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Abstract

Maintaining the balance of the gut microbiota and its metabolic functions is vital for human 

health, however, this balance can be disrupted by various external factors including food additives. 

A range of food and beverages are sweetened by saccharin, which is generally considered to be 

safe despite controversial debates. However, recent studies indicated that saccharin perturbed the 

gut microbiota. Inflammation is frequently associated with disruptions of the gut microbiota. The 

aim of this study is to investigate the relationship between host inflammation and perturbed gut 

microbiome by saccharin. C57BL/6J male mice were treated with saccharin in drinking water for 

six months. Q-PCR was used to detect inflammatory markers in mouse liver, while 16S rRNA 

gene sequencing and metabolomics were used to reveal changes of the gut microbiota and its 

metabolomic profiles. Elevated expression of pro-inflammatory iNOS and TNF-α in liver 

indicated that saccharin induced inflammation in mice. The altered gut bacterial genera, enriched 

orthologs of pathogen-associated molecular patterns, such as LPS and bacterial toxins, in concert 

with increased pro-inflammatory metabolites suggested that the saccharin-induced liver 

inflammation could be associated with the perturbation of the gut microbiota and its metabolic 

functions.
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Introduction

Association between the gut microbiota and host health has raised growing public attention 

in recent years (P. J. Turnbaugh et al., 2007), as the gut microbiota plays an essential role in 

host-gut interactions, such as energy metabolism, immune response and epithelial 
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homeostasis (Holmes, Li, Athanasiou, Ashrafian, & Nicholson, 2011). Hence, perturbations 

on the gut microbiota induced by environmental factors would affect its functional role and 

contribute to gut microbiota-related human diseases, including immune dysfunction, obesity, 

diabetes and cardiovascular disease, inflammatory bowel diseases and colorectal cancer 

(Kau, Ahern, Griffin, Goodman, & Gordon, 2011; Kinross, Roon, Holmes, Darzi, & 

Nicholson, 2008; Tremaroli & Backhed, 2012). It is well documented that the perturbation 

of relative abundance of gut microbes as well as gut microbial metabolites can lead to 

adverse health outcomes. For example, the ratio of Firmicutes and Bacteroidetes was 

observed to be associated with obesity in mice and human (P. J. Turnbaugh et al., 2006). 

Likewise, trimethylamine, generated by gut bacteria from dietary choline, can be further 

metabolized into trimethylamine N-oxide in liver, and the later serves as a predictive maker 

for cardiovascular disease (Jonsson & Backhed, 2015). Therefore, xenobiotics can 

potentially lead to diseases by shifting gut microbial compositions or altering the microbial 

metabolism. Thus, it is noteworthy and imperative to investigate the functional link between 

exposure to xenobiotics and imbalanced gut microbiota.

Artificial sweetners are ubiquitously used food additives, and the US Food and Drug 

Administration (FDA) has approved the usage of saccharin, sucralose, aspartame, neotame, 

acesulfame potassium and advantame to date (Spencer et al., 2016). The effects of artificial 

sweetners on human health are controversial, and particularly, their role in shaping the gut 

microbiota is barely understood. As the oldest artificial sweetener, saccharin was discovered 

and used since 1879 (Shankar, Ahuja, & Sriram, 2013), and the FDA approved accepted 

daily intake (ADI) in human is 15mg/kg body weight/day. Saccharin is generally considered 

to be safe, partially because of the fact that it is barely metabolized by human body (Spencer 

et al., 2016). Saccharin goes through the gastrointestinal (GI) tract un-metabolized, and is 

absorbed slowly from the intestine but eliminated rapidly in the urine (Renwick, 1985). It 

has been reported that dietary saccharin could change gut bacterial metabolism in rats by 

affecting the activity of several bacterial enzymes (Mallett, Rowland, & Bearne, 1985). And 

saccharin consumption was discovered to be associated with altered amino acid metabolism 

by gut bacteria (Lawrie, Renwick, & Sims, 1985). Most recently, a study found that 

saccharin was able to alter the mouse gut microbiota and this alteration led to increased 

glucose intolerence (Suez et al., 2014). The impact of saccharin on the gut microbiota and its 

metabolic profiles leads to a new but underappreciated mechanism of the potential toxicity 

of saccharin, which represents a significant knowledge gap in artificial sweetener toxicity 

research.

