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Abstract

In an ongoing investigation of 20-sulfonylamidine derivatives (9, YQL-9a) of camptothecin (1) as 

potential anticancer agents directly and selectively inhibiting topoisomerase (Topo) I, the 

sulfonylamidine pharmacophore was held constant, and a camptothecin derivatives with various 

substitution patterns were synthesized. The new compounds were evaluated for antiproliferative 

activity against three human tumor cell lines, A-549, KB, and multidrug resistant (MDR) KB 

subline (KBvin). Several analogues showed comparable or superior antiproliferative activity 

compared to the clinically prescribed 1 and irinotecan (3). Significantly, the 20-sulfonylamidine 

derivatives exhibited comparable cytotoxicity against KBvin, while 1 and 3 were less active 

against this cell line. Among them, compound 15c displayed much better cytotoxic activity than 

the controls 1, 3, and 9. Novel key structural features related to the antiproliferative activities were 

identified by structure-activity relationship (SAR) analysis. In a molecular docking model, 

compounds 9 and 15c interacted with Topo I-DNA through a different binding mode from 1 and 3. 
The sulfonylamidine side chains of 9 and 15c could likely form direct hydrogen bonds with Topo 

I, while hydrophobic interaction with Topo I and π-π stacking with double strand DNA were also 

confirmed as binding driving forces. The results from docking models were consistent with the 
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SAR conclusions. The introduction of bulky substituents at the 20-position contributed to the 

altered binding mode of the compound by allowing them to form new interactions with Topo I 

residues. The information obtained in this study will be helpful for the design of new derivatives of 

1 with most promising anticancer activity.

Graphical Abstract

CPT (green), 9 (magenta), and 15c (blue) in the binding site of DNA-Topo-I.
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1. Introduction

Camptothecin (1, Figure 1) is a cytotoxic alkaloid isolated from the Chinese tree 

Camptotheca acuminate [1–3]. Its semisynthetic analogues such as topotecan (2) and 

irinotecan (3) are the only current topoisomerase I (Topo I) inhibitors approved by the US 

Food and Drug Administration (FDA) for the treatment of various forms of cancer, while 

several derivatives, such as gimatecan (4), CKD-602 (5), and BNP-1350 (6), are in various 

stages of preclinical or clinical development [4–6]. Despite these compounds’ clinical 

successes, derivatives of 1 still suffer from poor solubility, cleavable-complex reversibility, 

and dose-limiting toxicity. In addition, the E-ring lactone exists in equilibrium with its ring-

opened, hydroxyacid form in vivo [7,8]. While the latter form retains some potency, it also 

possesses high affinity for human serum albumin. Due to such pharmacokinetic problems, 

several approaches are being explored to improve the antitumor efficiency and anticancer 

therapeutic profiles of the 1-family. Such approaches include prodrugs (conjugates and 

polymer bound camptothecins), new formulations (liposomes or microparticulate carriers), 

and synthetic lipophilic camptothecins [9,10]. Also, newly emerging homocamptothecin 

(hCPT) derivatives, BN-80915 (7, diflomotecan) and BN-80927 (8), with a stabilized 7-

membered hydroxylactone ring are currently undergoing clinical trials [11,12]. Most of 

these strategies aim to maintain the closed-lactone form in the plasma compartment. 

Additionally, because a free 20-hydroxy group favors lactone ring-opening by forming intra-

molecular hydrogen bonds (H-bonds), acylation of the 20-hydroxy group should disfavor 

ring opening [13]. Accordingly, our own results [14,15], as well as those of others with 

20(S)-O-acyl esters [16,17], 20(S)-O-carbonate linked tripeptide conjugates [18], and 20(S)-

O-linked glycoconjugates [19], have supported the importance of various esters at the 20-
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position of derivatives of 1 for potent cytotoxic activity. Esterification of the 20-hydroxy 

group also enhances plasma stability and augments in vivo antitumor activity compared with 

unmodified 1. In continuing these efforts, we recently reported that a series of 20-

sulfonylamidine camptothecin derivatives displayed potent antitumor activity with 

significantly different drug-resistance profiles from those of 1 [20]. Among them, 9 was 

more active than 3 against the growth of A549, DU-145, KB, and KBvin with IC50 values of 

0.031, 0.050, 0.14 and 0.026 μM, respectively. Mechanistically, 9 induced significant DNA 

damage by selectively inhibiting Topo I and activating the ATM/Chk related DNA damage-

response pathway. In mouse xenograft models, 9 demonstrated significant activity without 

overt adverse effects at 5 and 10 mg/kg, with two and three mice, respectively, among 

groups of eight undergoing complete regression. Notably, 9 at 300 mg/kg (i.p.) showed no 

overt acute toxicity in contrast to 1 (LD50 56.2 mg/kg, i.p.) and 3 (LD50 177.5 mg/33 kg, 

i.p.) [20]. Thus, 9 is attractive as a potential candidate for anticancer chemotherapy and the 

modification with sulfonylamidine-substituted side chains may overcome some limitations 

of 1. The present report intends to explore the structure-activity relationship (SAR) 

correlation, concentrating on structural variations of the substituents on the camptothecin 

pharmacophore, as well as to identify further more promising anticancer drug candidates.

2. Results and discussion

2.1. Chemistry

The synthetic routes to target compounds are outlined in Scheme 1. Briefly, the 20-hydroxy 

groups of variously substituted derivatives of 1 (I-1) were converted to N-Boc protected 

amino esters (10) using a combination of DIPC (N,N′-diisopropyl carbodiimide) and DMAP 

(4-dimethylaminopyridine). Removal of the N-Boc group of 10 with TFA in CH2Cl2 (1:1) 

formed the TFA salts 11. Subsequently, these key precursors were successfully reacted with 

sulfonyl azides and alkynes in a Cu-catalyzed three-component reaction to produce the 

corresponding target compounds 12 in moderate yields. Under optimized conditions 

established in our prior study [20], a wide range of sulfonyl azide components, including 

aliphatic, aryl, and heterocyclic types, were all efficiently coupled to furnish the 

corresponding amidines. Moreover, various types of alkynes were likewise incorporated with 

almost the same efficiency. The coupling reaction has a wide substrate scope, a high 

tolerance to various functional groups, and very mild reaction conditions. The reaction 

proceeds through a ketenimine intermediate, which is generated in situ from the triazole 

cycloadduct upon release of N2 gas [21]. All newly synthesized compounds were purified by 

column chromatography and their structures were confirmed by 1H-NMR, 13C-NMR, ESI-

MS, and elemental analysis.

2.2. Cytotoxicity

The newly synthesized compounds (Class I 13a–13n, Class II 14a–14e, Class III 15a–15g 
and Class IV 16a–16h) were evaluated for in vitro cytotoxic activity against three human 

tumor cell lines, KB (nasopharyngeal carcinoma), A-549 (lung carcinoma) and KBvin 

(MDR KB subline), by employing a sulforhodamine B colorimetric assay [22]. Compounds 

1, 3 and 9 were used as reference drugs and the screening results are shown in Table 1.
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As shown in Table 1, all synthesized compounds were more potent than 3 in the cytotoxicity 

assays. Significantly, the new compounds exhibited comparable cytotoxicity against the 

parental KB cell line and MDR KB subline KBvin, while 3 was inactive against KBvin. 

These results implied that the introduction of a sulfonylamidine group at C20 might combat 

the tumor MDR phenotype caused by P-glycoprotein overexpression. The cytotoxic profiles 

of class-I derivatives (13a–13n, Figure 2,) suggested that cytotoxic potency was dual-

controlled by both the R6 and NR7R8 groups in the sulfonylamidine side chain.

Compared with 9, the higher IC50 values of 14a and 14b clearly demonstrated that the 

length of the C20 amino acid linker between the 1-skeleton and the sulfonylamidine-side 

chain also influenced the cytotoxic activity. In general, a compound with a CH2 linker (i.e., 

9) showed better activity than compounds with a CH2CH2 or CH2CH2CH2 linker (i.e., 14a 
and 14b). This effect may be caused by interference with the H-bond between the C20 

oxygen and Topo I (Supporting Figure S2). The H-bond’s stability could be affected by a 

longer linker in the sulfonylamidene-side chain. Class-II compounds containing hydrophilic 

tails (14c–14e) were designed for improved water-solubility. From Table 1, these three new 

derivatives showed superior cytotoxic activity to 3. In addition, phosphate 14e was less 

potent than 14c, suggesting that this common prodrug modification is not a suitable moiety 

for the design of a 9-derived prodrug.

