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Abstract

Apoptotic cell death is critical for the early development of the nervous system, but once the 

nervous system is established, the apoptotic pathway becomes highly restricted in mature neurons. 

However, the mechanisms underlying this increased resistance to apoptosis in these mature 

neurons are not completely understood. We have previously found that members of the miR-29 

family of microRNAs (miRNAs) are induced with neuronal maturation and that overexpression of 

miR-29 was sufficient to restrict apoptosis in neurons. To determine whether endogenous miR-29 

alone was responsible for the inhibition of cytochrome c release in mature neurons, we examined 

the status of the apoptotic pathway in sympathetic neurons deficient for all three miR-29 family 

members. Unexpectedly, we found that the apoptotic pathway remained largely restricted in 

miR-29-deficient mature neurons. We therefore probed for additional mechanisms by which 

mature neurons resist apoptosis. We identify miR-24 as another miRNA that is upregulated in the 

maturing cerebellum and sympathetic neurons that can act redundantly with miR-29 by targeting a 

similar repertoire of pro-death BH3-only genes. These results reveal that mature neurons engage 

redundant brakes to restrict the apoptotic pathway and ensure their long-term survival.
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Introduction

In recent years, it has become increasingly clear that the threshold to undergo apoptosis can 

be markedly different in different cell types. For example, primary mitotic cells are sensitive 

to apoptotic insults, whereas postmitotic cells such as neurons, cardiomyocytes and 

myotubes have acquired mechanisms for restricting apoptosis [1–14]. Such differences in 

the regulation of apoptosis are physiologically important because while mitotic cells are at 

continual risk of becoming cancerous and need to maintain their ability to die rapidly, this 

risk is significantly lower in terminally differentiated postmitotic cells. Indeed, the ability of 
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organisms to maintain the long-term survival of postmitotic cells such as neurons is critical 

for normal physiological functions [15].

What is less appreciated is that even within the same cells, the apoptotic pathway can 

sometimes undergo dynamic changes during and after development. A cell type that 

exemplifies this phenomenon is neurons, where the apoptotic pathway becomes highly 

restricted as young neurons become mature [16]. Apoptosis plays an important role in the 

developing nervous system, where it is estimated that more than 50% of neurons that are 

initially produced will die by apoptosis as a part of normal neuronal development [17]. 

However, once the nervous system is fully formed and neurons are appropriately wired, it is 

physiologically important for these neurons to survive long term. Indeed, the apoptotic 

pathway becomes highly restricted with neuronal maturation, but the molecular details are 

not completely understood.

Mouse sympathetic neurons provide an excellent model system for studying the regulation 

of the apoptotic pathway during neuronal maturation. Young P5 (postnatal day 5) neurons 

can undergo apoptosis in response to multiple stimuli including nerve growth factor (NGF) 

withdrawal, DNA damage, and Endoplasmic Reticulum stress. In contrast, those same 

neurons after 4–5 weeks (P28) become remarkably resistant to the same apoptotic stimuli [7, 

18, 19]. Apoptotic stimuli in neurons are known to transcriptionally upregulate multiple 

redundant members of the pro-apoptotic BH3-only family of proteins [20]. These proteins 

activate Bax, which then permeablizes the mitochondria to induce the release of cytochrome 

c (cyt c) into the cytosol [19, 21]. Once in the cytosol, cyt c binds to Apaf-1 (Apoptotic 

Activating Protease 1) and forms the apoptosome complex with procaspase-9. 

Autoactivation of caspase-9 on the apoptosome can then activate caspase-3 to ultimately 

trigger cell death [22].

We and others have previously shown that one mechanism by which mature neurons become 

resistant to apoptosis is via the epigenetic silencing of Apaf-1[4, 23–25]. However, mature 

neurons induced to undergo apoptosis with NGF deprivation fail to release cyt c, (a process 

that is unaffected by Apaf-1 levels), despite maintaining Bax levels [18, 19]. Interestingly, 

mature neurons still undergo the initial steps in the apoptotic pathway, such as c-jun 

phosphorylation, after NGF deprivation [18]. This suggested the presence of one or more 

brakes upstream of cyt c release but downstream of c-jun phosphorylation in mature 

neurons. Indeed, mature neurons were found to have markedly elevated levels of the 

microRNA (miRNA) miR-29, which targets and represses multiple redundant members of 

the BH3-only family of proteins [7]. A neuroprotective role for miR-29 is further supported 

by the results of in vivo models of neuronal insult, which have found that overexpression of 

miR-29 is able to reduce cell death in ischemic stroke [26–28], spinal cord injury [29], and 

ethanol-induced toxicity [30]. However, it is unclear at this point whether miR-29 induction 

is the only brake employed to inhibit cyt c release in mature neurons, or if other redundant 

brakes also exist.