Inflammation is one of the most common physical conditions and associated with a number 

of human diseases, such as inflammatory bowel diseases, obesity, diabetes, atherosclerosis 

and cancer (Coussens & Werb, 2002; Furet et al., 2010; Holmes et al., 2011; Libby, Ridker, 

& Maseri., 2002; Uronis et al., 2009; Xavier & Podolsky, 2007). In previous studies, 

saccharin was recognized to enrich the biosynthesis pathway of lipopolysaccharide (LPS) of 

the mouse gut microbiota (Suez et al., 2014), which is a common trigger of inflammation. 

The gut microbiota and related metabolites are pivotal for host immune response (Kau et al., 

2011). For example, the gut microbiota is involved in the regulation of host inflammatory 

responses through dietary fermentation products, such as short-chain fatty acids (Maslowski 

et al., 2009). It is of significance to probe the inflammation-inducing effects of saccharin in 
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view of gut microbial and metabolic changes. In the present study, we used a mouse model 

to investigate its functional impact on the gut microbiota, particularly the microbiota-related 

alterations associated with inflammation.

We hypothesized that intake of saccharin is able to induce perturbations of the gut 

microbiota, regarding bacterial abundance and metabolic profiles, which can potentially 

elicit inflammation in the host via host-gut microbiota interactions. To test this hypothesis, 

we exposed C57BL/6J male mice to saccharin at the human ADI level for six months. An 

integrated approach combining high-throughput 16S rRNA gene sequencing and liquid 

chromatography-mass spectrometry (LC-MS) metabolomics were applied to investigate the 

alterations of the gut microbiota and its metabolic profiles induced by saccharin. Results of 

quantitative real-time polymerase chain reaction (qPCR) revealed increased expression of 

the inflammation mediators, iNOS and TNF-α, in mouse liver after six-month saccharin 

exposure. More importantly, both 16S rRNA sequencing and metabolomics profiling 

revealed a pronounced impact of saccharin on the mouse gut microbiota and metabolites, 

with many changes linked to pro-inflammatory effects.

Materials and Methods

Animals and exposure

We used C57BL/6J mice (male, ~23g, approximately 8 weeks old) purchased from the 

Jackson Laboratories (Bar Harbor, ME) for this study. Twenty mice were housed upon 

arrival in the cages under the following environmental conditions (temperature 22°C, 40–

70% humidity, and a 12:12 hr light:dark cycle) with standard pelleted rodent diet and water 

ad libitum for a week before the study. Then, the mice were randomly assigned to the 

control and treatment group, consisting ten mice in each group. The treatment group 

received saccharin (Sigma-Aldrich, MO) for six months. Saccharin was dissolved in 

drinking water to 0.3mg/ml, which was equivalent to the FDA approved ADI in human. 

Saccharin solution was made every week. Control mice received tap water only. Following 

the treatment, body weight and water consumption were monitored for both groups. The 

fecal pellets from individual mouse were collected at baseline, three- and six-month and all 

samples were frozen at −80 °C for further analysis. This study was carried out in the 

University of Georgia animal facility. All experiments were approved by the University of 

Georgia Institutional Animal Care and Use Committee. The mice were treated humanely and 

with regard for alleviation of sufferings.

RNA extraction, cDNA preparation, and Quantitative real-time polymerase chain reaction 
(qPCR)

Total RNA from liver treated with RNAlater (Thermo Fisher Scientific) was extracted using 

the RNeasy mini kit (Qiagen, Valencia, CA) according to the manufacturer’s instruction. 

