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Global tractography estimates brain connectivity by organizing signal-generating fiber
segments in an optimal configuration that best describes the measured diffusion-
weighted data, promising better stability than local greedy methods with respect to
imaging noise. However, global tractography is computationally very demanding and
requires computation times that are often prohibitive for clinical applications. We present
here a reformulation of the global tractography algorithm for fast parallel implementation
amendable to acceleration using multi-core CPUs and general-purpose GPUs. Our
method is motivated by the key observation that each fiber segment is affected by a
limited spatial neighborhood. In other words, a fiber segment is influenced only by the
fiber segments that are (or can potentially be) connected to its two ends and also by the
diffusion-weighted signal in its proximity. This observation makes it possible to parallelize
the Markov chain Monte Carlo (MCMC) algorithm used in the global tractography
algorithm so that concurrent updating of independent fiber segments can be carried
out. Experiments show that the proposed algorithm can significantly speed up global
tractography, while at the same timemaintain or even improve tractography performance.

Keywords: diffusion magnetic resonance imaging, global tractography, Markov chain Monte Carlo, brain connec-
tivity, parallel computing

1. INTRODUCTION

Diffusion magnetic resonance imaging (DMRI) (Basser et al., 1994) relies on the fundamental
observation that the diffusion of watermolecules in whitematter (WM) ismuch less restricted along
the direction of axonal bundles than perpendicular to them. DMRI is widely used as a non-invasive
imagingmodality for studyingWMchanges in associationwith development, growth, and disorders,
such as Alzheimer’s disease (Li et al., 2013; Termenon et al., 2013; Jin et al., 2015a,b), Parkinson’s
disease (Martínez-Murcia et al., 2014), multiple sclerosis (Goldberg-Zimring et al., 2005), autism
(Thomas et al., 2011), and traumatic brain injury (Dennis et al., 2015a,b). DMRI is also used to
map out the comprehensive wiring of the brain, generating what is commonly known as the brain
connectome (Van Essen et al., 2013; Nossenson et al., 2016).

Diffusion tractography algorithms estimate the WM pathways by constructing streamlines that
trace through the directional information at each voxel given by DMRI data (Conturo et al., 1999;
Mori et al., 1999; Basser et al., 2000). They can be generally divided into two categories: local trac-
tography (LT) and global tractography (GT). LT starts from a random or predetermined region and
traces local voxel-wise fiber orientations in small successive steps. At each voxel, there can be a single
direction, e.g., based on the principal direction of the tensor model (Mori et al., 1999; Basser et al.,
2000), or multiple directions as given by the peaks of the orientation distribution function (ODF)
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(Tuch, 2004). The tracing of these directions can be done deter-
ministically (Mori et al., 1999; Basser et al., 2000) or probabilisti-
cally (Behrens et al., 2003; Parker et al., 2003). The main strength
of LT lies in its speed. For example, whole-brain LT takes only a few
minutes with the FACT algorithm (Mori et al., 1999). However,
LT is susceptible to error accumulation owing to the estimation
uncertainty of the directions at each voxel (Behrens et al., 2003).
This causes the estimated tracts to deviate from the true WM
trajectories.

On the other hand, GT (Reisert et al., 2009, 2011) uses global
optimization techniques to decrease sensitivity to local estimation
errors. GT reconstructs all fiber trajectories simultaneously by
considering their agreement with the underlying diffusion data.
The reconstructed fiber trajectories are the result of the interaction
between signal-generating fiber segments and theirmatchingwith
the diffusion-weighted measurements. The inter-segment inter-
action is reflected by the internal energy and the matching of the
signals of the fiberswith the data is reflected by the external energy.
The configuration of these fiber segments is optimized globally by
minimizing the global energy, computed as the sumof the internal
energy and the external energy (Kreher et al., 2008; Fillard et al.,
2009; Reisert et al., 2009, 2011). GT algorithms can better resolve
ambiguousWMpathways and afford better robustness to imaging
noise (Mangin et al., 2013). Utilizing a Monte Carlo optimization
framework, GT randomly perturbs the fiber segments using a
creation/deletion, connection/disconnection, and shifting mech-
anism to determine a configuration of the fiber segments that
best fits the data. Although studies have shown that GT generally
outperforms LT (Fillard et al., 2011), the main drawback of GT
methods is their computational costs.Whole-brain GT takes from
a few hours up to a day on a standardmachine (Reisert et al., 2011;
Neher et al., 2012). Therefore, reducing the computational cost of
GT is critical to improving its usability in clinical settings.