We find that deletion of all three miR-29 family members fails to re-sensitize mature 

neurons to apoptosis, with mature miR-29 knockout neurons remaining significantly 

resistant to cyt c release induced by NGF deprivation. Here we report that another miRNA, 
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miR-24, is also upregulated with neuronal maturation and is capable of acting redundantly 

with miR-29 to inhibit cyt c release by targeting a similar subset of BH3-only genes. Our 

results highlight the ability of mature neurons to engage multiple, redundant mechanisms to 

restrict the apoptotic pathway and help ensure their long-term survival.

Results

Maturing neurons simultaneously restrict apoptosis both pre- and post-mitochondria

In previous studies of neuronal maturation, the mechanisms by which mature neurons 

become resistant to apoptosis have been investigated in post-natal day 28 neurons. At this 

time-point, neurons engage multiple mechanisms to restrict apoptosis both up-stream and 

down-stream of mitochondrial permeablization. However, the exact timing for when these 

brakes are initiated during the maturation process is not known. Therefore, to investigate the 

time course and mechanisms by which neurons become resistant to apoptosis with 

maturation, we matured neurons for increasing lengths of time and assessed their 

susceptibility to apoptotic stimuli. Sympathetic neurons were isolated from neonatal 

(postnatal day 0–1) mouse pups and maintained in culture for 5–25 days. Apoptosis was 

then induced by deprivation of Nerve Growth Factor (NGF). While neurons maintained in 

culture for 5–7 days remained vulnerable to NGF deprivation-induced apoptosis, marked 

resistance to apoptosis was observed by as early as 9 days in vitro (DIV) (Figure 1A, B).

Neurons have been previously shown to restrict apoptosis both before and after the 

mitochondrial checkpoint. To more precisely define whether these two separate brakes were 

engaged simultaneously or sequentially, we specifically assessed apoptosis restriction at the 

pre- and post-mitochondrial checkpoint. First, to assess the post-mitochondrial resistance to 

apoptosis, we microinjected maturing neurons with purified cyt c. These experiments were 

conducted in neurons from XIAP-deficient mice as XIAP (X-Linked Inhibitor of Apoptosis) 

is known to inhibit cyt c-induced apoptosis even in young neurons [1]. As reported earlier, 

neurons (XIAP−/−) maintained for 5 DIV exhibited massive cell death in response to 

cytosolic cyt c injection, with virtually 100% of neurons dying within 24 hours of injection. 

Approximately 50% of neurons became resistant to cyt c injections by 10 DIV, with greater 

than 80% exhibiting resistance by 15 DIV (Figure 1C).

Second, to assess pre-mitochondrial resistance to apoptosis, we subjected maturing neurons 

to NGF deprivation and assessed whether cyt c was maintained at the mitochondria or 

released into the cytosol by immunofluorescence. As mitochondrially-released cyt c is 

rapidly degraded in neurons, loss of cyt c signal is an established indicator of its release 

from mitochondria in these cells [8]. Consistent with the results of our neuronal survival 

experiments, neurons by 10 DIV exhibited significant resistance to NGF-deprivation induced 

cyt c release, with approximately 50% of neurons maintaining cyt c after 48 hrs of NGF 

deprivation. Nearly complete resistance at this pre-mitochondrial checkpoint was seen in 15 

DIV neurons (Figure 1D, E). Together, these results show that both pre- and post-

mitochondrial brakes are engaged concurrently in maturing neurons, resulting in resistance 

to apoptosis within 2 weeks in culture.
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Loss of miR-29 is not sufficient to re-sensitize mature neurons to apoptosis