The resultant RNA was treated with DNase (DNA-free™ DNA Removal Kit, Thermo Fisher 

Scientific) to remove genomic DNA contamination. RNA quality was determined using an 

Agilent TapeStation (Agilent Technologies). Then, 1μg of total RNA was used for cDNA 

synthesis using iScript™ Reverse Transcription Supermix for RT-qPCR (Bio-Rad 

Laboratories, CA). The sequences of the primers used for quantitative PCR were listed in 
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Table S1 (Alkhouri et al., 2010; Grivennikov et al., 2012; Song et al., 2015; Wang et al., 

2006; Xu et al., 2005; Zhang et al., 2015). All results were normalized to the housekeeping 

gene β-actin as an endogenous control. Each reaction was prepared as instructed in the 

SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad) manual. Reactions were run 

on a Bio-Rad CFX96 Touch™ Real-Time PCR Detection System. The qPCR was performed 

using the following protocol: 95 °C for 10 min, 40 cycles of 15 s at 95 °C, 30 s at 60 °C, 30 

s at 72 °C followed by 65 °C to 95 °C increment by 0.5°C for 0.05s. DNase digestion and 

no-RT control were used to control the potential genomic DNA contamination, and no-

template control was used to control technical contamination. Results were analyzed using 

ΔΔCT method by CFX manager software (Bio-Rad).

16S rRNA gene sequencing of the gut microbiota and data processing

We used 16S rRNA gene sequencing to investigate the gut microbiota in fecal samples at 

different time points. Fecal DNA from individual mouse was extracted using a PowerSoil 

DNA Isolation Kit (MO BIO Laboratories) according to the manufacturer’s instructions. The 

resultant DNA was quantified and stored in −80 °C prior to analysis. For each sample, 1ng 

of the purified fecal DNA was used as template for the PCR amplification and the barcoded 

bacterial universal primers of 515 (5′-GTGCCAGCMGCCGCGGTAA) and 806 (5′-

GGACTACHVGGGTWTCTAAT) were applied to target variable region 4 of the 16S rRNA 

gene. Then, the barcoded amplicons from all samples were normalized, pooled and 

sequenced by Illumina Miseq at the Georgia Genomics Facility. A depth of at least 25,000 

reads per sample was prepared by generating pair-end 250 × 250 (PE250, v2 kit) reads. The 

raw mate-paired files of 16S rRNA gene sequences were first trimmed to dispose bases with 

high error probability (> 0.01) and merged using Geneious 8.1.5 (Biomatters, Auckland, 

New Zealand). The pre-processed 16S rRNA gene sequences data were then analyzed using 

QIIME (Quantitative Insights into Microbial Ecology, version 1.9.1) software package 

(Caporaso et al., 2010). The operational taxonomic units (OTUs) with 97% sequence 

similarity against Greengenes database 13.8 were obtained using UCLUST. All OTUs were 

classified at five different levels: phylum, class, order, family and genus. Mothur software 

was used to assess the difference in individual gut bacterial component between the controls 

and treated mice over time.

Functional capability analysis

Tax4Fun, an open-source R package, uses 16S rRNA sequencing dataset to survey the 

functional profiles of microbial communities (Asshauer, Wemheuer, Daniel, & Meinicke, 

2015). It provides functional repertoire with a high correlation coefficient to the 

corresponding metagenome sequence data based on 16S rRNA datasets (Asshauer et al., 

2015). It was used to analyze the enrichment of functional genes of the microbiome in each 

group to investigate functional responses of bacterial communities to saccharin. QIIME with 

a SILVA database extension (SILVA 119) was used to pre-process raw data for Tax4Fun as 

described previously. Further statistical analysis was investigated using Statistical Analysis 

of Metagenomic Profiles (STAMP) (version 2.1.3) for results obtained from Tax4Fun (Parks, 

Tyson, Hugenholtz, & Beiko, 2014).
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Fecal metabolite analysis