The key idea of recent works on accelerating LT algorithms
is to generate fiber trajectories from the seed voxels in paral-
lel instead of sequentially (Lee and Kim, 2013). However, this
approach cannot be applied to GT because of the interdependence
of the fiber tracts in the global optimization framework. The
GT algorithm has been recently modified in different forms with
multithreading capability (Reisert et al., 2014; Christiaens et al.,
2015). It is however unsure whether in these implementations the
statistical independence structure of the problem has been taken
into account to allow a mathematically valid parallelization of the
associated MCMC algorithm.

In this work, we will focus on accelerating the GT algo-
rithm proposed by Reisert et al. (2011). This algorithm utilizes
a Markov chain Monte Carlo (MCMC) technique, called the
Metropolis–Hastings algorithm (Neal, 1993; Van Lieshout, 2000),
to determine the configuration of fiber segments with the min-
imum global energy. In theory, the Markov process asymptot-
ically reaches a unique stationary distribution that equals the
posterior distribution of the fiber configuration given the data.
However, MCMC methods can be prohibitively slow and require
a large number of “burn-in” steps before producing representative
samples.

An embarrassingly parallel approach was recently proposed to
parallelize burn-in and sampling in MCMC (Neiswanger et al.,
2014). The key idea is to apply any classical MCMC method

independently to subsets of data without requiringmuch commu-
nication between them. First, the data are partitioned into multi-
ple subsets. Next, anMCMCmethod is used to draw samples from
a posteriori distribution given by each subset. Finally, the samples
from all of the subsets are combined to form samples from the full
posterior. This method is termed embarrassingly parallel because
the processing of each subset is performed independently without
communication with other subsets until the final combination
stage.

Building on this concept, we show in this work that the GT
algorithm can be improved significantly in terms of speed by
MCMC parallelization. The key observation that drives our algo-
rithm, called the parallel global tractography algorithm (PGT), is
that the spatial extent of the influence of each fiber segment is
limited. That is, the influence of each fiber segment depends only
on the fiber segments that are connected (or can potentially be
connected) to its both ends and also on the diffusion-weighted
signal that is in its proximity. In other words, despite the fact that
we try to decrease the total fitting energy in a global sense, the
influence of each fiber segment on the variation of the energy is
in fact local. Based on this observation, significant parallelism can
be harnessed for improving the speed of the GT algorithm. The
data can be partitioned into subsets similar to Neiswanger et al.
(2014) and processed separately before combining the results to
form samples for the original problem. Experimental results con-
firm the effectiveness of the proposed method and demonstrate
that comparable tractography performance can be achieved in a
reduced amount of time.

Part of this work has been reported in our recent workshop
paper (Wu et al., 2015). Herein, we provide additional examples,
results, derivations, and insights that are not part of the workshop
publication.

2. ACCELERATING GLOBAL
TRACTOGRAPHY

2.1. Background
The GT algorithm assumes that a fiber streamline is composed of
fiber segments, each of which can be represented by a cylinder, as
illustrated in Figure 1. The i-th segment can be defined as a tuple
hi = (xi, vi, l, d), where xi ∈ R3 denotes the spatial location of the
center of the segment, vi ∈ S2 denotes the orientation, l is the half
length, and d is the diameter. Both the length and the diameter are
identical for all segments. The extremities of the fiber segment are
eα
i , where α ∈ {+, −} indicate the positive or negative endpoint.
The goal of GT (Reisert et al., 2011) is to determine the optimal

configuration M of a set of signal-generating fiber segments
given the measured diffusion-weighted signals D, including their
existence, spatial positions, orientations, and connections at both
ends to other fiber segments. More formally, one is interested

FIGURE 1 | A fiber segment.
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in determining the M that maximizes the posterior probability
P(M|D) defined as

P(M|D) ∝ P(M)P(D|M)= exp
(

−Eint(M) − Eext(M, D)
T

)
,

(1)
where Eint(M) and Eext(M, D) are the internal energy and the
external energy, respectively, and T is the temperature associated
with simulated annealing (Aarts and Korst, 1989).