Recent studies in our lab have identified the miR-29 family as regulators of apoptosis in 

maturing neurons. miR-29 is induced during neuronal maturation (Figure 2A), and can 

inhibit the induction of multiple members of the BH3-only family of proteins to prevent Bax 

activation and apoptosis [7]. We hypothesized that loss of miR-29 expression may render 

mature neurons sensitive to apoptosis. miR-29 has three family members (miR-29a,b,c) that 

are expressed from two separate genomic loci. Thus, to completely delete miR-29 in 

sympathetic neurons, mice floxed at both miR-29 loci were crossed with a mouse line 

expressing Cre recombinase under a tamoxifen inducible promoter (ER-Cre). Neurons 

isolated from these mice were then treated with 4-hydroxy-tamoxifen in vitro to induce 

recombination and generate miR-29 deficient neurons. Loss of miR-29 expression was 

verified by RT-qPCR comparing cre-positive (hereafter referred to as miR-29 KO) and Cre-

negative (hereafter referred to as miR-29 WT) littermates, with mature miR-29 KO neurons 

exhibiting virtually no detectable miR-29 as compared to WT controls (Figure 2B).

miR-29 WT and miR-29 KO neurons were matured in culture until 35 DIV and subjected to 

NGF deprivation to induce apoptosis. Since miR-29 is known to inhibit apoptosis upstream 

of the mitochondria (and mature neurons are known to engage an additional brake 

downstream of mitochondria), we specifically examined mitochondrial release of cyt c as a 

readout for these experiments. We were surprised to find that mature miR-29 KO neurons 

still exhibited negligible cyt c release in response to NGF deprivation (Figure 2C, D).

Since miR-29 is known to be able to target multiple pro-apoptotic BH3-only domain genes 

and inhibit their induction, we next assayed BH3-induction in young wild-type, mature wild-

type, and mature miR-29 knockout neurons. Consistent with our findings that mature 

miR-29 knockout neurons fail to release cyt c, we found that miR-29 knockout neurons also 

failed to substantially induce BH3-only domain genes in response to 48 hours of NGF 

deprivation when compared to young neurons as measured by RT-qPCR (Figure 2E). These 

results indicate that loss of miR-29 expression alone is not sufficient to re-sensitize mature 

neurons to apoptosis, and led us to hypothesize that other brakes could be acting redundantly 

with miR-29 to the induction of BH3-only genes, cyt c release, and apoptosis in mature 

neurons.

Other microRNAs with predicted targets in the apoptotic pathway are upregulated during 
neuronal maturation

To identify other miRNAs that are induced during maturation and capable of acting 

redundantly with miR-29 to inhibit cyt c release and apoptosis, we utilized two approaches 

(Figure 3A). First, we used TargetScan software (www.targetscan.org) to identify predicted 

miRNAs that could target the BH3-only genes. Second, we reviewed existing literature on 

miRNAs that are known to increase with brain maturation, in addition to performing small-

RNA-Seq on maturing cerebellum, to identify miRNAs that were upregulated in maturing 

neurons. While the fold increase in miR-29 was the most striking (Figure 2A, 

Supplementary Table S1), we identified three other miRNAs upregulated more than 5-fold in 

maturing neurons that were predicted to target the 3′ UTRs of multiple BH3-only family 

genes: miR-24, miR-124, and miR-128 (Figure 3B). We confirmed the upregulation of these 
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miRNAs during neuronal maturation using RT-qPCR in developing cerebellum (Figure 3C–

E) and sympathetic neurons (Figure 3F–H). These results identify miR-24, miR-124, and 

miR-128 as potential candidates that could act redundantly with miR-29 to restrict apoptosis 

in mature neurons.

Overexpression of miR-24 in Young Neurons Inhibits Cyt c Release and Cell Death

To determine whether any of the selected miRNAs were capable of inhibiting BH3-only 

gene induction and cell death in a manner similar to miR-29, we overexpressed mimics to 

the selected miRNAs in young neurons using single-cell microinjection. Neurons isolated 

from neonatal mice were injected at 3 DIV with selected mimics or negative control miRNA 

and, after 48 hours, were deprived of NGF to induce apoptosis. As a positive control, we 

also injected neurons with a mimic to miR-29b which, as reported previously, inhibited cyt c 
release in young neurons. Among the candidate miRNAs, we found only miR-24 

overexpression to be capable of inhibiting cyt c release in neurons deprived of NGF (Figure 

