving a sparse solution.
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Without loss of generality, we suppose that the observed fMRI
time series xi of each node is centralized by xi−xi and normalized

by

√

(

xi − xi

)T (

xi − xi

)

. That is, we define the new time series

xi ,
(xi−xi)

√

(

xi−xi

)T(

xi−xi

)

. As a result, we can simplify the PC as the

formulaWij = xi
Txj,which can be easily proved to be the optimal

solution of the following optimization problem:

minWij

n
∑

i,j = 1

∥

∥xi − wijxj
∥

∥

2
. (5)

In fact, we first expand the objective function in Equation (5) as
follows:

n
∑

i = 1,j = 1

∥

∥xi −Wijxj
∥

∥

2
=

n
∑

i = 1,j= 1

(

xi −Wijxj
)T (

xi −Wijxj
)

=

n
∑

i =1,j= 1

(

xi
Txi − 2Wijxixj +Wij

2xj
Tx

j

)

=

n
∑

i = 1,j = 1

(

1− 2Wijxixj +Wij
2
)

. (6)

Then, letting the derivative
d

∑n
i = 1,j = 1(1−2Wijxixj+Wij

2)
dWij

be 0, we

have the following result:

2Wij − 2xixj = 0→Wij = xixj. (7)

Based on Equation (7), Equation (5) can be further formulated to
a matrix form as follows:

min
W

∥

∥

∥
W − XTX

∥

∥

∥

2

F
. (8)

Below, we will note that such an optimization view of PC can help
improve the traditional PC and further develop new flexible FBN
estimation methods.

Motivated by the model of SR, we can naturally incorporate a
regularized term into the objective function of Equation (8) for
constructing a new platform to estimate FBNs. More specifically,
the platform can be formulated using a matrix-regularized
learning framework as follows:

min
W

∥

∥

∥
W − XTX

∥

∥

∥

2

F
+ λR (W) (9)

S.t.W ∈ 1,
where R(W) is a regularized term, λ is a trade-off parameter, and
is a set of additional constraints on the constructed FBNs, such
as, the positive definiteness and non-negativity, etc.

Here, we argue that the PC-based FBN learning framework
shown in Equation (9) has two advantages: (1) it is statistically
robust and scales well, without the ill-posed problem involved in
the SR-based (partial correlation) method; (2) biological/physical
priors (e.g., sparsity) can be naturally introduced into the model
in the form of regularizer for constructing more meaningful

FBNs. In order to illustrate the flexibility of the proposed
framework, we develop two specific remodeling PC-based FBN
estimation methods (I and II) that will be discussed below,
respectively.

Method I: Remodeling PC-Based FBN with
a Sparsity Prior
As pointed out previously, the hard-threshold scheme is an
effective scheme to sparsify the FBNs, which can be regarded
as a special format of the L1-norm. However, generally, the
threshold selection is empirical without an elegant mathematical
representation. In addition, it is hard to incorporate other
biological/physical priors into FBN construction task. In this
paper, based on the proposed FBN learning framework, we first
introduce the L1-norm as an instantiation of the regularized term
R(W), resulting in a new remodeling PC-based FBN estimation
model (namely PCsparsity) as follows:

minW

∥

∥

∥
W − XTX

∥

∥

∥

2

F
+ λ ‖W‖1 , (10)

where λ is a regularized parameter for controlling the sparsity
of W. Obviously, the PCsparsity reduces to the original PC
when λ = 0. Besides the L1-norm, there are some alternative
regularizers, such as, the log-sum strategy (Shen et al., 2013), can
be introduced in the proposed framework to sparsify FBNs. Here,
we select the L1-norm since it is simple and popular.

The objective function of Equation (8) is convex but
indifferentiable due to the L1-norm regularizer. A number of
algorithms have been developed to address the indifferentiable
convex optimization problem in the past few years (Donoho
and Elad, 2003; Meinshausen and Bühlmann, 2006; Tomioka
and Sugiyama, 2009; Zhao, 2013). Here, we employ the proximal
method (Combettes and Pesquet, 2011; Bertsekas, 2015) to solve
Equation (10) for the main reason of its simplicity and efficiency.
In particular, we first consider the fidelity term f (X,W) =
∥

∥W − XTX
∥

∥

2

F
in Equation (10), which is differentiable, and its

gradient is ∇W f (X,W) = 2(W − XTX). As a result, it is easy to
get the following gradient descent step:

Wk =Wk−1 − αk∇f
(

X,Wk−1

)

, (11)

where αk denotes the step size of the gradient descent.
Then, according to Combettes and Pesquet (2011) and the

definition Data Acquisition therein, the proximal operator of
L1-norm regularizer on W can be given as the following soft-
threshold operation:

proximalλ‖·‖1 (W) = [sgn
(

Wij

)

×max
(

abs
(

Wij

)

− λ
)

, 0]
p×p

.