With IC50 values ranging from 0.0068 to 0.0982 μM, all seven Class-III 7-ethyl-

camptothecin-derived compounds (15a–15g) exhibited significant in vitro cytotoxic activity 

against the three tested tumor cell lines, indicating that the introduction of an ethyl group at 

C4 position contributed to improved cytotoxicity. Compared with 9, 15c was the most potent 

compound against the three tested tumor cell lines. Interestingly, 15c also showed greater 

cytotoxic activity against KBvin (IC50 0.0101 μM) compared with 9 and 3 (IC50 0.0263 and 

>20 μM, respectively).

In addition, class-IV compounds with modified 1-skeletons (16a–h) displayed a broad range 

of potency from comparable to much weaker cell growth inhibition compared with 9. The 

results demonstrated that the carboxyamide in ring-D can be replaced by a thioamide (16a 
and 16b). Placing a nitro group at C-9 (16c) or C-12 (16e) of ring-A dramatically decreased 

antiproliferative activity, suggesting that this group may interfere with the compound’s 

association with Topo-I. Modification of ring-C at C5 with a methoxy group (16f) also 

disrupted antiproliferative activity. These SAR studies will be further discussed below in 

light of the molecular docking studies.

2.3. Molecular Docking Study

The docking study was carried out using Autodock 4.2 [23] software with Lamarckian 

Genetic Algorithm [24]. The X-ray crystallographic structure of Topo I complexed with 

compound 1 was obtained from the RCSB Protein Data Bank (http://www.pdb.org/pdb/

home/home.do) with PDB code 1T8I. The details about molecular docking process are 

described in the experimental section. All figures displaying the docking results were 

obtained using scientific software PyMol 0.99 [25].
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To validate the reliability of the docking method, the ligand 1 was initially re-docked to the 

binding site of the protein-DNA complex. The top ranked pose with binding free energy 

−10.47 kcal/mol is shown in Supporting Figures S1 and S2. As can be seen from two 

figures, the docked pose of compound 1 agreed strongly with the status in X ray 

crystallographic structure, except for a flipped ethyl group. Compound 1 formed the strong 

π-π stacking interactions with DNA by stacking between thymine (T) 10 and guanine (G) 11 

of one chain as well as cytosine (C) 112 and adenine (A) 113 of the other chain, forming a 

sandwich structure (Supporting Figure S2). At the same time, two hydrogen bonds (H-

bonds) contributed to the ligand-protein interaction: one H-bond between the hydroxy group 

of 1 and the Asp533 side chain of Topo I and a second H-bond between the nitrogen-1 of 1 
and the Arg354 guanidine group of Topo I. The interactions between the ligand and the 

bases of DNA as well as the protein residues of Topo promote the stable binding of 1 in the 

protein-DNA pocket and then interfere with the normal function of Topo I.

As Compound 2 is an extensively used anticancer drug, it was also docked into the binding 

site of DNA-Topo I for comparative purposes. The binding mode of compound 2 is 

displayed in Supporting Figure S3. Compounds 1 and 2 bound similarly in the cavity with 

their rigid rings inserting into the cleaved gap of DNA and forming H-bonds interactions 

with Topo I. The computed binding free energy for 2 was −11.02 kcal/mol, slightly less than 

that for compound 1.

Because compound 15c exhibited the highest activity among our newly synthesized 

compounds, 15c might interact with Topo I more efficiently than 1. Thus, we analyzed the 

binding mode of our prior lead 9 as well as new 15c. The binding modes of all three 

compounds are shown in Fig. 3. The rigid rings of 9 and 15c overlaid well with each other, 

but were oriented oppositely to those of 1, whose lactone ring protruded into a DNA cleft 

rather than laterally along the DNA strand (Figure 3). The disparity might be attributed to 

the increased volume of 9 and 15, as well as the opportunity for additional interactions 

occurring at the C20 side chains. In spite of this difference, all three compounds inserted 

into the DNA cavity and stacked between planes formed by the same DNA bases via π-π 

stacking and hydrophobic interactions, which played critical roles in the ligands’ binding.

Compound 9 bound to DNA-Topo I with a binding free energy of −11.56 kcal/mol, From the 

detailed binding mode in Figures 4 and 5, the A, B, C and D rings stacked between the bases 

T10, G11, A113, and C112, forming π-π stacking and hydrophobic interactions. 

Additionally, the flexible 20-substitutent bound to the lateral side of the DNA strand and 

formed an H-bond with C111. Furthermore, the interactions with Topo I residues Lys751, 

Lys354, P431, Phe361, Asp533 and Thr718 also contributed to formation of the ternary 

complex, supporting 9 as a potential anticancer candidate molecule.

Compound 15c lay in the binding pocket with five rings stacked between the planes formed 

by A113 and G11 and the flexible C20 substituent flanked to make H-bond contact with 

Lys436 using the methoxy oxygen and form π-π stacking interaction with G11 using the 

methylphenyl group on the sulfonylamidine (Figure 6). Another H-bond was also formed 

between residue Asn352 of Topo I and the lactone carbonyl oxygen of 15c. The binding free 

energy of 15c is −11.56 kcal/mol, identical to that of 9. Due to the flexibility, the bulky 
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substituent in 9 and 15c adopted different conformations and made interactions with 

different residues. In spite of the discrepancy, the two compounds bound to the DNA-Topo I 

complex with high affinity laying the foundation that they would be potent candidates in 

anticancer treatment.

Compounds 9 and 15c bound to Topo I adopting a pose that was similar to 1 with the five 

rings inserted into the slot formed by DNA base pairs, while the lactone rings of 9 and 15c 
protruded in the opposite orientation to accommodate the 20-substituent at the interface of 

DNA and Topo I. Consequently, the direct H-bond interaction between the ligand and 

Asp533, which was observed in the 1- or 3-complex, disappeared when 9 and 15c bound to 

Topo I. In spite of losing the interaction with Asp533, the 20-substituents of 9 and 15c were 

able to form new interactions with other residues, such as Lys436 or Asn352. In addition, the 

two synthetic compounds also formed new hydrophobic interactions with the protein 

residues.

In conclusion, the studied molecules could bind to DNA-Topo I complex with high affinity 

and the main driving forces were π-π stacking, direct hydrogen bonding, and hydrophobic 

interactions.

3. Conclusion

In summary, new 20(S)-sulfonylamidine derivatives of 1 have been synthesized and 

evaluated for cytotoxic activity. Most of the synthesized compounds exhibited potent in vitro 
cytotoxic activity against the tested tumor cell lines, including MDR cancer cell lines. 

Preliminary SAR correlations were proposed based on the cytotoxic activity results. 

Furthermore, a molecular docking analysis indicated that 9 and 15c have lower binding free 

energy than 1 and 2. By comparing their binding modes, we found that the four compounds 

had some common interaction features, including strong π-π stacking with DNA as well as 

direct hydrogen bonds and hydrophobic interactions with Topo I. However, to accommodate 

the 20-substituent at the interface of DNA and Topo I, the lactones of 9 and 15c protruded in 

opposite orientations to those of 1 and 2. Furthermore, the introduction of a bulky 

substituent at 20-position allowed the ligands to form new interactions with Topo I residues. 

These results enhanced our understanding of the interaction mechanism between these 

derivatives and Topo I and provided useful information for further structural modification. 

Additional work is underway regarding pre-clinical evaluation of 15c.

4. Experimental section

4.1. Chemistry

Reagents were purchased from commercial sources and were used as received. All reagents 

and solvents were of reagent grade or purified according to standard methods before use. 

Analytical thin-layer chromatography (TLC) and preparative thin-layer chromatography 

(PTLC) were performed with silica gel plates using silica gel 60 GF254 (Qingdao Haiyang 

Chemical Co., Ltd.). Melting points were determined on a Kofler apparatus and are 

uncorrected. IR spectra were measured on a Nicolet 380 FT-IR spectrometer on neat samples 

placed between KBr plates. Mass spectra were recorded on a Bruker Daltonics APEXII49e 
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spectrometer with ESI ionization source. 1H and 13C NMR spectra were recorded at 400 

MHz and 100 MHz on a Bruker AM-400 spectrometer using TMS as reference (Bruker 

Company, USA). Camptothecin was isolated from the Chinese medicinal plant C. 
acuminate, and was purified before being used. The intermediate camptothecin-20-esters of 

N-Boc-amino acid derivatives 10 and their TFA salts 11 were synthesized according to our 

previous procedures [14].