4A, B). The ability of miR-24, but not miR-124 and miR-128, to inhibit cyt c release is 

likely because miR-24 is predicted to target more members of the redundant BH3-only 

family than either miR-124 or miR-128 (Figure 3B). Importantly, we also examined whether 

miR-24 expression could inhibit apoptosis. Consistent with the observed effect on cyt c 
release, we found that miR-24 significantly inhibits apoptosis in NGF-deprived young 

neurons (Figure 4C).

miR-24 Can Inhibit Bim and Puma Induction in NGF-Deprived Neurons

While previously published reports have validated miR-24 binding sites in the Bim 3′UTR, 

and miR-24 has been previously shown to downregulate Bim expression and inhibit 

apoptosis in cardiac tissue [31], its potential role in regulating neuronal apoptosis has not 

been investigated. To examine if miR-24 could inhibit Bim induction in neurons, young (P3 

equivalent) sympathetic neurons were injected with mimics to miR-24, miR-29 (positive 

control), or a negative control miRNA, and were then subjected to NGF deprivation to 

trigger Bim induction. Just as seen with miR-29, miR-24 expression potently suppressed 

Bim induction in NGF-deprived neurons (Figure 5A, B).

We next sought to determine if miR-24 could also target Puma, another BH3-only family 

member that has been found to act redundantly with Bim to induce neuronal apoptosis [32]. 

Puma has two conserved miR-24 sites in its 3′UTR (Figure 5C). To validate these sites, we 

cloned the 3′UTR of Puma into a luciferase reporter vector. We then cotransfected this 

vector with either a negative control miRNA or a miR-24 mimic into HEK293T cells. We 

found that miR-24 was indeed able to significantly repress the expression of luciferase in 

cells expressing the Puma 3′UTR compared to a negative control (Figure 5D).

To test the functional ability of miR-24 expression to inhibit Puma, we took advantage of the 

fact that in sympathetic neurons, cyt c release and apoptosis in response to DNA damage is 

known to be entirely dependent on Puma expression [33]. Thus, we examined whether 

miR-24 expression was able to effectively inhibit cyt c release in young neurons treated with 

the DNA damaging agent etoposide. Consistent with our observation that miR-24 is able to 

target Puma, we found that the release of cyt c was inhibited in young neurons expressing 
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miR-24 in response to etoposide treatment (Figure 5E, F). Together, these results identify 

miR-24 as a miRNA that is not only induced with neuronal maturation, but as seen with 

miR-29, also targets multiple BH3-only genes and inhibit neuronal apoptosis.

Discussion

The ability of maturing neurons to dynamically switch the apoptotic pathway from a 

permissive to a restrictive state is of critical importance. This allows young neurons to 

permit physiological apoptosis during nervous system development, but once established, to 

highly restrict apoptosis to promote the long term survival of mature neurons. Previous 

studies had identified miR-29-mediated inhibition of BH3-only genes and the epigenetic 

silencing of the Apaf-1 promoter as mechanisms by which apoptosis is restricted pre- and 

post-mitochondria in mature sympathetic neurons [4, 7]. Our results now highlight the 

finding that the apoptotic pathway is even more restricted in adult neurons than previously 

appreciated, with mature neurons engaging redundant brakes at the pre-mitochondrial 

checkpoint.

Our previous results brought focus on the neuroprotective capability of miR-29 in mature 

neurons. Not only is miR-29 markedly induced with neuronal maturation but expression of 

miR-29 alone is sufficient to inhibit apoptosis in young neurons by its ability to target the 

BH3-only gene family. Delivery of miR-29 can also confer neuroprotection in models of 

stroke and spinal cord injury and alcohol-induced toxicity in vivo [26–30]. Our results now 

show that, while overexpression of miR-29 promotes neuronal survival, loss of miR-29 

failed to restore the ability of mature neurons to release cyt c in response to NGF-

deprivation. Thus, endogenous miR-29 does not seem to be the only brake restricting 

apoptosis at the pre-mitochondrial checkpoint in mature neurons. These results prompted us 

to identify other brakes that function redundantly with miR-29 to effectively inhibit 

apoptosis in mature neurons.