Extraction of metabolic compounds in fecal samples, collected after exposure to saccharin 

for six months, was conducted using methanol and water as previously described (Lu et al., 

2014). The resultant extracts were suspended in 20% Acetonitrile for MS analysis. A HPLC-

Q-TOF (Quadrupole-time-of flight (Q-TOF) 6520 mass spectrometer (Agilent Technologies, 

Santa Clara, CA) with an electrospray ionization source interfaced with Agilent 1200 

HPLC) system was used to conduct metabolomic profiling. The daily calibration of Q-TOF 

with standard tuning solution (Agilent Technologies) was carried out to ensure a mass 

accuracy of < 5ppm. Metabolites were separated on an YMC Hydrosphere C18 column and 

a mass range of 30 to 2000 m/z was employed to capture molecular features in a positive 

mode.

Metabolomics data processing and metabolite identification

Data obtained from the HPLC-Q-TOF system was processed and analyzed as described 

previously (Lu, Knutson, Wishnok, Fox, & Tannenbaum, 2012). In brief, the MassHunter 

Workstation software (Agilent) was first used to convert the raw .d data to .mz, and signals 

with intensity higher than 1000 counts were included for the subsequent analysis. The 

XCMS Online tools were used to perform peak alignment, intensity calculation and 

comparison between the control and treatment group. Significantly altered molecular 

features were profiled and searched against the Human Metabolome Database (HMDB) 

(http://www.hmdb.ca) and METLIN (http://metlin.scripps.edu). Matched molecular features 

with database were examined by the product ion scan using a MS/MS mode in the Q-TOF 

6520 mass spectrometer for each molecular feature, and the spectra were searched against 

the HMDB and METLIN MS/MS database for tentative identifications.

Statistical analysis of the data

A two-tailed Student’s t-test was used to determine the statistical significance of pro-

inflammatory gene expression between the controls and saccharin-treated mice. The 

difference in individual gut bacterial component between the controls and sucralose-treated 

mice at different time points was assessed using a nonparametric test with Metastats (White, 

Nagarajan, & Pop, 2009). A two-tailed Welch’s t-test was used to compare the difference of 

functional genes and metabolites between the controls and sucralose-treated mice. Also, 

partial least squares discriminant analysis (PLS-DA) were performed to visualize 

metabolomics difference in different groups. A p-value of 0.05 or less was considered 

statistically significant.

Results

Effect of saccharin on the inflammation mediators in mouse liver

To explore the effect of saccharin consumption on chronic inflammation in mice, we 

examined the pro-inflammatory gene expression on mRNA level. Notably, we found two key 

genes, inducible nitric-oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-α), 

were significantly (p<0.05) elevated in liver of saccharin-treated mice (Figure 1), which 

suggested a strong link between saccharin consumption and host inflammatory response.
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Impact of saccharin on the dynamics of gut bacterial development

Saccharin induced significant changes to the mouse gut microbiota, manifested by the 

alterations of gut bacteria. As shown in Figure 2, the relative abundance of bacteria showed 

no significant difference between the treatment and control group at baseline, however 

displayed distinction either at three-month or six-month, or both. Eleven genera were 

significantly changed after three- and six-month treatment, indicating the effect of saccharin 

on disrupting the dynamics of gut microbiome development. Specifically, Sporosarcina, 

Jeotgalicoccus, Akkermansia, Oscillospira and Corynebacterium were significantly 

increased after three-month consumption; Corynebacterium, Roseburia and Turicibacter 
were increased after six-month consumption. Anaerostipes and Ruminococcus were 

significantly decreased after three-month consumption; Ruminococcus, Adlercreutzia and 

Dorea were decreased after six-month consumption. This result indicates that saccharin 

consumption could perturb the gut microbiota, which is consistent with a previous report 

(Suez et al., 2014). Of interest, several bacterial genera are demonstrated to be involved in 

inflammation. For instance, Corynebacterium, Turicibacter, Anaerostipes, Dorea, Roseburia 
and Ruminococcus (Bajaj et al., 2012; Chamulitrat et al., 1995; Collins et al., 2014; 

Fernández et al., 2016; Ng et al., 2013) were related to inflammation, suggesting that 

saccharin-induced gut microbiota changes may be partially responsible for the pro-

inflammatory effects of saccharin.