4.2. General synthetic procedures for target compounds

Triethylamine (1.2 mmol) was added slowly to a suspension of the various camptothecin 

amino acids TFA salts 11 (0.5 mmol) in CH2Cl2 (35 mL), and this mixture was stirred for 10 

min when a clear solution was obtained. Under an N2 atmosphere, alkynes (0.5 mmol), 

sulfonyl azide (0.6 mmol), and CuI (0.05 mmol) was added into this reaction mixture at 

room temperature. After the reaction was completed, as monitored by TLC, the reaction 

mixture was diluted by adding CH2Cl2 (4 mL) and aqueous NH4Cl solution (6 mL). The 

mixture was stirred for an additional 30 min and two layers were separated. The aqueous 

layer was extracted with CH2Cl2 (3 mL × 3). The combined organic layers were dried over 

MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by flash column 

chromatograph with an appropriate eluting solvent system.

4.2.1. Compound 13a—Yield 43%; m.p. 150–152 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.40 (s, 1H, C7-H), 8.19 (d, 1H, J=8.4Hz, C9-H), 7.95 (d, 1H, J=8.0Hz, C12-H), 7.85 (t, 1H, 

J=7.2Hz, C11-H), 7.69 (t, 1H, J=7.60Hz, C10-H), 7.14 (m, 3H, C14-H, p-CH3OPh-H), 6.83 

(d, 2H, J=8.0Hz, p-CH3OPh-H), 5.52 (ABq, 2H, J=17.6Hz, C17-H), 5.26 (s, 2H, C5-H), 

4.10–4.33 (m, 4H, C23-H, C30-H), 3.72 (s, 3H, p-CH3OPh), 2.77 (s, 6H, -N(CH3)2), 2.13–

2.28 (m, 2H, C18-H), 0.96 (t, 3H, J=7.2Hz, C19-H); 13C NMR (100 MHz, CDCl3) δ: 167.6, 

166.9, 159.3, 157.1, 152.0, 148.7, 146.5, 144.8, 131.3, 131.2, 130.9, 129.4, 128.2, 124.3, 

120.2, 114.8, 114.7, 95.6, 76.7, 67.2, 55.2, 50.0, 42.8, 39.1, 38.9, 38.4, 31.8, 7.5; MS-ESI 

m/z: 682.2 [M+Na]+.

4.2.2. Compound 13b—Yield 45%; m.p. 147–149 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.40 (s, 1H, C7-H), 8.24 (d, 1H, J=8.4Hz, C9-H), 7.94 (d, 1H, J=8.4Hz, C12-H), 7.85 (t, 1H, 

J=7.6Hz, C11-H), 7.78 (d, 2H, J=8.0Hz, Ts-H), 7.68 (t, 1H, J=7.6Hz, C10-H), 7.20 (m, 3H, 

C14-H, Ts-H), 5.55 (ABq, 2H, C17-H), 5.30 (s, 2H, C5-H), 4.35 (m, 2H, C23-H), 2.44 (s, 

2H, C30-H), 2.41 (s, 3H, Ts-CH3), 2.13–2.38 (m, 2H, C18-H), 0.98 (t, 3H, J=7.2Hz, C19-

H), 0.13 (m, 9H, -Si(CH3)3); 13C NMR (100 MHz, CDCl3) δ: 168.6, 168.3, 167.0, 157.3, 

152.0, 148.8, 146.6, 145.1, 141.9, 140.8, 131.2, 131.1, 130.6, 129.7, 129.0, 128.3, 128.1, 

126.3, 126.1, 120.0, 95.8, 76.7, 67.1, 50.0, 43.2, 31.6, 25.8, 21.4, 7.5; MS-ESI m/z: 673.3 

[M+H]+.

4.2.3. Compound 13c—Yield 57%; m.p.141–143 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.40 (s, 1H, C7-H), 8.24 (d, 1H, J=8.4 Hz, C9-H), 7.94 (d, 1H, J=8.0Hz, C12-H), 7.85 (t, 

1H, J=7.6Hz, C11-H), 7.68 (t, 1H, J=7.6Hz, C10-H), 7.62 (s, 2H, thiophene-H), 7.45 (d, 1H, 

J=4.8Hz, thiophene-H), 7.14 (s, 1H, C14-H), 7.11 (d, 2H, J=8.4Hz, p-CH3OPh-H), 6.84 (d, 

2H, J =8.0 Hz, p-CH3OPh-H), 5.52 (ABq, 2H, J=17.2Hz, C17-H), 5.27 (s, 2H, C5-H), 4.14–

4.43 (m, 4H, C23-H, 30-H), 3.75 (s, 3H, p-CH3OPh), 2.09–2.27 (m, 2H, C18-H), 0.94 (t, 
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3H, J=7.2Hz, C19-H); 13C NMR (100 MHz, CDCl3) δ: 167.5, 166.8, 159.4, 157.2, 152.0, 

148.7, 146.6, 144.8, 131.2, 130.7, 130.5, 130.4, 129.6, 128.3, 128.1, 126.7, 123.6, 120.0, 

114.9, 95.7, 76.7, 67.1, 55.1, 50.0, 43.3, 38.4, 31.7, 7.4; MS-ESI m/z: 721.1 [M+Na]+.

4.2.4. Compound 13d—Yield 45%; m.p.154–157 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.41 (s, 1H, C7-H), 8.23 (d, 1H, J=8.8Hz, C9-H), 7.95 (d, 1H, J=8.0Hz, C12-H), 7.85 (t, 1H, 

J=7.6Hz, C11-H), 7.69 (t, 1H, J=7.6Hz, C10-H), 7.14 (m, 3H, C14-H, p-CH3OPh-H), 6.85 

(d, 2H, J=8.0Hz, p-CH3OPh-H), 5.53 (ABq, 2H, J=17.2Hz, C17-H), 5.29 (s, 2H, C5-H), 

4.13–4.29 (m, 4H, C23-H, C30-H), 3.75 (s, 3H, p-CH3OPh), 3.06–3.16 (m,2H, -

CH2CH2CH2CH3), 2.10–2.19 (m, 2H, C18-H), 1.80–1.89 (m, 2H, -CH2CH2CH2CH3), 

1.39–1.45 (m, 2H, -CH2CH2CH2CH3), 0.90–0.97 (m, 6H, -CH2CH2CH2CH3, C19-H); 13C 

NMR (100 MHz, CDCl3) δ: 167.6, 167.0, 166.8, 159.2, 157.1, 152.0, 148.7, 146.5, 144.9, 

131.2, 130.7, 129.5, 128.4, 128.1, 124.1, 120.1, 114.7, 95.5, 76.7, 67.1, 55.1, 54.7, 50.0, 

43.0, 38.6, 31.7, 25.6, 21.5, 13.6, 7.4; MS-ESI m/z: 695.2 [M+Na]+.

4.2.5. Compound 13e—Yield 46%; m.p. °C; 1H NMR (CDCl3, 400 MHz) δ: 8.40 (s, 1H, 

C7-H), 8.24 (d, 1H, J=8.8Hz, C9-H), 7.94 (d, 1H, J=8.4Hz, C12-H), 7.86 (m, 3H, -

SO2PhOCH3, C11-H), 7.68 (t, 1H, J=7.2Hz, C10-H), 7.09 (m, 3H, C14-H, -SO2PhOCH3), 

6.89 (d, 2H, J=8.8Hz, p-CH3OPh-H), 6.83 (d, 2H, J=8.4Hz, p-CH3OPh-H), 5.52 (ABq, 2H, 

J=17.2Hz, C17-H), 5.28 (s, 2H, C5-H), 4.12–4.37 (m, 4H, C23-H, C30-H), 3.81 (s, 3H, -

SO2PhOCH3), 3.75 (s, 3H, p-CH3OPh), 2.05–2.25 (m, 2H, C18-H), 0.94 (t, 3H, J=7.6Hz, 

C19-H); 13C NMR (100 MHz, CDCl3) δ: 167.6, 167.0, 166.8, 162.1, 159.3, 157.1, 152.0, 

148.7, 146.5, 144.9, 135.1, 131.2, 130.7, 129.6, 128.4, 128.1, 123.9, 119.9, 114.6, 113.6, 

95.7, 76.7, 67.1, 55.4, 55.1, 50.0, 43.2, 38.3, 31.7,7.4; MS-ESI m/z: 723.2 [M+H]+.