Our finding that miR-24 is upregulated in maturing cerebellum and sympathetic neurons is 

consistent with recent findings that miR-24 expression is up-regulated in maturing cerebral 

cortex [34]. miR-24 is also a miRNA that has been found to be a key regulator of apoptosis 

in ischemic heart muscle through its ability to target Bim, a BH3-only protein also known to 

be important for neuronal apoptosis [35]. The observation that the upregulation correlates 

with an increase in resistance to apoptosis made miR-24 an attractive candidate as a 

molecule that may act redundantly with miR-29 to inhibit apoptosis. Indeed, our results 

show that expression of mir-24 in young sympathetic neurons can target the BH3-only 

proteins Bim and Puma, which are thought to be the two most important BH3-only proteins 

for neuronal cell death [32], and inhibit apoptosis at the level of cyt c release. It is also 

interesting to note that miR-24 is expressed in two separate clusters with two other miRNAs, 

miR-23a/b and miR-27a/b. Recent studies have found that miR-23a/b and miR-27a/b are 

also capable of inhibiting neuronal apoptosis in cases of traumatic brain injury or ischemia 

[34, 36]. Thus, miRNAs of this cluster may work synergistically to inhibit the apoptotic 

pathway in the adult brain.
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Increased resistance to apoptosis with maturation has been observed in many populations of 

neurons in response to diverse insults. For example, the neonatal brain is far more vulnerable 

to hypoxia ischemia-induced apoptosis or traumatic brain injury than the adult brain [37]. 

Likewise, greater numbers of neurons survive nerve crush or axotomy if the injury is done 

on 3-week-old mice as compared to 1-week-old mice [38]. Our work provides mechanistic 

insight into the multiple brakes engaged by mature neurons that allow these cells to 

withstand diverse stresses and survive long-term.

An interesting question here is why do mature neurons not shut down all the components of 

the apoptotic pathway? Mature sympathetic neurons repress Apaf-1 but continue to express 

many apoptotic proteins including Bax, caspase-9 and caspase-3 [4]. A potential explanation 

for this has come from recent studies that have found these proteins to have functions 

outside of the canonical apoptotic pathway. For example, Bax is known to regulate 

mitochondrial dynamics and caspases-9 and -3 have essential roles in synaptic plasticity and 

axon pruning, which are events that are important for optimal neuronal function and 

plasticity [39]. Thus, maintaining these proteins, albeit with increased regulation, permits 

mature neurons to utilize these proteins while simultaneously limiting the risk of apoptosis.

Despite the mechanisms described here that provide neurons with improved capacity to 

survive injury and apoptosis, adult neurons can still be vulnerable and undergo cell death in 

situations of acute brain injury or neurodegenerative disease. It is possible that even the 

partial removal of these apoptotic brakes that could occur with injury or chronic 

neurodegeneration could increase the vulnerability of adult neurons. Indeed, consistent with 

a role of miR-29 in neuroprotection, its levels are reduced in Alzheimer’s disease, 

Huntington’s disease, and during hypoxic-ischemic brain injury [27, 40, 41]. Restoring these 

brakes on the apoptotic pathway via overexpression of miR-29 or miR-24 could be an 

effective therapeutic strategy that promotes long-term neuroprotection. A previous study 

reported that mice partially deleted for miR-29 (deletion of the miR-29a/b1 loci) had grossly 

normal brains but exhibited an ataxic phenotype [42]. Our findings that apoptosis is not 

increased in miR-29 knockout neurons support the hypothesis that observed phenotypes in 

these studies are more likely to be due to the effect of miR-29 on neuronal function rather 

than survival.

Together, our results identify miR-29 as sufficient but not solely responsible for the 

inhibition of the apoptotic pathway in mature neurons, and highlight the redundant brakes 

employed by mature neurons to inhibit apoptosis and promote long-term survival.

Materials and Methods

Cell Culture

For young neurons, sympathetic ganglia were isolated and cultured from neonatal CD1 mice 

unless otherwise indicated as described previously [1]. All animal handling and protocols 

were carried out in accordance with established practices as described in the National 

Institutes of Health Guide for Care and Use of Laboratory Animals and as approved by the 

Animal Care and Use Committee of the University of North Carolina (UNC).
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Neurons were then maintained in culture for 5 days. For mature neurons, ganglia from P5-

P12 mice were isolated and cultured as previously described until 28–35 DIV [4]. NGF 

deprivation experiments were performed by washing cells three times with media containing 

no NGF, then refeeding cells in NGF-free media containing NGF-neutralizing antibody. For 

DNA damage experiments, cells were treated with 20 μM Etoposide (Sigma). For luciferase 

assay experiments, HEK293T cells were grown in DMEM/F12 medium supplemented with 

10% FBS, 100u/mL penicillin, and 100μg/mL streptomycin.