Enrichment of bacterial functional genes of pro-inflammatory mediators

Altered gut microbiota generally functions differently, which can be unveiled by bacterial 

functional gene profiling. Therefore, we performed the functional enrichment analysis of the 

mouse gut microbiota based on 16S rRNA sequencing data. The functional comparison of 

the gut microbiota between the saccharin and control group revealed pronounced difference 

in term of bacterial inflammation-related pathways. We found that orthologs involved in pro-

inflammatory mediators were highly elevated in saccharin-treated mice, as shown in Figure 

3. At six-month consumption, 6 Lipopolysaccharide (LPS) biosynthesis orthologs, one 

Flagellar assembly ortholog, eleven fimbrial orthologs, twenty-three bacterial toxin 

orthologs, and six multidrug resistance orthologs were significantly increased in saccharin-

treated mice. Some of the elevated genes were only observed in saccharin-treated mice. 

These data suggested that perturbation of the gut microbiota by saccharin increased the 

abundance of bacterial genes that could increase the risk of inflammation in the host, as 

these pro-inflammatory mediators can translocate into the host circulation to elicit 

inflammatory response.

Saccharin altered the gut microbial metabolic profiles

Large amounts of metabolites inside the intestine play crucial roles in the communication 

between the gut microbiota and host, which helps keep a healthy gut environment. Given the 

alteration of fecal microbiota by saccharin and the fact that the gut metabolites are co-

produced by gut microbes and the host, we further explored the effects of saccharin on gut 

microbial metabolic profiles. In concert with the perturbation on bacterial abundance, 

comparative metabolomics analysis indicated that saccharin altered fecal metabolic profiles. 

Figure 4 shows that saccharin altered the gut metabolome with 1743 significantly changed 
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molecular features (Figure 4A); and the PLS-DA plot reveals a clear separation between 

controls and saccharin-treated mice (Figure 4B). These results indicated that six-month 

saccharin consumption altered fecal metabolome.

Significantly changed functional metabolites by saccharin

To further investigate the effects of saccharin on chronic inflammation in the host, we 

identified significantly altered molecular features and obtained a list of changed metabolites 

(Table S2). Notably, some inflammation-related metabolites were identified. For example, 

we found that equol, a bacterial metabolite of daidzein, was decreased by saccharin, as 

illustrated in Figure 5A. Meanwhile, daidzein and its other major bacterial metabolites, 

dihydrodaidzein and O-desmethylangolensin, were significantly increased in saccharin-

treated mice. Increased daidzein and decreased equol suggest a reduced growth or decreased 

enzymatic activity of metabolizing bacteria. Likewise, linoleoyl ethanolamide, palmitoleoyl 

ethanolamide, N,N-Dimethylsphingosine and quinolinic acid (Figure 5B), were significantly 

changed in saccharin-treated mice. The effects of these compounds in mediating 

inflammation have been demonstrated in previous studies (Ishida et al., 2013; Nishiuma et 

al., 2008).

Discussion

In this study, we applied qPCR to examine the inflammatory markers in mouse liver and two 

key pro-inflammatory gene expression were found elevated. Also, we used 16S rRNA gene 

sequencing and metabolomics to explore the effects of saccharin consumption on the gut 

microbiota and its metabolic functions. We have demonstrated that saccharin consumption 

altered the fecal microbiota and metabolome, indicating a functional impact of saccharin on 

the gut microbiota and host. Notably, saccharin consumption increased the abundance of 

some bacterial genes of pro-inflammatory mediators and decreased the level of anti-

inflammatory metabolites, which could increase the risk of developing inflammation in the 

host. This study provides novel insights into saccharin-induced functional changes in the gut 

environment and a potential link between gut microbiome perturbations and chronic 

inflammation in the host.