4.2.6. Compound 13f—Yield 60%; m.p. 138–140 °C; 1H NMR (DMSO-d6, 400 MHz) δ: 

8.68–8.72 (s, 1H, NH), 8.31 (s, 1H, C7-H), 8.13 (d, 2H, J=8.6 Hz, C12-H,C9-H), 7.86 (t, 

1H, J=6.9Hz, C11-H), 7.71 (t, 1H, J=7.9Hz, C10-H), 7.28 (d, 2H, J=8.6Hz, p-CH3OPh-H), 

7.08 (s, 1H, C14-H), 6.83 (d, 2H, J=8.7Hz, p-CH3OPh-H), 5.50 (s, 2H, C17-H), 5.29 (s, 2H, 

C5-H), 4.30 (dd, 1H, J=6.0, 18.0Hz, C23-H), 4.14 (dd, 1H, J=5.8, 18.0Hz, C23-H), 4.01 (d, 

1H, J=14.7Hz, C30-H), 3.67 (s, 3H, p-CH3OPh), 2.84 (s, 3H, Ms-CH3), 2.11–2.16 (m, 2H, 

C18-H), 0.89 (t, 3H, J=7.3Hz, C19-H); 13C NMR (100 MHz, DMSO-d6) δ: 167.8, 166.9, 

166.6, 158.2, 156.5, 152.2, 147.8, 146.0, 145.1, 130.3, 129.7, 128.8, 128.5, 127.9, 127.7, 

126.6, 118.8, 113.8, 94.8, 76.6, 66.2, 55.0, 50.2, 43.2, 42.4, 37.1, 30.3, 7.5; MS-ESI m/z: 

731.2 [M+H]+.

4.2.7. Compound 13g—Yield 57%; m.p. 148–150 °C; 1H NMR (DMSO-d6, 400 MHz) δ: 

9.14 (s, 1H, NH), 8.68 (s, 1H, C7-H), 8.12 (d, 2H, J=8.8Hz, C9-H, C12-H), 7.84 (t, 1H, 

J=6.9Hz, C11-H), 7.70 (t, 1H, J=8.1Hz, C10-H), 7.46 (d, 2H, J=8.2Hz, Ts-H), 7.24 (s, 4H, 

p-ClPh-H, Ts-H), 7.11 (s, 1H, C14-H), 6.99 (d, 2H, J=8.0Hz, p-ClPh-H), 5.51 (s, 2H, C17-

H), 5.27 (s, 2H, C5-H), 4.39 (dd, 1H, J=5.8, 18.0Hz, C23-H), 4.28 (dd, 1H, J=6.0, 18.0Hz, 

C23-H), 4.06 (s, 2H, C30-H), 2.19 (s, 3H, Ms-CH3), 2.12 (q, 2H, J=6.9Hz, C18-H), 0.84 (t, 

3H, J=7.3Hz, C19-H); 13C NMR (100 MHz, DMSO-d6) δ: 167.8, 166.9, 166.3, 156.5, 

152.2, 147.9, 146.1, 144.6, 141.4, 140.6, 133.7, 131.5, 130.7, 130.3, 129.6, 128.7, 128.5, 
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128.2, 127.9, 127.7, 125.6, 119.1, 95.0, 76.6, 66.4, 50.2, 42.4, 37.1, 30.4, 20.8, 7.4; MS-ESI 

m/z: 733.2 [M+Na]+.

4.2.8. Compound 13h—Yield 53%; m.p.149–151 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.41 (s, 1H, C7-H), 8.22 (d, 1H, J=8.5 Hz, C9-H), 7.94–7.98 (m, 3H, p-FPh-H, C12-H), 7.86 

(t, 1H, J=7.2Hz, C11-H), 7.69 (t, 1H, J=7.3Hz, C10-H), 7.08–7.12 (m, 5H, p-CH3OPh-H, 

C14, p-FPh-H), 6.84(d, 2H, J=8.6Hz, p-CH3OPh-H), 5.52 (ABq, 2H, J=17.3Hz, C17-H), 

5.28 (s, 2H, C5-H), 4.16–4.33 (m, 4H, C23-H, 30-H), 3.75 (s, 3H, p-CH3OPh), 2.08–2.26 

(m, 2H, C18-H), 0.94 (t, 3H, J=7.4Hz, C19-H); 13C NMR (100 MHz, DMSO-d6) δ: 167.7, 

167.4, 166.9, 163.3, 158.1, 156.5, 152.2, 147.8, 146.1, 144.6, 139.9, 131.6, 130.3, 130.0, 

129.6, 128.8, 128.5, 127.9, 127.6, 126.1, 119.1, 115.3, 115.1, 113.7, 104.5, 95.0, 76.6, 66.4, 

54.9, 50.2, 42.4, 37.0, 30.3, 7.4; MS-ESI m/z: 733.2 [M+Na]+.

4.2.9. Compound 13i—Yield 58%; m.p. 153–155 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.41 (s, 1H, C7-H), 8.23 (d, 1H, J=8.4Hz, C9-H), 7.95(d, 1H, J=8.0Hz, C12-H), 7.84–7.88 

(m, 3H, p-ClPh-H, C11-H), 7.69 (t, 1H, J=7.6Hz, C10-H), 7.37 (d, 2H, J=8.8Hz, p-ClPh-H), 

7.09–7.12 (m, 3H, p-CH3OPh-H, C14-H), 6.84 (d, 2H, J =8.4 Hz, p-CH3OPh-H), 5.53 

(ABq, 2H, J=17.2Hz, C17-H), 5.29 (s, 2H, C5-H), 4.15–4.29 (m, 4H, C23-H, 30-H), 3.76 (s, 

3H, p-CH3OPh), 2.05–2.22 (m, 2H, C18-H), 0.94 (t, 3H, J=7.6Hz, C19-H); 13C NMR (100 

MHz, DMSO-d6) δ: 167.7, 167.6, 166.9, 158.2, 156.5, 152.2, 147.8, 146.1, 144.7, 142.3, 

135.9, 130.3, 130.0, 129.6, 128.9, 128.5, 128.2, 127.9, 127.5, 127.4, 126.0, 119.0, 113.7, 

95.0, 76.6, 66.4, 54.9, 50.2, 42.5, 37.0, 30.3, 7.4; MS-ESI m/z: 749.6 [M+Na]+.

4.2.10. Compound 13j—Yield 54%; m.p. 229–231 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.41 (s, 1H, C7-H), 8.18–8.24 (m, 3H, p-NO2Ph-H, C9-H), 8.11 (d, 2H, J=8.8Hz, p-NO2Ph-

H), 7.95 (d, 1H, J=8.0Hz, C12-H), 7.86 (t, 1H, J=7.8Hz, C11-H), 7.70 (t, 1H, J=8.0Hz, C10-

H), 7.10–7.14 (m, 3H, C14-H, p-CH3OPh-H), 6.85 (d, 2H, J =8.8 Hz, p-CH3OPh-H), 5.53 

(ABq, 2H, J=17.2Hz, C17-H), 5.29 (s, 2H, C5-H), 4.16–4.33 (m, 4H, C23-H, C30-H), 3.76 

(s, 3H, p-CH3OPh), 2.05–2.26 (m, 2H, C18-H), 0.95 (t, 3H, J=7.2Hz, C19-H); 13C NMR 

(100 MHz, DMSO-d6) δ: 168.2, 167.7, 167.0, 158.2, 156.5, 152.2, 148.8, 148.4, 147.8, 

146.1, 144.7, 130.3, 130.0, 129.6, 128.8, 128.5, 127.9, 127.6, 126.9, 125.6, 123.3, 119.0, 

113.6, 95.0, 76.7, 66.4, 54.8, 50.2, 42.6, 37.1, 30.3, 7.4; MS-ESI m/z: 738.3 [M+Na]+.