RNA Isolation and RT-qPCR

RNA was isolated from tissue or cultured cells using the Zymo Research Direct-zol RNA 

MiniPrep kit (Genesee) according to the manufacturer’s instructions. Mature miRNA 

expression was determined using hydrolysis probe based-miRNA assays (Taqman/Life 

Technologies). RT primers specific for miR-29a, miR-29b, miR-29c, miR-24, miR-124, 

miR-128 and U6 were used to amplify the indicated genes from 10 ng of isolated RNA using 

the Superscript III Reverse Transcriptase system (Life Technologies) according to 

manufacturer instructions. cDNA was amplified using TaqMan universal PCR master mix 

(Life Technologies) on an ABI 7500 Real-Time PCR system. Relative quantification and 

statistical comparisons were performed using the delta-delta-ct method. Samples were 

internally normalized to U6 SnoRNA expression. For non-miRNA gene expression, cDNA 

libraries were prepared using 50–100 ng RNA. RNA was pre-treated with RQ1 DNase 

(Promega) for 30 minutes at 37°C followed by 10 min incubation with DNAse Stop Solution 

at 65°C for 10 min. cDNA was reverse-transcribed using random hexamers (Invitrogen) and 

the Superscript III Reverse Transcriptase System according to manufacturer instructions. 

cDNA was diluted 1:20 in each qPCR reaction, along with 400 nM of forward and reverse 

primers and Power SYBR Green PCR master mix (Applied Biosystems). BH3-only gene 

and GAPDH primers have been previously published [7]. Reactions were amplified in an 

ABI 7500 Real-Time PCR system. Relative quantification and statistical comparisons were 

performed using the delta-delta CT method. Samples were internally normalized to GAPDH 

expression.

Small RNA sequencing library production and mapping

Libraries for Illumina sequencing were prepared using a modification of the TruSeq 

protocol. Briefly, 1 ug total RNA was ligated to 3 pmol of the 3′ linker using T4 RNA ligase 

2. RNA size fractions corresponding to 35–70 nucleotides (insert plus linker) were gel 

isolated and ligated to 3 pmol of the 5′ linker. Products were reverse transcribed, PCR 

amplified to mid-log phase, and size isolated. Libraries were barcoded using indexed 5′ 
linkers. Libraries were sequenced on an Illumina HiSeq 2000. These libraries were aligned 

to the mm9 genome. miRNA annotations were downloaded from miRBase r18.

Immunofluorescence Staining

Immunofluorescence was carried out as previously described [1]. The primary antibodies 

used were as follows: anti-cyt c (BD Biosciences #556432); anti-Tom20 (Santa Cruz 

sc11415); anti-Bim (Cell Signaling #2189). Secondary antibodies were anti-mouse Cy3 (The 

Jackson Laboratory) or anti-rabbit Alexa Fluor 488 (Life Technologies). Nuclei were stained 

with Hoechst 33258 (Molecular Probes). For analysis of cyt c release, neurons treated with 
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apoptotic stimuli in the presence of 25 μM Q-VD-OPH to inhibit downstream caspase 

activation and preserve cells for staining. Images were acquired using an ORCA-ER digital 

B/W charge-coupled device camera (Hamamatsu) mounted to a DMI6000 microscope 

(Leica) using Metamorph 7.6 software and processed using Adobe Photoshop. For 

fluorescence intensity measurements, average pixel intensities were measured in individual 

injected neuronal cell bodies using Metamorph 7.6 software and were normalized to 

neighboring uninjected cell bodies on the same plate.

Assessment of Neuronal Survival

Neuronal survival was assessed by the presence of intact, phase bright cell bodies at the 

indicated time after treatment. Survival was quantified as the percentage of healthy cells at 

the indicated time point compared to immediately prior to treatment. This method of 

assessing survival correlates well with independent methods of measuring cell death such as 

trypan blue exclusion and calcein AM staining [1].