The internal energy Eint(M) characterizes the smoothness of
the fibers and is defined as the sum of all the interaction potentials
between connected segments:

Eint(M) = λint
∑

(e
αi→j
i ,e

αj→i
j )

1
l2 (||e

αi→j
i −x̄ij||2+||eαj→i

j −x̄ij||2)−L,

(2)
where x̄ij represents the midpoint of the line that connects the
centers of these two segments, and eαi→j

i denotes that the endpoint
of the i-th segment that is connected to the j-th fiber segment. The
bias L affects the probability of connections between segments.

The signal predicted by the fiber segments at location x and
orientation v is defined as

FM(x, v) = w
N∑
i=1

exp(−c(vTvi)
2
) exp

(
−|x − xi|2

σ2

)
. (3)

where N is the total number of fiber segments. The constant
w controls the amount of signal contribution from each fiber
segment. Parameter σ > 0 controls the spatial extent of the influ-
ence of each fiber segment. Parameter c> 0 controls the shape of
the signal profile generated by each fiber segment (Reisert et al.,
2011). In practical implementation, the second exponential term
is truncated and hence the spatial extent is limited.

The external energy Eext(M, D) measures the difference
between the observed data D and the predicted signal FM(x, v)
given by the configuration M:

Eext(M, D) = λext||FM − D||2

= λext

∫
R3×S2

|FM(x, v) − D(x, v)|2d3xd2v, (4)

where λext is a tuning parameter.

2.2. Parallel Global Tractography
To maximize the posterior probability P(M|D), an MCMC
method called the Metropolis–Hastings (MH) algorithm
(Metropolis et al., 1953; Hastings, 1970) is employed in Reisert
et al. (2011). However, MCMC methods may take a prohibitively
long time, depending on the number of data points. Furthermore,
MCMCmethods might require a large number of “burn-in” steps
before beginning to generate representative samples (Liu, 2001).
Here, we propose a parallelized version of the GT algorithm,
called parallel global tractography (PGT), to improve the speed.

PGT utilizes the structure of the problem to allow embarrass-
ingly parallel speed up of the GT algorithm. Similar toNeiswanger
et al. (2014), this is achieved by partitioning the data into subsets,

on which an MCMC algorithm can act independently without
communication between them until the final combination stage.
More formally, this is done by partitioning the data D into K
subsets {D1, D2, . . . ,DK} and associate with each subset a sub-
posterior probability P(M)

1
K P(Dk|M). MCMC sampling is then

performed independently for each subposterior probability before
eventually combining their samples to produce samples from an
estimate of the subposterior density product, which is propor-
tional to the full-data posterior. If the density product estimator is
consistent, it can then be shown that one is drawing asymptotically
exact samples from the full posterior distribution. Parametric,
non-parametric, and semiparametric estimation techniques are
described in Neiswanger et al. (2014).

While straightforward, the method described above
(Neiswanger et al., 2014) is not directly applicable to the
parallelization of GT. The problem lies in the difficulty in
designing an appropriate consistent estimator of the subposterior
density estimator that will allow us to draw asymptotically exact
samples from the posterior. Combination of the samples drawn
from the subposteriors is further complicated by the fact that the
dimensionality of the parameters of the configuration M is not
fixed due to the creation/deletion proposals (Kreher et al., 2008).
In fact, for this reason, GT requires a reversible jump version of
MCMC (Green, 1995). In PGT, we overcome this problem by
leveraging the structure of the GT problem to further improve
parallelism. We first rewrite the posterior probability as

P(M|D) = P(M0, M1, ..., MK|D) (5)
= P(M1, ..., MK|D, M0)P(M0|D). (6)

Note that hereM0 denotes the configuration of the fiber segments
between the other K regions, in which the fiber configurations
are denoted as {M1, M2, . . . ,MK} (see Figure 2). If the region
covered by M0 gives sufficient separation between the K regions,
and noting that each fiber segment is affected by its neighboring
and not distant fiber segments (as required by the internal energy),
we have

P(M|D) = P(M0|D)
K∏

k=1

P(Mk|D, M0). (7)

FIGURE 2 | Domain partitioning (K=9).
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FIGURE 3 | Overview of PGT.