4.2.11. Compound 13k—Yield 59%; m.p. 151–153 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.40 (s, 1H, C7-H), 8.25 (d, 1H, J=8.4Hz, C9-H), 7.95 (d, 1H, J=8.0Hz, C12-H), 7.83–7.87 

(m, 3H, Ts-H, C11-H), 7.69 (t, 1H, J=7.2Hz, C10-H), 7.23 (d, 2H, J=8.4Hz, Ts-H), 7.12–

7.14 (m, 3H, C14-H, p-CH3Ph-H), 7.05 (d, 2H, J=8.0Hz, p-CH3Ph-H), 5.52 (ABq, 2H, 

J=17.2Hz, C17-H), 5.27 (s, 2H, C5-H), 4.14–4.37 (m, 4H, C23-H, C30-H), 2.39 (s, 3H, p-

CH3Ph), 2.29 (s, 3H, Ts-CH3), 2.08–2.26 (m, 2H, C18-H), 0.94 (t, 3H, J=7.2Hz, C19-

H); 13C NMR (100 MHz, DMSO-d6) δ: 167.8, 166.9, 156.5, 152.2, 147.8, 146.1, 144.6, 

141.3, 140.8, 135.8, 131.5, 130.3, 129.6, 128.8, 128.7, 127.9, 127.6, 125.6, 119.1, 95.0, 

76.5, 66.4, 50.2, 42.4, 37.4, 30.4, 20.7, 20.5, 7.4; MS-ESI m/z: 691.2 [M+H]+.

4.2.12. Compound 13l—Yield 60%; m.p. 190–192 °C; 1H NMR (CDCl3, 400 MHz) δ: 

9.16 (s, 1H, Py-H), 8.70 (d, 1H, J=3.6Hz, Py-H), 8.40 (s, 1H, C7-H), 8.23 (m, 2H, C9-H, Py-

H), 7.95 (d, 1H, J=8.4Hz, C12-H), 7.85 (t, 1H, J=7.2Hz, C11-H), 7.68 (t, 1H, J=7.6Hz, C10-
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H), 7.38 (m, 1H, Py-H), 7.12 (m, 3H, C14-H, p-CH3OPh-H), 6.86 (d, 2H, J=8.8Hz, p-

CH3OPh-H), 5.52 (ABq, 2H, J=17.6Hz, C17-H), 5.29 (s, 2H, C5-H), 4.14–4.34 (m, 4H, 

C23-H, C30-H), 3.76 (s, 3H, p-CH3OPh), 2.08–2.26 (m, 2H, C18-H), 0.94 (t, 3H, J=7.6Hz, 

C19-H); 13C NMR (100 MHz, DMSO-d6) δ: 167.6, 167.8, 167.6, 166.9, 158.1, 156.4, 152.2, 

151.6, 147.8, 146.1, 145.9, 144.6, 139.5, 133.3, 131.4, 130.3, 130.0, 129.6, 128.8, 128.4, 

127.9, 127.6, 125.9, 123.1, 118.9, 113.7, 94.9, 76.1, 76.6, 66.3, 54.9, 50.0, 42.5, 37.1, 30.3, 

7.4; MS-ESI m/z: 694.2 [M+H]+.

4.2.13. Compound 13m—Yield 51%; m.p. 157–159 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.35 (s, 1H, Nap-H), 8.27 (s, 1H, C7-H), 8.22 (d, 1H, J=8.4Hz, C9-H), 7.90 (d, 1H, J=8.0H, 

C12-H), 7.76–7.85 (m, 4H, Nap-H), 7.68 (d, 2H, J=8.4Hz, Nap-H), 7.58 (t, 1H, J=6.4Hz, 

C11-H), 7.52 (t, 1H, J=7.2Hz, C10-H), 7.11 (m, 3H, p-CH3OPh-H, C14-H), 6.82 (d, 2H, 

J=8.0Hz, p-CH3OPh-H), 5.53 (ABq, 2H, J=17.2Hz, C17-H), 5.10 (ABq, 2H, J=17.2Hz, C5-

H), 4.15–4.47 (m, 4H, C23-H, C30-H), 3.74 (s, 3H, p-CH3OPh), 2.05–2.20 (m, 2H, C18-H), 

0.93 (t, 3H, J=7.2Hz, C19-H); 13C NMR (100 MHz, DMSO-d6) δ: 167.9, 167.6, 166.9, 

157.9, 156.4, 151.9, 147.7, 146.0, 144.8, 140.3, 133.3, 131.2, 131.1, 130.1, 130.0, 129.3, 

129.0, 128.5, 128.3, 127.9, 127.8, 127.5, 127.3, 126.6, 126.0, 122.0, 118.7, 113.5,94.9, 76.7, 

66.3, 54.7, 50.0, 42.5, 36.8, 7.4; MS-ESI m/z: 765.3 [M+Na]+.

4.2.14. Compound 13n—Yield 48%; m.p. 144–146°C; 1H NMR (CDCl3, 400 MHz) δ: 

8.41 (s, 1H, C7-H), 8.21 (d, 1H, J=8.4Hz, C9-H), 7.96 (d, 1H, J=8.4Hz, C12-H), 7.85 (t, 1H, 

J=7.6Hz, C11-H), 7.69 (t, 1H, J=7.6Hz, C10-H), 7.16 (m, 3H, C14-H, p-CH3OPh-H), 6.85 

(d, 2H, J=8.0Hz, p-CH3OPh-H), 5.53 (ABq, 2H, J=17.2Hz, C17-H), 5.30 (s, 2H, C5-H), 

4.10–4.33 (m, 4H, C23-H, C30-H), 3.75 (s, 3H, p-CH3OPh), 3.06–3.14 (m, 2H, -CH2CH3), 

2.10–2.29 (m, 2H, C18-H), 1.26–1.37 (m, 3H, -CH2CH3), 0.96 (t, 3H, J=7.6Hz, C19-

H); 13C NMR (100 MHz, CDCl3) δ: 167.5, 167.2, 166.9, 159.3, 157.2, 152.0, 148.7, 146.5, 

145.0, 131.2, 130.7, 129.4, 128.4, 128.1, 124.1, 120.0, 114.7, 95.5, 76.7, 67.1, 55.1, 50.0, 

49.3, 42.9, 38.6, 31.8, 8.4, 7.4; MS-ESI m/z: 667.1 [M+Na]+.

4.2.15. Compound 14a—Yield 52%; m.p. 119–121°C; 1H NMR (CDCl3, 400 MHz) δ: 

8.42 (s, 1H, C7-H), 8.24 (d, 1H, J=8.4Hz, C9-H), 7.95 (d, 1H, J=8.0Hz, C12-H), 7.84 (m, 

3H, C11-H, Ts-H), 7.68 (t, 1H, J=7.2Hz, C10-H), 7.27 (m, 2H, Ts-H), 7.15 (s, 1H, C14-H), 

7.01 (d, 2H, J =8.4 Hz, p-CH3OPh-H), 6.74 (d, 2H, J =8.4Hz, p-CH3OPh-H), 5.52 (ABq, 

2H, J=17.2Hz, C17-H), 5.31 (s, 2H, C5-H), 4.14 (m, 2H, C30-H), 3.77 (s, 3H, p-CH3OPh), 

3.47–3.63 (m, 2H, -CH2CH2NH-), 2.66–2.74 (m, 2H, -CH2CH2NH-), 2.40 (s, 3H, Ts-CH3), 

2.05–2.18 (m, 2H, C18-H), 0.95 (t, 3H, J=7.6Hz, C19-H); 13C NMR (100 MHz, CDCl3) δ: 

171.1, 167.3, 159.2, 157.2, 152.1, 148.8, 146.4, 145.7, 142.1, 140.7, 131.3, 131.1, 130.8, 

129.5, 129.2, 128.4, 128.2, 126.3, 124.4, 119.7, 114.6, 109.7, 95.7, 76.6, 67.0, 55.2, 49.9, 

38.7, 37.1, 32.8, 31.5, 21.4, 7.5; MS-ESI m/z: 721.3 [M+H]+.