Cloning of Puma 3′UTR and Luciferase Assays

A 719-bp segment of the Puma 3′UTR was amplified from mouse genomic DNA and 

cloned into a modified PGL3-control plasmid (Promega), in which the multiple cloning site 

was placed downstream of the firefly luciferase gene. For luciferase assays, 60,000 

HEK293T cells were plated into each well of a 12-well plate and transfected with 1.5 μg of 

PGL3-3′UTR reporter construct or empty vector, 100 ng phRL renilla luciferase (Promega) 

and 100 nM of either miR-24-3p or cel-mir-67 MIRIDIAN mimic (GE Dharmacon) as a 

negative control. Transfections were performed using lipofectamine 2000 according to 

manufacturer’s instructions. 48 hours post transfection, cells were lysed and firefly- and 

renilla-luciferase intensities were measured using Promega Dual-Luciferase Reporter system 

on a Fluorscan Ascent Type 379 fluorescence plate reader (Thermo). Firefly luciferase 

intensity was normalized to renilla luciferase intensity to control for cell number and 

transfection efficiency.

Single Cell Microinjection

Cells were injected with Miridian mimics (GE Dharmacon) to miR-29, miR-24, miR-124, 

miR-128 or cel-miR-67 as a negative control (30 uM needle concentration) as previously 

described [7]. Briefly, mimics were dissolved in sterile RNAse-free water and mixed with 

microinjection buffer containing 100 mM KCl and 10 mM KPi (pH 7.4) along with 8 

mg/mL lysine-fixable Fluorescein Dextran (Invitrogen) to mark injected cells. For cyt c 
injections, 10 mg/mL of mammalian (bovine) or yeast cyt c were injected as previously 

described [1] and cell survival was quantified by comparing the percentage of surviving cells 

immediately after injection and 24 hours post-injection.

Generation of miR-29 knockout neurons

To generate sympathetic neurons deficient for all three miR-29 family members, mice floxed 

at both genomic loci for miR-29 (miR-29a/b1 and miR-29b2/c)(kindly provided by Dr. He, 

Duke University) were crossed with ER-Cre (CAG-Cre/Esr1/ strain: 004453. Jackson 

Laboratories). Neurons were isolated from Cre-positive and Cre-negative littermates as 
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previously described and treated with 500 nM 4-OH-tamoxifen (Sigma) for 10 days to 

induce recombination. Neurons were then matured until 28–35 DIV prior to experimental 

treatments. Cre-positive and negative littermates were genotyped for Cre expression using 

the following primers: Forward – gatggacatgttcagggatcgcc. Reverse: 

ctcccaccgtcagtacgtgagat. Knockout of miR-29 family expression was confirmed via RT-

qPCR.

Statistical Analysis

Statistical analysis was performed using GraphPad Prism Software version 5.0c. For 

comparisons between two means, unpaired student’s T-Test was used. For comparisons 

between more than two groups, one-way ANOVA with Newman-Keuls multiple 

comparisons test was used. A p-value of less than 0.05 was considered significant.
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Figure 1. 
Neuronal maturation is associated with progressive resistance to neuronal apoptosis at both 

pre and post-mitochondrial checkpoints. A) Representative images of identical fields of 5 

DIV and 11 DIV neurons imaged at 24 hour intervals after NGF deprivation. B) 

Quantification of sympathetic neuronal survival in response to NGF deprivation for 48 hours 

after maturing in culture for the indicated amount of time. Data represent mean ± SEM of 3 

independent experiments. C) Neurons isolated from neonatal XIAP−/− mice and cultured for 

the indicated time were injected with 10 mg/mL of either bovine cyt c to induce apoptosis or 

yeast cyt c as a negative control and survival was quantified 24 hours post-injection. Data are 

displayed as mean ± SEM of 3 independent experiments for 5, 10 and 15 DIV and 2 

independent experiments for 20 and 25 DIV(**=P<0.01). D) Quantification of cyt c release 

from neurons cultured for the indicated time and deprived of NGF for 48 hours (**=P<.01, 

***=P<.001). E) Representative images of cyt c and Tom20 staining in neurons matured for 

the indicated amount of time and maintained (+NGF) or deprived (-NGF) for 48 hours.
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Figure 2. 
Mature miR-29 deficient neurons remain resistant to NGF-deprivation induced cyt c release. 