This indicates that the configurations {M1, . . . ,MK} are condi-
tionally independent given D and M0. Noting the fact that the
configuration of each fiber segment is only dependent on the data
in its vicinity, we further have

P(M|D) = P(M0|D0)
K∏

k=1

P(Mk|Dk, M0). (8)

This implies that once the samples for M0 have been drawn, the
samples for {M1,M2, . . . ,MK} can be drawn independently and

hence in parallel. In contrast to Neiswanger et al. (2014), instead
of partitioning the data, we partition the parameters according to
the spatial location and then partition the data accordingly. This
formulation allows us to make local changes (creation/deletion,
connection/disconnection, and shifting) in parallel.We can switch
to K = 0 to accommodate for more global proposals like the
connection/disconnection proposal (Reisert et al., 2009).

The MH algorithm is applied in parallel by proposing
changes to the fiber segments in the subregions associated with
{M1, M2, . . . ,MK}. The proposals in these subregions are
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accepted or rejected based on their individual acceptance ratios.
The independence condition guarantees that the proposals for
each of the K subregions can be accepted and rejected separately
but in parallel.

Then, for k= 1, . . . ,K, samples are drawn from the subposte-
rior densities P(Mk|Dk, M0). With Dk and M0 fixed and hence
P(Dk, M0) being a constant, we have

P(Mk|Dk, M0) ∝ P(Mk, M0)P(Dk|Mk, M0). (9)

Proposals for modification of configuration are made for the fiber
segments in each region according to its subposterior density
by randomly selecting at each time a fiber segment, perturb-
ing it using a creation/deletion, connection/disconnection, and
shifting mechanism, and examining if the regional energy can
be decreased. In this process, M0 remains fixed and {Mk} are
updated. After {Mk} are sufficiently updated, they are combined
to form M. The random partitionining of the image space into
subregions is performed iteratively so that each time the fiber
configurations of a different set of K random subregions can be
updated. The decision of whether to accept a proposal is based on
the individual Green’s ratio of the i-th region

Rk =
P(M

′

k|Dk, M0)Q(Mk|M
′

k)
P(Mk|Dk, M0)Q(M′

k|Mk)
, (10)

where Q(M
′

k|Mk) is the transition probability associated with
the MH algorithm. From Equation (9), the internal energy con-
tributed by the fiber segments in the k-th region alone is

Eint(Mk) = λint
∑

(e
αi→j
i ,e

αj→i
j )∈Nk×Nk

1
l2 (||eαi→j

i − x̄ij||2 + ||eαj→i
j − x̄ij||2) − L (11)

and the external energy is

Eext(Mk, Dk) = λext

∫
Nk×S2

|FMk(x, n) − Dk(x, n)|2d3xd2n,

(12)
where N k is the region containing all fiber segments associated
with Mk.

Note that some proposals are parallelizable and some are not.
For each fiber segment, the change in internal energy associated
with creation/deletion and shifting proposals is affected only by
the fiber segments it is (or will be) connected to. The change
in external energy involves only the diffusion signals in a local-
ized neighborhood surrounding the fiber segment. Hence, cre-
ation/deletion and shifting proposals can be performed indepen-
dently and simultaneously in different subregions. However, the
connection/disconnection proposals, which attempt to determine
new fibers with lower energy, involve a larger spatial extent and
are hence more difficult to parallelize. To overcome this problem,
we alternate between parallel proposals (i.e., creation/deletion
and shifting) and serial proposals (i.e., connection/disconnection)
according to MH transition probabilities assigned to them.

2.3. Implementation
Figure 3 summarizes the key steps in PGT. The PGT algorithm
involves repeating the following steps until convergence.

1. DynamicDomainPartitioning: Partition the image space into
K subregions, between which the configurations of the fiber
segments are independent.

2. Parallel Proposals: Make creation/deletion and shifting pro-
posals in parallel for the fiber segments in these regions accord-
ing to the corresponding transition probabilities, accept/reject
the proposals based on their acceptance ratios, and repeat this
step for a sufficient number of times.

3. Serial Proposals: Make connection/disconnection proposals
and determine fiber tracts that better explain the data.

We dynamically partition the image data into K subregions
that are mutually non-influential and statistically independent.
We randomly choose K points, and the K subregions are defined
as cubic blocks with these K points as centers. These subregions
are chosen to be far enough to avoid overlap so as to maintain
statistical independence. The region excluding theseK subregions
is the region containing M0. After sufficient proposals have been
proposed in parallel and in serial, the partitioning is repeated
to generate a new set of subregions. Figure 4 shows an example
of random subregions with a block size that is typical in our
implementation.