4.2.16. Compound 14b—Yield 55%; m.p. 112–114 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.41 (s, 1H, C7-H), 8.22 (d, 1H, J=8.8 Hz, C9-H), 7.95 (d, 1H, J=8.0Hz, C12-H), 7.85 (m, 

3H, C11-H, Ts-H), 7.69 (t, 1H, J=7.6Hz, C10-H), 7.26 (m, 2H, Ts-H), 7.15 (s, 1H, C14-H), 

7.08 (d, 2H, J=8.4Hz, p-CH3OPh-H), 6.85 (d, 2H, J=8.4Hz, p-CH3OPh-H), 5.53 (ABq, 2H, 

J=17.2Hz, C17-H), 5.29 (s, 2H, C5-H), 4.17 (s, 2H, C30-H), 3.77 (s, 3H, p-CH3OPh), 3.26–

Song et al. Page 10

Eur J Med Chem. Author manuscript; available in PMC 2017 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.34 (m, 2H, -CH2CH2CH2NH-), 2.40–2.46 (m, 2H, -CH2CH2CH2NH-), 2.36 (s, 3H, Ts-

CH3), 2.08–2.21 (m, 2H, C18-H), 1.75–2.08 (m, 2H, -CH2CH2CH2NH-), 0.95 (t, 3H, 

J=7.6Hz, C19-H); 13C NMR (100 MHz, CDCl3) δ: 171.9, 167.5, 167.3, 159.2, 157.2, 152.2, 

148.8, 146.3, 145.7, 142.0, 140.7, 131.2, 131.1, 130.7, 129.5, 129.1, 128.4, 128.2, 128.0, 

126.3, 124.7, 119.9, 114.7, 95.7, 76.1, 67.0, 55.2, 49.9, 40.7, 38.7, 31.6, 30.8, 23.1, 21.4, 

7.5; MS-ESI m/z: 735.3 [M+H]+.

4.2.17. Compound 14c—Yield 50%; m.p. 166–168°C; 1H NMR (CDCl3, 400 MHz) δ: 

8.02 (d, 1H, J=8.8Hz, C12-H), 7.82 (d, 1H, J=8.0Hz, C11-H), 7.38 (m, 3H, C9-H, Ts-H), 

7.23 (d, 2H, J=8.4Hz, Ts-H), 7.08 (s, 1H, C14-H), 7.04 (d, 2H, J =8.4 Hz, p-CH3OPh-H), 

6.79 (d, 1H, J= 8.4Hz, p-CH3OPh-H), 5.92 (s, 1H, -C10-OH), 5.51 (ABq, 2H, J=17.2Hz, 

C17-H), 5.10 (m, 2H, C5-H), 4.38 (dd, 2H, J=5.2, 20.8Hz, C23-H), 4.19 (m, 2H, C30-H), 

3.70 (s, 3H, p-CH3OPh), 2.98 (m, 2H, C7-CH2CH3), 2.39 (s, 3H, Ts-CH3), 2.05–2.21 (m, 

2H, C18-H), 1.28 (d, 3H, J=7.2Hz, C7-CH2CH3), 0.92 (t, 3H, J=7.2Hz, C19-H); 13C NMR 

(100 MHz, CDCl3) δ: 167.6, 167.0, 159.3, 157.3, 156.5, 148.5, 147.4, 145.5, 144.4, 143.8, 

142.6, 139.9, 131.5, 131.1, 129.3, 128.5, 126.8, 126.4, 123.8, 122.8, 118.8, 114.7, 109.8, 

105.4, 95.4, 76.7, 67.0, 55.1, 49.4, 43.2, 38.3, 31.6, 22.9, 21.4, 13.5, 7.4; MS-ESI m/z: 751.5 

[M+H]+.

4.2.18. Compound 14d—Yield 52%; m.p. 168–179°C; 1H NMR (CDCl3, 400 MHz) δ: 

8.03 (s, 1H, C7-H), 7.98 (d, 1H, J=9.2Hz, C12-H), 7.82 (d, 2H, J=8.0Hz, Ts-H), 7.40 (m, 

1H, C11-H), 7.22 (d, 2H, J=8.0Hz, Ts-H), 7.14 (s, 1H, C9-H), 7.10 (s, 1H, C14-H), 7.03 (d, 

2H, J=8.4Hz, p-CH3OPh-H), 6.76 (d, 1H, J=8.4Hz, p-CH3OPh-H), 5.99 (s, 1H, -C10-OH), 

5.51 (ABq, 2H, J=16.8Hz, C17-H), 5.08 (m, 2H, C5-H), 4.41 (dd, 2H, J=4.8, 19.2Hz, C23-

H), 4.16 (m, 2H, C30-H), 3.67 (s, 3H, p-CH3OPh), 2.38 (s, 3H, Ts-CH3), 2.05–2.22 (m, 2H, 

C18-H), 0.94 (t, 3H, J=7.2Hz, C19-H); 13C NMR (100 MHz, CDCl3) δ: 167.9, 167.0, 159.2, 

157.2, 156.5, 148.7, 146.7, 145.7, 143.7, 142.6, 139.9, 131.0, 130.6, 129.7, 129.3, 128.6, 

126.4, 124.0, 123.3, 118.7, 114.6, 109.1, 95.5, 76.7, 66.9, 55.0, 50.0, 43.2, 38.3, 31.5, 21.4, 

7.5; MS-ESI m/z: 745.2 [M+Na]+.

4.2.19. Compound 14e—Yield 52%; m.p.210–212 °C; 1H NMR (DMSO-d6, 400 MHz) 

δ: 8.93 (br, 1H, NH), 8.04 (d, 1H, J=9.2Hz, C12-H), 7.90 (s, 1H, C9-H), 7.74 (d, 1H, 

J=8.4Hz, C11-H), 7.54 (d, 2H, J=7.6Hz, Ts-H), 7.18 (d, 2H, J=8.0Hz, Ts-H), 7.03 (m, 3H, 

C14-H, p-CH3OPh-H), 6.77 (d, 2H, J=8.4Hz, p-CH3OPh-H), 5.51 (s, 2H, C17-H), 5.31 (s, 

2H, C5-H), 4.36 (dd, 1H, J=5.6, 17.6Hz, C23-H), 4.24 (dd, 1H, J=4.8, 17.6Hz, C23-H), 4.00 

(s, 2H, C30-H), 3.69 (s, 3H, p-CH3OPh), 3.48 (d, 3H, J=10.8Hz, P=O(OCH3)), 3.11–3.17 

(m, 2H, C7-CH2CH3), 2.21 (s, 3H, Ts-CH3), 2.10–2.16 (m, 2H, C18-H), 1.30 (t, 3H, 

J=6.8Hz, C7-CH2CH3), 0.85 (t, 3H, J=6.8Hz, C19-H); MS-ESI m/z: 845.2 [M+H]+.

4.2.20. Compound 15a—Yield 52%; m.p. 141–143°C; 1H NMR (DMSO-d6, 400 MHz) 

δ: 9.09 (s, 1H, NH), 8.29 (d, 1H, J=8.3Hz, C9-H), 8.13 (d, 1H, J=8.5 Hz, C12-H), 7.83 (t, 

1H, J=7.0Hz, C11-H), 7.73 (t, 1H, J=7.6Hz, C10-H), 7.58 (d, 2H, J=8.2Hz, Ts-H), 7.28 (d, 

2H, J=8.7Hz, Ts-H), 7.07 (d, 2H, J=8.2Hz, p-CH3OPh-H), 6.95 (s, 1H, C14-H), 6.79 (d, 2H, 

J=8.7Hz, p-CH3OPh-H), 5.50 (s, 2H, C17-H), 5.32 (s, 2H, C5-H), 4.80 (m, 1H, C23-H), 

4.16 (d, 1H, J=14.2Hz, C30-H), 3.95 (d, 1H, J=14.2Hz, C30-H), 3.66 (s, 3H, p-CH3OPh), 
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3.23 (q, 2H, J=7.6Hz, C7-CH2CH3), 2.22 (s, 3H, Ts-CH3), 2.04–2.07 (m, 2H, C18-H), 1.46 

(d, 3H, J=7.3Hz, L-alanine-CH3), 1.31 (t, 3H, J=7.5Hz, C7-CH2CH3), 0.77 (t, 3H, J=7.4Hz, 

C19-H); 13C NMR (100 MHz, DMSO-d6) δ: 170.1, 166.8, 166.0, 158.1, 156.5, 151.6, 148.5, 

146.6, 145.6, 144.5, 141.3, 140.9, 130.0, 128.8, 127.9, 127.6, 126.9, 126.6, 125.8, 124.1, 

119.0, 113.7, 94.6, 76.4, 66.4, 55.0, 49.6, 49.1, 37.1, 30.2, 22.2, 20.8, 16.6, 14.0, 7.4 ; MS-

ESI m/z: 749.3 [M+H]+.