(12)

Finally, we use the proximal operation proximalλ‖•‖1 in Equation
(12) onW to keepW in the “feasible region” (regularized by the
L1-norm) after each gradient descent step. Consequently, we get
a simple algorithm for solving Equation (10) as shown in Table 2.
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TABLE 2 | Algorithm of PC-based FBN estimation with a sparse prior.

Input: X //observed data

Output: W //functional brain network

Initialize W;

while not converge

W ← W − α(W − XTX );

W ← proximalλ‖•‖1 (W) = [sgn(Wi,j )×max(abs
(

Wi,j
)

− λ, 0)]
p×p

;

end

Method II: Remodeling PC-Based FBN with
a Scale-Free Prior
It is well known that a brain network has more topological
structures than just sparsity (Sporns, 2011) such as, modularity
(Qiao et al., 2016), hierarchy (Zhou et al., 2006), small-worldness
(Watts and Strogatz, 1998; Achard et al., 2006), clustering (White
et al., 1986), degeneracy (Tononi et al., 1999), and scale-free
(Eguíluz et al., 2005; Li et al., 2005). In order to verify the
flexibility of the proposed framework in Equation (9), we develop
a new PC-based FBN estimation model by incorporating a scale-
free prior. Consequently, we have the following optimization
model (namely PCscale−free):

minW

∥

∥

∥
W − XTX

∥

∥

∥

2

F
+ λ

n
∑

i,j = 1

γij
∣

∣Wij

∣

∣. (13)

Similar to the PCsparsity in Equation (10), λ is the regularized
parameter. In order to incorporate the node degree information,
a weight γij related to the node degree of eachWij is introduced in
the PCscale−free model, which essentially makes the PCscale−free be
a weighted version of PCsparsity. We argue that such a weighted
extension can achieve a scale-free network by assigning the
weight γij properly as discussed below.

Note that the fidelity term f (X,W) =
∥

∥W − XTX
∥

∥

2

F
of

Equation (13) is the same as the one in Equation (10). Thus,
the two problems share the same gradient descent step as
shown in Equation (11). Then, we consider the regularized
term λ

∑n
i,j = 1 γij

∣

∣Wij

∣

∣. Based on the definition of the proximal

operation, we can easily get the proximal operator of the weighted
L1-norm regularizer onW as follows:

proximalλγij‖·‖1 (W) = [sgn
(

Wi,j

)

×max
(

abs
(

Wij

)

− λ× γij
)

, 0]p×p, (14)

which is exactly a weighted version of the soft threshold
operation. Since the node degree of the brain network tends to
follow the power law distribution (Barabási and Bonabeau, 2003;
Eguíluz et al., 2005; Cecchi et al., 2007; Lin and Ihler, 2011),
we assume that the hub nodes cover more useful connections
(closely related to the neural disorders), while the non-hub nodes
cover weak or noisy connections. Therefore, compared with
the PCsparsity method that equally treats each edge (or link) of
the FBN, the PCscale−free method penalizes more on the nodes
with small degree, and penalizes less on the nodes with large

TABLE 3 | Algorithm of PC-based FBN estimation with a scale-free prior.

Input: X //observed data

Output:W //functional brain network

Initialize γij = 1;

while not converge

W ← argminW

∥

∥

∥
W − XTX

∥

∥

∥

2

F
+ λ

∑n
i,j=1 γij

∣

∣Wij

∣

∣; //by a weighted version of

Algorithm in Table 2.