FIGURE 4 | Dynamic domain partitioning. Blue: brain region; red: random
block regions; orange: regions after applying white matter mask.
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3. EXPERIMENT RESULTS

3.1. Datasets
Two synthetic datasets and a real human dataset were utilized to
evaluate the performance of PGT.

• Spiral data: A 128× 128 field of diffusion-weighted signals
was generated to simulate curved fiber bundles in white
matter of human brain, forming a spiral as shown in Figure 8.
Each voxel within the spiral was simulated by a tensor
model with principal diffusivities λ1 = 1.7× 10–3 mm2/s,
λ2 =λ3 = 3.0× 10–4 mm2/s, and diffusion weighting
b= 2000 s/mm2. The gradient directions and the voxel
resolution were identical to those of the real data described
below.

• Cross data: Another synthetic dataset was generated to sim-
ulate two fiber bundles crossing at 90°. The image dimen-
sion is 60× 60, and the signal at each voxel was simulated
using a tensor model or its mixture with principal diffusivities
λ1 = 1.5× 10–3 mm2/s,λ2 =λ3 = 1.0× 10–3 mm2/s, and diffu-
sion weighting b= 2000 s/mm2. The gradient directions and
the voxel resolution were the same as those of the real data
described below.

• In vivo data: Diffusion-weighted images were acquired
from an adult with a Siemens 3T Tim Trio MR scanner
using an EPI sequence. Diffusion gradients were applied
in 120 non-collinear directions with diffusion weighting
b= 2000 s/mm2. The acquisition parameters were: repetition

time (TR)= 12,400ms, echo time (TE)= 116ms, volume
cropped dimensions= 83× 97× 76, and voxel resolution=
2mm× 2mm× 2mm.

3.2. Results
3.2.1. Iterations Per Partition and Number of
Random Partitions
For fair comparison of PGT with GT, we fixed the total number of
proposals that were eventually generated (i.e., 108). For PGT, this
means balancing between the number of iterations per partition
and the number of random partitions. Since the total number of
proposals is proportional to the product of the two quantities,
we only need to report the performance of PGT with respect
to the former. The number of generated segments, the number
of connected fibers, the normalized total energy, and the total
computing time are reported in Figure 5. PGT was repeated 10
times using the in vivo data with 10 parallel threads.

The figure shows that the numbers of generated segments and
connected fibers stabilize at 104 iterations per partition. The figure
also indicates that with this amount of per partition iterations the
total energy and the time consumed became stable, implying that
this is sufficient for MCMC “burn-in.” In the following experi-
ments, we iterated MCMC 104 times for each set of partitioned
regions before randomly partitioning the data again.

3.2.2. Energy
As mentioned in Section 2.1, the internal energy characterizes the
smoothness of the fibers while the external energy characterizes

FIGURE 5 | Number of segments, number of fibers, normalized total energy, and time consumed with respect to different numbers of iterations per
partition.
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the consistency between the predicted signal and the diffusion-
weighted signal. We compared both the internal energy and
external energy of GT and PGT (with 10 parallel threads). The
parameters used for GT and PGT are set as recommended in
Reisert et al. (2011). Figure 6 shows the results with respect to
the number of generated proposals for the spiral, the crossing and
the in vivo data. It can be observed that PGT outperforms GT
with lower internal energy and external energy. It is interesting to
note that when the energy curves of GT flatten out, those of PGT
continue to decrease. This indicates that, when the adjustments
of the fiber segments are done concurrently in multiple regions,
a configuration with lower energy can be reached with greater
ease.

3.2.3. Computational Costs
The speed improvement given by PGT over GT was evaluated
based on a computing cluster with 2.9GHz Intel Xeon CPUs and
48 GB RAM. Figure 7 shows that, for both synthetic and in vivo
data, PGT requires only less than approximately 1/3 of the time
required by GT. Note that it is not possible to achieve the ideal
10× speed increase because the GT algorithm is only partially
parallelized, as discussed in Section 2. Moreover, part of the time

cost is associated with the computational overhead involved in the
parallelized implementation.