A) Timecourse of miR-29b induction in maturing neurons. Neurons were isolated from 

neonatal mice and cultured for the indicated amount of time and miR-29 levels were 

assessed by RT-qPCR. Values are expressed as mean fold change ± SEM relative to 5 DIV 

neurons from 3 independent experiments (**=p<0.01, ***=p<0.001, ns=not significant). B) 

Verification of miR-29 deficiency in mature mir-29 knockout neurons as assessed by RT-

qPCR. Values are expressed as mean fold change ± SEM relative to WT 5 DIV neurons from 

3 independent experiments. C) Representative images of cyt c staining in mature WT and 

miR-29 KO cells deprived of NGF for 48 hours. D) Quantification of cyt c release in young 

WT neurons and mature WT and mature miR-29 KO neurons deprived of NGF for 48 hours. 

Data represent the percentage of cells with mitochondrial cyt c and are presented as mean ± 
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SEM of 3 independent experiments. E) RT-qPCR quantification of selected BH3-only genes 

in young, mature WT, and mature miR-29 KO neurons deprived of NGF for 48 hours. Fold 

changes were normalized to P5 +NGF neurons and represent mean ± SEM of 3 independent 

experiments.
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Figure 3. 
Other miRNAs predicted to regulate the apoptotic pathway are also induced with neuronal 

maturation. A) Schematic showing candidate pools of miRNAs that may also regulate cell 

death in maturing neurons. B) Table of predicted targets for candidate miRNAs by 

TargetScan software. C–E) Relative expression levels of candidate miRNAs in maturing 

cerebellum. Values are expressed relative to young (P5) cerebellum and represent mean ± 

SEM of 3 independent experiments. F–H) Relative expression levels of candidate miRNAs 

in young (5 DIV) and mature (28 DIV) sympathetic neurons measured by RT-qPCR. Values 

are expressed as fold-change relative to expression in young neurons and represent mean ± 

SEM of 3 independent experiments (*=P<0.05 **=p<0.01 ***=P<0.001, ns=not 

significant).
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Figure 4. 
Overexpression of miR-29 or miR-24 is sufficient to inhibit cyt c release and cell death in 

young, NGF deprived neurons. A) Representative images of sympathetic neurons injected 

with mimics to candidate miRNAs or negative control mimic. Injected cells (arrows) are 

marked with FITC-Dextran (green) and cyt c release (red) was assessed after 48 hours of 

NGF deprivation. B) Quantification of cyt c release in injected cells after 48 hours of NGF 

deprivation. Data are represented as mean ± SEM of 3 independent experiments (*=P<0.05, 

***=P<0.001). C) Quantification of neuronal survival in neurons injected with mimics to 

miR-29, miR-24, or a negative control (ncmiR) after 48 hours of NGF deprivation. Survival 

is expressed as the percentage of cells remaining compared to the number alive pre-

deprivation. Data represent mean ± SEM of at least 3 independent experiments.
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Figure 5. 
Overexpression of miR-29 or miR-24 is sufficient to inhibit the induction of Bim and Puma 

in young sympathetic neurons. A) Representative images of Bim staining in neurons. 

Neurons were injected at 3 DIV with mimics to miR-29, miR-24, or a negative control, 

along with FITC-Dextran (Green) to mark injected cells. At 5 DIV neurons were deprived of 

NGF and after 48 hours of NGF deprivation, neurons were fixed and stained for Bim (red). 

B) Quantification of normalized Bim staining intensity. Bim staining intensity was 

measured, and values for injected cells were normalized to NGF-deprived, mock injected 
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neurons. Data presented as mean intensity ± SEM of 3 independent experiments (*=P>0.05). 

C) Sequence and alignment of miR-24 seed sequence with two putative miR-24 target sites 

in Puma 3′UTR. D) Luciferase activity was measured 48 hours after transfection in 

HEK293T cells transfected with reporter plasmids containing the Puma 3′UTR fused to a 

firefly luciferase gene. Plasmids were transfected either alone or with 100 nM mimics of 

miR-24 or negative control. Expression was normalized by measuring the ratio of firefly to 

renilla luciferase. Values are plotted relative to vector alone and represent mean ± SEM of 3 

independent experiments (*=P<0.05). E) Representative images of cyt c staining in neurons 

injected with mimics to miR-29, miR-24, or negative control miR (ncmiR) and treated with 

20 μM etoposide. Green indicates injected cells (arrows). F) Quantification of cyt c release 

in young neurons injected with mimics to miR-29, miR-24, or negative control after 48 

hours of etoposide treatment. Data are plotted as mean ± SEM of 3 independent experiments 

(***=P<0.001).
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