Previous studies have indicated that saccharin may induce inflammation in animals (Suez et 

al., 2014), and in our study, we found elevated gene expression of iNOS and TNF-α in the 

liver of saccharin-treated mice. Inducible NOS (iNOS), present in hepatocytes, endothelium 

and other immune cells, can synthesize high concentration of nitric oxide (NO), and lead to 

tissue damage in inflammatory processes. Expression of iNOS is highly regulated at the 

transcriptional level, through cellular receptors, such as CD14, via the activation of NFκB 

pathway and the expression can be triggered by LPS through CD14 (Aktan, 2004). iNOS 

plays an important role in the inflammation in multiple liver diseases, such as liver tumors 

and liver fibrosis from chronic viral infection (La Mura et al., 2014; Sass, Koerber, Bang, 

Guehring, & Tiegs, 2001). TNF-α, a key cytokine in inflammation, is mainly produced by 

activated macrophages, induced by pathogen-associated molecular patterns (PAMPs), such 

as LPS, through toll-like receptors (TLRs) (Wu & Zhou, 2010). Expression of TNF-α can 

activate NFκB pathways and induce damage to cells. Previous studies showed that TNF- α 
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could mediate liver damage, which will lead to inflammation in liver, and anti-TNF antibody 

treatment could improve steatosis in ob/ob mice (Garcia-Ruiz et al., 2006). The elevated 

expression of iNOS and TNF-α herein suggested that saccharin consumption leads to liver 

inflammation in mice.

Inflammation triggers are common in the GI tract, for instance, living microbes that behave 

as pathogens or opportunistic pathogens, PAMPs such as LPS, flagellin, bacterial DNA and 

RNA, and microbial metabolites such as toxins and secondary bile acids. Perturbation of the 

gut microbiota and metabolites can potentially increase the level of inflammation triggers 

and lead to inflammation in the host. In this study, we observed changes in the abundances 

of various bacteria at the genus level between the saccharin and control group. Among 

changed gut bacteria, several genera were reported to be related to inflammation in the host. 

Corynebacterium in the family of Corynebacteriaceae, which were found increased in our 

study, contains some opportunistic pathogenic species. For example, Corynebacterium 
parvum could induce chronic inflammation through the over-production of NO in mouse 

liver, and lead to hepatic necrosis and death if followed by LPS injection (Chamulitrat et al., 

1995). Anaerostipes, Dorea and Ruminococcus in family Lachnospiraceae were found 

decreased in saccharin-treated mice in this study, and the decrease of these three genera were 

associated with inflammation in previous studies: Anaerostipes, decreased in a biliary 

inflammation mouse model, Dorea decreased in subjects of irritable bowel syndrome, and 

the loss of Ruminococcus was associated with colitis induced by dextran sodium sulfate 

(Fernández et al., 2016; Ng et al., 2013). Taken together, these bacterial changes may 

partially contribute to elevated expression of inflammatory genes in mouse liver. In addition, 

the gut microbiome is highly involved in energy metabolism of the host. For example, 

different gut microbiome community structures are associated with obesity (P.J. Turnbaugh 

& Gordon, 2009; P.J. Turnbaugh et al., 2006). Saccharin was reported to alter body weight 

gain in rodents (Parlee et al., 2014; Swithers, Martin, Clark, Laboy, & Davidson, 2010), 

however, in this study, no significant difference was found in body weight gain between the 

controls and saccharin-treated mice (10.36±1.41g and 10.30±2.33 g for the control and 

saccharin group, respectively) after saccharin consumption for 6 months at the dose 

equivalent to the FDA approved ADI in human (Figure S1).

Consistently, the functional enrichment analysis of the gut microbes also displayed a huge 

distinction in bacterial functional repertoire between the saccharin and control group. 