γij ← e

−( 1
∑n
z=1 |wiz|+ε

+ 1
∑n
z=1

∣

∣

∣
wjz

∣

∣

∣
+ε

)

;

end

de gree. According to Equation (14), a big γij may increase the
possibility that Wij shrinks to zero, which in turn tend to result
in a sparse vector Wi =

(

Wi1,Wi2, · · · ,Wip

)

, and then a small
degree of node i. Conversely, a small γij may result in a big
degree of node i. In other words, the parameter γij should have
an inverse relationship with the node degree (Peng et al., 2009;
Lin and Ihler, 2011). Thus, we assume that γij has the following
form:

γij = e
−( 1

∑n
z = 1 |wiz |+ε

+ 1
∑n

z = 1 |wjz|+ε
)
, (15)

where ε is a small number for preventing the denominator in
Equation (15) to be zero. In our experiment, we simply set
ε = 0.0001. As a consequence, we get the following alternating
optimization algorithm. In each iteration, with a fixed W, the
parameter γij can be easily calculated by Equation (15), and then
by fixing the value of each parameter γij, we updateW by solving
Equation (13).We summarize the algorithm for solving Equation
(13) in the following Table 3.

Experimental Setting
After obtaining the FBNs of all subjects, the main task comes
to use the constructed FBNs to train a classifier for identifying
ASDs from NCs. Since the FBN matrix is symmetric, we just use
its upper triangular elements as input features for classification.
Even so, the dimensions of the features are still too high to
train a classifier with good generalization, due to the limited
training samples in this study. Therefore, we first conduct
a feature filtering operation before training the classification.
Specifically, the classification pipeline includes the following two
main steps.

> Step 1: FBN construction based on PCthreshold
2, SR, PCsparsity,

and PCscale−free, respectively.Note that each FBN construction
method involves a free parameter, e.g., the threshold
parameter in PCthreshold and the regularized parameter in the
other methods. Therefore, in this step, we construct multiple
FBNs based on different parametric values, and then select the
optimal FBN (for each method) based on a separate parameter
selection procedure, as shown in Figure 1.

2In order to improve the flexibility of PC and conduct fair comparison, we

introduce a hard-thresholding parameter in PC by reducing a proportion of weak

connections.
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FIGURE 1 | The main procedure of FBN-based classification used in our experiment.

> Step 2: Feature selection and classification using t-test (with
p < 0.05) and linear SVM (with default parameter C = 1),
respectively. As pointed out in Wee et al. (2014), both the
feature selection and classifier design have a big influence
on the final accuracy. However, in this paper, we only
adopt the simplest feature selection method and the most
popular used SVM classifier (Chang and Lin, 2007), since our
main focus is FBN estimation. In other words, it would be
difficult to conclude whether the FBN construction methods
or the feature selection/classification methods contribute to
the ultimate performance.

The detailed experimental procedure (including a subprocedure
for parameter selection) is shown in Figure 1. Due to the small
sample size, we use the leave one out (LOO) cross validation
strategy to verify the performance of the methods, in which
only one subject is left out for testing while the others are
used to train the models and get the optimal parameters. For
the choice of the optimal parameters, an inner LOO cross-
validation is further conducted on the training data by grid-
search strategy. More specifically, for the regularized parameter
λ, the candidate values range in [0.05, 0.1, · · · , 0.95, 1]; for the
hard threshold of PCthreshold, we use 20 sparsity levels ranging in
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[5, 10, · · · , 95, 100]. For example, the 90%means that 10% of the
weak edges are filtered out from the FBN.

RESULTS

Network Visualization
For visual comparison of the FBN constructed by PCthreshold,
SR, PCsparsity and PCscale−free methods, we first show the FBN
adjacency matrices3 W constructed by different methods in
Figure 2.

It can be observed from Figure 2 that both (Figure 2B)
PCthreshold and (Figure 2C) PCsparsity can remove the noisy or
weak connections from the dense FBN constructed directly by
the original PC. Moreover, the topology of the FBN estimated
by PCsparsity is similar to that of PCthreshold, because (1) both
methods employ the same data-fidelity term, and (2) the
sparsification strategy behind PCsparsity (i.e., the soft-thresholding
scheme) is based on the result of PCthreshold (i.e., the hard-
thresholding scheme). In contrast, the FBN constructed by SR
has a topology highly different from those of PCthreshold and
PCsparsity, since it uses a different data-fidelity term [i.e., the
first term in Equation (4)]. More interestingly, compared with
PCthreshold and PCsparsity, the FBN estimated by (Figure 2E)

3The adjacency matrix is an algebraic expression of a graph (or network). The

elements of the matrix indicate the connection strength of the node pairs in the

graph. Here, for the convenience of comparison among different methods, all the

weights are normalized to the interval [-1 1].

PCscale−free has a clearer hub structure, due to the use of a
weighted L1-norm regularizer.