3.2.4. Tractography Results
Figure 8 shows the tractography results of GT and PGT for the
synthetic data. Both GT and PGT create reasonable and consistent
fiber tracts that are in agreement with the data. For numerical
evaluation, we computed the distance of fiber bundles given by
GT and PGT using the distance defined in Yap et al. (2011a). The
distance between two fiber bundles F and G is defined as

1
|F| + |G|

 ∑
Fi∈F

min
Gj∈G

d(Fi,Gj) +
∑
Gi∈G

min
Fj∈F

d(Gi, Fj)

 (13)

where d (Fi, Gj) is a pairwise distance between fibers Fi ∈ F
and Gi ∈G, which in our case, is defined as the mean of the
closest distances calculated for all points on fiber Fi to fiber
Gi. When two fiber tracts are identical, the value returned
is zero. The respective distances for the spiral and the cross
are 1.46mm and 0.52mm, indicating high similarity between
the tractography results of GT and PGT. Despite the visual

FIGURE 6 | Normalized external and internal energy plotted against the number of proposals (in logarithmic scale).
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FIGURE 7 | Time costs of GT and PGT.

FIGURE 8 | Tractography results for synthetic data using (left) GT and (right) PGT.
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FIGURE 9 | Fiber bundles given by (left) GT and (right) PGT. From top to bottom are the CC-PRC, CGC, CST, and ARC tracts, respectively.

similarity between the GT and PGT, PGT yields in general a
higher number of fiber tracts with greater lengths. Therefore,
some dissimilarities exist between the results given by the two
algorithms.

For the in vivo data, fiber bundles extracted with multiple ROIs
(Wakana et al., 2007) are shown in Figure 9. The extracted fiber
tracts include (Jin et al., 2013, 2014): (1) association tracts such as
the cingulum tract (CGC); (2) the arcuate fasciculus (ARC), a part
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FIGURE 10 | Fiber count based connectivity network given by (left) GT and (right) PGT.

of the superior longitudinal fasciculus; (3) projection tracts such
as the corticospinal tract (CST); and (4) commissural tracts such
as a segment of corpus callosum projecting to both precentral gyri
(CC-PRC). PGT results in fiber bundles that are similar to, or even
better than, GT, but in a fraction of time. The distances between
the fiber tracts generated by GT and PGT are as follows: CGC:
3.78mm; ARC: 4.86mm; CST: 3.63mm; and CC-PRC: 5.23mm.
Note that the fiber tracts generated by the two algorithms are not
totally similar. PGT in general generates more tracts with greater
lengths.

3.2.5. Connectivity
Features derived from structural connectivity networks provide
rich information for identifying brain disorders due to its compre-
hensive characterization of connections between different brain
regions (Wee et al., 2012). The Automated Anatomical Labeling
(AAL) atlas used the main sulci as the landmarks to parcellate
a single adult brain data into 90 ROIs (Tzourio-Mazoyer et al.,
2002). We mapped the atlas to the in vivo data using a deformable
registration algorithm (Avants et al., 2011) and computed the
number of fibers connecting each pair of ROIs. The results, shown
in Figure 10, indicate that the PGT yields a connectivity map
that is consistent with GT, albeit with more fibers. It can also
be observed that PGT is also able to detect/strengthen weak
connections that are missed by GT.

4. DISCUSSION

The performance of PGT is dependent on the parameter K.
A bigger K results in a greater degree of parallelization and trac-
tography can be completed within a less amount of time. However,
K is limited by the requirement of statistical independence of the
configurations of the fiber segments in the K subregions. That is,

in practice, it is not possible to infinitely partition a finite region.
Moreover, a large K also implies that the configuration in each
subregion will converge with a less number of iterations, requiring
more frequent re-partitioning. This increases the computation
overhead and decreases efficiency.

To further increase parallelization, we can allow overlapping
of subregions by wrapping data access in a mutex. The mutex
will provide a lock–unlock mechanism for mutually exclusive
updating of these subregions to avoid data race, where two or
more threads access the same memory location concurrently.
Overlapping of subregions will allow more threads to be used to
speed up PGT.

One can also partition the brain regions using structurally
adaptive subregions that fit better to the white matter. This will
allow more irregularly shaped subregions to be fitted in a region
of limited size. This will hence allow us to spawnmore threads and
hence increase parallelism.

5. CONCLUSION

The proposed algorithmhelps reduce the time cost associatedwith
the global optimization process required in global tractography.
We run in parallel multiple independent chains of MCMC on a
number of subregions, resulting in faster convergence and pro-
ducing results that are comparable to the non-parallelized version.
Future implementation based on GPUs will further improve the
speed of global tractography and hence its feasibility in large-scale
studies.
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