Notably, we found that orthologs related to bacterial pro-inflammatory mediators were 

significantly increased after saccharin consumption (Fig. 3). LPS, flagella and fimbriae, 

known PAMPs that can trigger pathological inflammation in the host, were increased in 

saccharin-treated mice. LPS is an endotoxin from the outer membrane of Gram-negative 

bacteria, and it can initiate secretion of pro-inflammatory cytokines like interleukin-6 or 

tumor necrosis factor (TNF)-α via toll-like receptor 4 (TLR4) (de La Serre et al., 2010). 

Flagella and fimbriae are important bacterial components that are involved in the host 

inflammatory response modulation (Madianos, Y. A. Bobetsis, & Kinane., 2005). High 

levels of flagella is associated with gut mucosal barrier breakdown and inflammation 

(Cullender et al., 2013), while fimbriae play an important role in adhesion and invasion into 

epithelial cells (Nakagawa, 2002). Likewise, increased bacterial genes involved in multiple 

bacterial toxins that are also strongly associated with inflammation were found in saccharin-
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treated mice (Madianos et al., 2005). The enrichment of inflammation-associated orthologs 

in mouse gut bacterial may contribute to tissue inflammation. In addition, after six-month 

saccharin treatment, the gut microbiota exhibited a higher frequency and abundance of 

bacterial genes of multi-drug resistance. For instance, the frequency of several major 

facilitator superfamily transporters was higher in mice with saccharin treatment. It is well-

documented that multi-drug resistance efflux pumps in bacteria could play an important role 

in resistance to antibiotics as well as the extrusion of host-produced natural substances and 

xenobiotics (Marshall, Dorothy J. Ochieng, & Levy, 2009; Piddock, 2006). These results 

strongly suggested a potential effect of saccharin to induce elevated inflammatory responses 

through altering the gut microbiota.

Saccharin significantly changed bacterial functional metabolites, which may also affect the 

host. For example, bacterial metabolism of daidzein was impaired by saccharin. Daidzein, an 

isoflavone compound, works as a weak estrogen in the body, and can be metabolized into 

dihydrodaidzein, O-desmethylangolensin (O-DMA) and equol by gut bacteria (Decroos, 

Vanhemmens, Cattoir, Boon, & Verstraete, 2005). Interestingly, the metabolism pattern 

varies depending on the composition of the gut microbiota, and only about one third of the 

human population possess the gut microbiota that can produce equol and about 80%–90% of 

the population are capable to produce O-DMA (Atkinson, Cara L. Frankenfeld, & Lampe, 

2005). Equol or O-DMA is more biologically active than daidzein as an estrogen. Recently, 

equol was found to have the ability to inhibit LPS-induced oxidative stress in macrophages, 

inhibit superoxide production in cell culture, protect neurons from neuro-inflammatory 

injury and suppress inflammatory response in mice and, in particular, the antioxidant activity 

of equol is greater than its parent compound daidzein (Gou, Jiang, Zheng, Tian, & Lin, 

2015; Hwang, Wang, Morazzoni, Hodis, & Sevanian, 2003; Lin, Yamashita, Murata, 

Kumazoe, & Tachibana, 2016; Subedi et al., 2017). Therefore, the capacity of equol 

production from daidzein by gut bacteria can increase its antioxidative and anti-

inflammatory ability in the host. In our study, saccharin consumption significantly decreased 

the production of equol and increased the level of its parent compound daidzein and other 

metabolites, O-DMA and dihydrodaidzein (Figure 5), which not only demonstrates the 

impact of saccharin on the metabolic functions of the gut microbiome, but also may 

decreases the ability of the gut microbiome to protect the host from inflammatory 

challenges. Consistent with the decreased level of equol, we found decreased abundance of 