For showing the hub structure more clearly, we plot the
brain connections estimated by PCscale−free in Figure 3, where
the width of each arc represents the weight of the connection
between two endpoints. Furthermore, we color the connections
from the hub nodes, while showing other connections in gray for
better visualization. In Figure 3, it can be interestingly observed
that (1) the hub nodes are only a small proportion of the
whole brain regions, illustrating the scale-free characteristic of
the constructed FBN; (2) the hub nodes mainly locate at the
brain regions, including the Cerebellum, Frontal, Rolandic, and
Lingual, etc.

In order to visualize the relationship between the parameter
λ in the PCscale−free model and the node degree, we simply
count the number of the nodes from all participants in
this dataset based on different node degree, and plot its
cCDF (complementary cumulative distribution function) under
log-log coordinates. The distribution of node degree results
based on different values of parameter λ are shown in
Figure 4.

Based on the results in Figure 4, we can find that, with the
increase of the parametric value, the node degree distribution
tends to be more scale-free.

For verifying the effectiveness of the regularizer and
quantifying the scale-free topology of FBN constructed by
PCscale−free and PCsparsity, we employ the s-metric (Li et al., 2005)

FIGURE 2 | The FBN adjacency matrices of a certain subject, constructed by different methods. (A) PC, (B) PCthreshold, (C) PCsparsity, (D) SR, and (E) PCscale−free.

Frontiers in Neuroinformatics | www.frontiersin.org 7 August 2017 | Volume 11 | Article 55

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Li et al. Remodeling Pearson’s Correlation

FIGURE 3 | Brain connections estimated by PCscale−free.

to compute the corresponding scale-free measures.

S(W) =
∑

didj, (16)

where di means the degree of the node i, and S(W) is the value
of the s-metric for the network W. Since the s-metric relies on
the number of the connects in FBN, and the network threshold
affects the degree and scale-free measures significantly for these
two methods. In this paper, as an example, we construct the FBN
by PCscale−free (λ = 0.5), and then find the FBN constructed
by PCsparsity with the same number of connects. Based on
Equation (14), the s-metric of the FBN constructed by PCsparsity is
18313091, and the one by PCscale−free is 27862470. We note that
the PCscale−free has a higher s-metric value than PCsparsity. Since
the high s-metric value is achieved by connecting high degree
nodes to each other, the FBN constructed by PCscale−free can
obtain more hub-nodes than the FBN constructed by PCsparse.
Thus, the brain network constructed by PCscale−free tends to be
more “scale-free”.

ASD Identification
The ASD vs. NC classification results on ABIDE dataset are given
in Table 4. The remodeling method (PCscale−free) achieves the
best accuracy in this experiment. In addition, the results of Wee
et al.’s method available from Wee et al. (2016) are also provided
in Table 4 as a reference.

A set of quantitative measurements, including accuracy,
sensitivity, and specificity, are used to evaluate the classification
performance of four different methods (PCthreshold, SR, PCsparsity

and PCscale−free). The mathematical definition of these three
measures are given as follows:

Accuracy =
TruePostive+ TrueNegative

TruePostive+ FalsePostive
+TrueNegative+ FalseNegative

, (17)

Sensitivity =
TruePostive

TruePostive+ FalseNegative
, (18)

Specificity =
TrueNegative

TrueNegative+ FalsePostive
, (19)

Here, TruePositive is the number of the positive subjects that
are correctly classified in the ASD identification task. Similarly,
TrueNegative, FalsePostive, and FalseNegative are the numbers of
their corresponding subjects, respectively.

Sensitivity to Network Model Parameters
The ultimate classification accuracy is particularly sensitive
to the network model parameters. In Figure 5, we show the
classification accuracy corresponding to different parametric
combination (i.e., [0.05, 0.1, · · · , 0.95, 1] for SR, PCsparsity,
and PCscale−free [5%, 10%, · · · , 95%, 100%] for PCthreshold) in
4 different methods. In addition, the classification accuracy is
computed by the LOO test on all of the subjects.

DISCUSSION

The FBN commonly has more “structures” than just sparsity
(Smith et al., 2011; Sporns, 2011). In this work, we remodel the
PC-based method into an optimization model for incorporating
some of these structures such as, scale-free property. The
proposed models were verified on the ABIDE dataset for ASD
vs. NC classification. Based on the results, we give the following
brief discussion.