4.2.21. Compound 15b—Yield 55%; m.p. 139–141 °C; 1H NMR (DMSO-d6, 400 MHz) 

δ: 9.18 (s, 1H, NH), 8.29 (d, 1H, J=8.6Hz, C9-H), 8.13 (d, 1H, J=7.8Hz, C12-H), 7.83 (t, 

1H, J=7.0Hz, C11-H), 7.73 (t, 1H, J=7.7Hz, C10-H), 7.59 (d, 2H, J=8.2Hz, Ts-H), 7.36 (d, 

2H, J=7.3Hz, Ts-H), 7.25 (t, 2H, J=7.1Hz, Ph-H), 7.18 (t, 1H, J=7.2Hz, Ph-H), 7.07 (d, 2H, 

J=8.0Hz, Ph-H), 6.95 (s, 1H, C14-H), 5.49 (s, 2H, C17-H), 5.33 (s, 2H, C5-H), 4.81 (m, 1H, 

C23-H), 4.25 (d, 1H, J=14.4Hz, C30-H), 4.03 (d, 1H, J=14.4Hz, C30-H), 3.23 (q, 2H, 

J=7.2Hz, C7-CH2CH3), 2.21 (s, 3H, Ts-CH3), 2.01–2.08 (m, 2H, C18-H), 1.46 (d, 3H, 

J=7.3Hz, L-alanine-CH3), 1.31 (t, 3H, J=7.5Hz, C7-CH2CH3), 0.76 (t, 3H, J=7.3Hz, C19-

H); 13C NMR (100 MHz, DMSO-d6) δ: 170.1, 166.8, 165.5, 156.5, 151.6, 148.5, 146.6, 

145.6, 144.5, 141.4, 140.8, 135.2, 130.0, 128.8, 128.7, 128.3, 127.9, 127.6, 126.6, 125.8, 

124.1, 119.0, 94.6, 76.4, 66.4, 49.6, 49.1, 37.9, 30.2, 22.2, 20.8, 16.6, 14.0, 7.4 ; MS-ESI 

m/z: 719.3 [M+H]+.

4.2.22. Compound 15c—Yield 56%; m.p. 146–148 °C; 1H NMR (DMSO-d6, 400 MHz) 

δ: 8.88 (s, 1H, NH), 8.28 (d, 1H, J=8.3Hz, C9-H), 8.13 (d, 1H, J=7.9Hz, C12-H), 7.83 (t, 

1H, J=7.1Hz, C11-H), 7.71 (t, 1H, J=7.7Hz, C10-H), 7.52 (d, 2H,J= 8.2Hz, Ts-H), 7.18 (d, 

2H, J=8.7Hz, Ts-H), 7.08 (s, 1H, C14-H), 7.01 (d, 2H, J=8.0Hz, p-CH3OPh-H), 6.76 (d, 2H, 

J= 8.7Hz, p-CH3OPh-H), 5.51 (s, 2H, C17-H), 5.32 (s, 2H, C5-H), 4.35 (dd, 1H, J=5.9, 

17.9Hz, C23-H), 4.28 (dd, 1H, J=5.8, 17.9Hz, C23-H), 4.00 (s, 2H, C30-H), 3.64 (s, 3H, p-

CH3OPh), 3.21–3.23 (m, 2H, C7-CH2CH3), 2.19 (s, 3H, Ts-CH3), 2.10–2.12 (m, 2H, C18-

H), 1.30 (t, 3H, J=7.5Hz, C7-CH2CH3), 0.84 (t, 3H, J=7.3Hz, C19-H); 13C NMR (100 MHz, 

DMSO-d6) δ: 167.7, 167.1, 166.9, 158.0, 156.4, 151.6, 148.4, 146.6, 145.4, 144.6, 141.2, 

140.7, 130.0, 129.8, 128.7, 127.8, 127.5, 126.5, 126.3, 125.6, 118.8, 113.6, 94.9, 76.5, 66.3, 

54.9, 49.4, 42.3, 36.9, 30.3, 22.1, 20.7, 13.9, 7.4; MS-ESI m/z: 735.8 [M+H]+.

4.2.23. Compound 15d—Yield 54%; m.p. 145–147 °C; 1H NMR (DMSO-d6, 400 MHz) 

δ: 9.03 (s, 1H, NH), 8.28 (d, 1H, J=8.3Hz, C9-H), 8.13 (d, 1H, J=7.9Hz, C12-H), 7.83 (t, 

1H, J=7.5Hz, C11-H), 7.72 (t, 1H, J=7.6Hz, C10-H), 7.52 (d, 2H, J=8.2Hz, Ts-H), 7.26 (d, 

2H, J=7.0Hz, Ts-H), 7.15–7.23 (m, 3H, Ph-H), 7.09 (s, 1H, C14-H), 7.00 (d, 2H, J=8.0Hz, 

Ph-H), 5.51 (s, 2H, C17-H), 5.32 (s, 2H, C5-H), 4.38 (dd, 1H, J=5.8, 18.0Hz, C23-H), 4.26 

(dd, 1H, J=5.9, 18.0Hz, C23-H), 4.08 (s, 2H, C30-H), 3.22 (q, 2H, J=7.4Hz, C7-CH2CH3), 

2.18 (s, 3H, Ts-CH3), 2.08–2.14 (m, 2H, C18-H), 1.29 (t, 3H, J=7.5Hz, C7-CH2CH3), 0.73 

(t, 3H, J=8.3Hz, C19-H); 13C NMR (100 MHz, DMSO-d6) δ: 167.8, 166.9, 166.6, 156.5, 

151.7, 148.5, 146.6, 145.5, 144.6, 141.4, 140.7, 134.8, 129.9, 128.8, 128.7, 128.3, 127.8, 

127.5, 126.6, 126.5, 125.7, 124.0, 118.9, 94.9, 76.6, 66.4, 49.5, 42.4, 37.8, 30.4, 22.1, 20.7, 

13.9, 7.4; MS-ESI m/z: 705.3 [M+H]+.
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4.2.24. Compound 15e—Yield 59%; m.p. 132–134 °C; 1H NMR (DMSO-d6, 400 MHz) 

δ: 8.93 (s, 1H, NH), 8.25 (d, 1H, J=8.2Hz, C9-H), 8.14 (d, 1H, J=8.1Hz, C12-H), 7.85 (t, 

1H, J=7.0Hz, C11-H), 7.73 (t, 1H, J=7.4Hz, C10-H), 7.38 (d, 2H, J=8.4Hz, p-CH3OPh-H), 

6.98 (s, 1H, C14-H), 6.86 (d, 2H, J=8.4Hz, p-CH3OPh-H), 5.50 (s, 2H, C17-H), 5.33 (s, 2H, 

C5-H), 4.63 (t, 1H, J=7.1Hz, C23-H), 4.12 (d, 1H, J=14.0Hz, C30-H), 3.93 (d, 1H, 

J=14.1Hz, C30-H), 3.67 (s, 3H, p-CH3OPh), 3.21 (m, 2H, C7-CH2CH3), 2.92 (s, 3H, Ms-

CH3), 2.11 (q, 2H, J=7.1Hz, C18-H), 1.46 (d, 3H, J=7.2Hz, L-alanine-CH3), 1.29 (t, 3H, 

J=7.2Hz, C7-CH2CH3), 0.82 (t, 3H, J=7.0Hz, C19-H); 13C NMR(100 MHz, DMSO-d6) δ: 

170.4, 166.8, 165.7, 158.1, 156.5, 151.6, 148.4, 146.6, 145.6, 144.8, 130.3, 130.0,129.8, 

127.9, 127.6, 127.1, 126.6, 124.0, 118.9, 113.8, 113.7, 94.5, 76.5, 66.3, 55.0, 49.5, 49.3, 

43.1, 36.9, 30.2, 22.2, 16.4, 13.9, 7.4; MS-ESI m/z: 673.3 [M+H]+.