Adlercreutzia in the gut microbiota (Figure 2), which contains equol-producing bacteria in 

this genus (Maruo, Sakamoto, Ito, Toda, & Benno, 2008). In addition, several other anti-

inflammatory compounds, palmitoleoyl ethanolamide (PEA), linoleoyl ethanolamide (LEA) 

and N,N-Dimethylsphingosine, were decreased in saccharin-treated mice. As a fatty acid 

ethanolamide, PEA was found to inhibit inflammation in human adipocytes and peripheral 

tissues through the regulation of pro-inflammatory proteins, nitric oxide, and neutrophils 

(Ezzili, Otrubova, & Boger, 2010). Likewise, LEA was reported to reduce LPS-induced 

inflammation in macrophages (Ishida et al., 2013). N,N-Dimethylsphingosine was shown to 

attenuate airway inflammation in a mouse model (Nishiuma et al., 2008). The reduction of 

these compounds can impact chemical signaling between the gut microbiome and host, 

which may contribute to the development of tissue inflammation in the host. Moreover, we 

found increased quinolinic acid, a metabolite of tryptophan, which served as a pro-
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inflammatory compound in a previous study (Keszthelyi, Troost, & Masclee, 2009). 

Chemical signaling of gut microbiome-host interaction likely involves a vast number of 

functional metabolites, as exemplified by only few compounds briefly described here. 

Nevertheless, the change of these metabolites indicates that saccharin consumption may 

increase the risk of host inflammation through altering metabolites produced or regulated by 

the gut microbiome.

Conclusions

Our results revealed that 6-month saccharin administration in drinking water induced 

elevated inflammation in mouse liver, which could be functionally associated with 

saccharin-induced gut microbiome perturbations, exemplified by the alteration of 

inflammation-related bacterial pathways and metabolites (Figure 6). Elevated expression of 

iNOS and TNF-α in liver supported that saccharin consumption could increase 

inflammation in mice, and this change may be the consequence of perturbations of the gut 

microbiota and metabolites arising from saccharin consumption. Our results highlight the 

role of disrupted gut microbiome in eliciting systemic adverse response in the host. 

Consequently, this study provides novel insights regarding the toxicity assessment of food 

additives, such as artificial sweeteners, in view of their effects on gut microbial homeostasis.
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Figure 1. 
Comparisons of pro-inflammatory gene expression on mRNA level in liver of saccharin-

treated mice. Inducible nitric-oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-

α) significantly elevated in liver of saccharin-treated mice. (*p<0.05)
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Figure 2. 
Saccharin consumption altered the dynamics of gut microbiome development in male 

C57BL/6J mice. Anaerostipes (A) and Ruminococcus (B) were significantly decreased after 

three-month consumption; Ruminococcus (B), Adlercreutzia (C) and Dorea (D) were 

decreased after six-month consumption. Sporosarcina (E), Jeotgalicoccus (F), Akkermansia 
(G), Oscillospira (H) and Corynebacterium (I) were significantly increased after three-month 

consumption; Corynebacterium (I), Roseburia (J) and Turicibacter (K) were increased after 

six-month consumption. (*p<0.05, **p<0.01, ***p<0.001)
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Figure 3. 
Significantly altered orthologs of the gut microbiota based on functional enrichment 

analysis. Genes of lipopolysaccharide (LPS) biosynthesis (A), flagellar assembly (B), 

fimbria (C), bacterial toxins (D), and multidrug resistance (E) were significantly increased in 

saccharin-treated mice (p<0.05).
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Figure 4. 
(A). Saccharin consumption changed the fecal metabolome in male C57BL/6J mice. 1743 

metabolic features were significantly (p<0.05 and fold change>1.5) changed compared to 

controls. (B). Fecal metabolic profiles of controls were separated from those of saccharin-

treated mice by PLS-DA.
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Figure 5. 
Saccharin consumption significantly altered key fecal metabolites in male C57BL/6J mice, 

as exemplified by equol, a gut microbiome-catalyzed metabolite of daidzein (A) and 

metabolites involved in mediating inflammation (B). (*p<0.05, **p<0.01, ***p<0.001)
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Figure 6. 
The functional link between saccharin-induced gut microbiome perturbations and host 

inflammation.
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