(1) The accuracy of the PC-based methods outperforms the SR
method on our used dataset. A possible reason is that the
SR implicitly involves an inverse operation on the covariance
matrix, which tends to be ill-posed due to the limited
sample size and high-dimensional features. In fact, a recent
study (Qiao et al., 2016) also notes a similar problem that
the performance of SR-based method drops significantly
with the increase of the feature dimension. In contrast,
the PC-based methods can be derived directly from the
covariance matrix without the inverse operation, and thus
works robustly and also generally scales well.

(2) The performance of PCsparsity in our experiments is similar
to that of the hard-threshold counterpart PCthreshold, because
both methods share the same data-fidelity term and a similar
sparsification scheme (i.e., hard threshold for PCthreshold

while soft threshold for PCsparsity). The subtle difference
of the results between these two methods may be due
to the regularized parameters (e.g., hard threshold in PC
and λ in PCsparsity). However, we argue that the model of
PCsparsity is more flexible than PCthreshold. For example, it
can be naturally extended to a weighted version, namely
PCscale−free, for better performance.
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FIGURE 4 | The distribution of node degree and the corresponding cCDF under log-log coordinates with respect to different parameter λ. (A) λ = 0, (B) λ = 0.5, (C)

λ = 1, (D) λ = 0 (under log-log coordinates), (E) λ = 0.5 (under log-log coordinates), and (F) λ = 1 (under log-log coordinates).

(3) The proposed PCscale−free method achieves the best

classification accuracy among all the methods. In our
opinion, this is mainly due to its power for modeling

the hub node in a network that may cover the useful

connections closely related to neural disorders. Interestingly,

it outperforms Wee et al.’s method (Wee et al., 2016),
which used the same NYU dataset, even though the
latter employs more sophisticated feature selection and

classification strategy. In addition, the proposed PCscale−free

method provides an empirical evidence that a suitable
biological/physical prior can be used to guide the estimation
of better FBNs.

In addition, we further conduct experiments for verifying the
effectiveness of the proposed methods on a non-ASD fMRI
dataset from ADNI, and find that the PCscale−free methods still
achieve the best accuracy. Since the main focus of this paper is
on ASD identification, we supply the details of the dataset and
experimental results in a Supplementary Material. The results
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TABLE 4 | Classification performance corresponding to different FBN estimation

methods on ABIDE dataset.

Method Accuracy Sensitivity Specificity

PCthreshold 63.04 62.22 63.83

SR 55.43 60.00 51.06

(Wee et al., 2016) 70.70 81.40 61.20

PCsparsity 64.13 68.89 59.57

PCscale−free 81.52 84.44 78.72

FIGURE 5 | Classification accuracy based on the networks estimated by four

different methods of 20 regularized parameters. The results are obtained by

LOO test on all subjects in ABIDE.

show that the proposed method tends to generalize well on
both ASD and non-ASD datasets. In other words, the idea for
estimating FBN in this paper is general and independent of
the used datasets. However, there are several limitations in the
proposed methods that need to be improved in the future work.

(1) We use the L1-norm (or weighed L1-norm) as a regularizer
to estimate sparse (or scale-free) FBNs for the subjects one
by one. However, the FBNs of different subjects tend to
share some similar structures (Wee et al., 2014; Yu et al.,
2016) and thus the proposed method may lose such group
information. Therefore, in the future work, we need to adopt
the development and application of “group constraint” such
as, Group LASSO (Yuan and Lin, 2006) for addressing this
problem.

(2) In this paper, the ratio of male to female participants is
substantially 5 to 1. According to a recent finding (Lai
et al., 2013), the gender is one of the obvious sources of

heterogeneity in ASD. Therefore, in the future work, we need
to consider this issue for reducing the effect of heterogeneity.

CONCLUSION

Pearson’s correlation is the most commonly used scheme in
estimating FBNs due to its simplicity, efficiency and robustness.
However, the PC scheme is inflexible due to the difficulty of
incorporating informative priors. In this paper, we remodel
the PC into an optimization framework, based on which the
biological priors or assumptions can be naturally introduced
in the form of regularizers. More specifically, based on this
framework, we propose two PC-based FBN estimation methods,
namely PCsparsity and PCscale−free, which can effectively encode
sparse and scale-free priors, respectively. Finally, we use these
constructed FBNs to classify the ASDs from NCs, and get an
81.52% accuracy, which outperforms the baseline and state-of-
the-art methods. On the other hand, the topology of FBN is
much more than just the sparsity and scale-free. Therefore, it is a
potentially valuable topic to incorporate other biological/physical
priors in constructing FBNs.
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