4.2.25. Compound 15f—Yield 60%; m.p. 126–128 °C; 1H NMR (DMSO-d6, 400 MHz) 

δ: 8.71 (s, 1H, NH), 8.29 (d, 1H, J=8.4Hz, C9-H), 8.13 (d, 1H, J=7.8Hz, C12-H), 7.85 (t, 

1H, J=7.5Hz, C11-H), 7.73 (t, 1H, J=7.6Hz, C10-H), 7.27 (d, 2H, J= 8.7Hz, p-CH3OPh-H), 

7.06 (s, 1H, C14-H), 6.83 (d, 2H, J=8.7Hz, p-CH3OPh-H), 5.51 (s, 2H, C17-H), 5.33 (d, 2H, 

J=4.3Hz, C5-H), 4.30 (dd, 1H, J=6.0, 18.0Hz, C23-H), 4.13 (dd, 1H, J=5.8, 18.0Hz, C23-H), 

4.00 (d, 1H, J=15.2Hz, C30-H), 3.97 (d, 1H, J=14.7Hz, C30-H), 3.67 (s, 3H, p-CH3OPh), 

3.21 (m, 2H, C7-CH2CH3), 2.85 (s, 3H, Ms-CH3), 2.10–2.15 (m, 2H, C18-H), 1.30 (t, 3H, 

J=7.5Hz, C7-CH2CH3), 0.88 (t, 3H, J=7.3Hz, C19-H); 13C NMR (100 MHz, DMSO-d6) δ: 

167.8, 166.9, 166.6, 158.2, 156.5, 151.6, 148.3, 146.6, 145.6, 145.1, 130.3, 129.7, 128.0, 

127.6, 126.6, 124.0, 118.7, 113.8, 94.7, 76.6, 66.2, 55.0, 49.5, 43.2, 42.3, 37.1, 30.2, 22.2, 

13.9, 7.5; MS-ESI m/z: 659.3 [M+H]+.

4.2.26. Compound 15g—Yield 60%; m.p. 133–135°C; 1H NMR (DMSO-d6, 400 MHz) 

δ: 9.27 (s, 1H, NH), 8.29 (d, 1H, J =8.5Hz, C9-H), 8.13 (d, 1H, J=7.9Hz, C12-H), 7.83 (t, 

1H, J=7.0Hz, C11-H), 7.72 (t, 1H, J=7.7Hz, C10-H), 7.57 (d, 2H,J=8.2Hz, Ts-H), 7.36 (d, 

2H, J=8.5Hz, p-ClPh-H), 7.27 (d, 2H, J=8.5Hz, Ts-H), 7.06 (d, 2H, J=8.1Hz, p-ClPh-H), 

6.94 (s, 1H, C14-H), 5.51 (s, 2H, C17-H), 5.33 (s, 2H, C5-H), 4.81 (m, 1H, C23-H), 4.25 (d, 

1H, J=14.4Hz, C30-H), 3.98 (d, 1H, J=14.5Hz, C30-H), 3.29 (q, 2H, J=7.6Hz, C7-

CH2CH3), 2.22 (s, 3H, Ts-CH3), 2.03–2.08 (m, 2H, C18-H), 1.46 (d, 3H, J=7.3Hz, L-

alanine-CH3), 1.31 (t, 3H, J=7.5Hz, C7-CH2CH3), 0.77 (t, 3H, J=7.3Hz, C19-H); 13C NMR 

(100 MHz, DMSO-d6) δ: 170.0, 166.7, 165.1, 156.5, 151.6, 148.5, 146.6, 145.6, 144.4, 

141.4, 140.7, 134.0, 131.4, 130.6, 129.9, 128.7, 128.1, 127.8, 127.6, 126.6, 125.7, 124.0, 

119.0, 94.5, 76.4, 66.4, 49.5, 49.2, 37.2, 30.2, 22.2, 20.8, 16.5, 13.9, 7.3; MS-ESI m/z: 753.3 

[M+H]+.

4.2.27. Compound 16a—Yield 30%; m.p. 160–162°C; 1H NMR (DMSO-d6, 400 MHz) 

δ: 9.15 (s, 1H, NH), 8.31 (s, 1H, C7-H), 8.13–8.21 (m, 2H, C9-H, C12-H), 7.86–7.94 (m, 

1H, C10-H), 7.68–7.79 (m, 3H, C11-H, Ts-H), 7.50 (d, 2H, J=8.4Hz, Ts-H), 7.29 (s, 1H, 

C14-H), 7.03–7.07 (m, 2H, p-CH3OPh-H), 6.79 (d, 2H, J=8.8Hz, p-CH3OPh-H), 5.83 (m, 

2H, C17-H), 5.55 (m, 2H, C5-H), 4.81 (m, 1H, C23-H), 3.91–4.20 (m, 2H, C30-H), 3.66 (s, 

3H, p-CH3OPh), 2.21 (s, 3H, Ts-CH3), 2.02–2.09 (m, 2H, C18-H), 1.46 (d, 3H, J=7.2Hz, L-

alanine-CH3), 0.75–0.86 (m, 3H, C19-H); MS-ESI m/z : 774.9 [M+K]+.
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4.2.28. Compound 16b—Yield 28%; m.p. 160–162°C; 1H NMR (DMSO-d6, 400 MHz) 

δ: 8.97 (s, 1H, NH), 8.33(s, 1H, C7-H), 8.12–8.20 (m, 1H, C9-H), 7.86–7.94 (m, 1H, C12-

H), 7.72–7.79 (m, 2H, C10-H, C11-H), 7.44–7.56 (m, 3H, C14-H, Ts-H), 7.16–7.24 (m, 2H, 

Ts-H), 7.01 (d, 2H, J=8.2Hz, p-CH3OPh-H), 6.74–6.76 (m 2H, p-CH3OPh-H), 5.85 (m, 2H, 

C17-H), 5.53 (m, 2H, C5-H), 4.22–4.24 (m, 2H, C23-H), 3.99 (s, 2H, C30-H), 3.63 (s, 3H, 

p-CH3OPh), 2.20 (s, 3H, Ts-CH3), 2.12–2.17 (m, 2H, C18-H), 0.81–0.84 (m, 3H, C19-H); 

MS-ESI m/z: 723.0 [M+H]+.

4.2.29. Compound 16c—Yield 59%; m.p. 162–164 °C; 1H NMR (DMSO-d6, 400 MHz) 

δ: 9.01 (s, 1H, NH), 8.87(s, 1H, C7-H), 8.43 (d, 1H, J=7.4 Hz, C12-H), 8.38 (t, 1H, J=6.3Hz, 

C10-H), 7.85 (t, 1H, J=7.6Hz, C11-H), 7.40 (d, 2H, J=8.2Hz, Ts-H), 7.16–7.26 (m, 5H, Ts-

H, Ph-H), 7.06 (d, 2H, J=8.0Hz, Ph-H), 7.01 (s, 1H, C14-H), 5.49 (m, 2H, C17-H), 5.28 (m, 

2H, C5-H), 4.25 (d, 2H, J=5.8Hz, C23-H), 4.05 (dd, 2H, J=4.0, 14.6Hz, C30-H), 2.23 (s, 3H, 

Ts-CH3), 2.15–2.18 (m, 2H, C18-H), 0.80–0.88 (m, 3H, J=7.3Hz, C19-H); 13C NMR (100 

MHz, DMSO-d6) δ: 167.9, 166.6, 156.3, 154.2, 147.7, 145.3, 143.7, 141.3, 140.7, 138.6, 

134.8, 131.6, 128.8, 128.5, 128.2, 126.6, 125.5, 120.8, 95.6, 76.1, 66.7, 50.2, 42.4, 37.7, 

30.9, 20.8, 7.3; MS-ESI m/z: 722.2 [M+H]+.

4.2.30. Compound 16d—Yield 55%; m.p. 161–163 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.49 (s,1H,C7-H), 8.16 (d, 1H, J=2.8Hz, C12-H), 814 (d, 1H, J=1.6Hz, C10-H), 7.80 (d, 2H, 

J=8.4Hz, Ts-H), 7.75 (t, 1H, J=7.6Hz, C11-H), 7.29 (d, 2H, J=8.0Hz, Ts-H), 7.11 (s, 1H, 

C14-H), 7.09 (d, 2H, J=3.6Hz, p-CH3OPh-H), 6.84 (d, 2H, J=8.6Hz, p-CH3OPh-H), 5.52 

(ABq, 2H, J=17.6Hz, C17-H), 5.30 (s, 2H, C5-H), 4.20 (m, 4H, C23-H, C30-H), 3.75 (s, 3H, 

p-CH3OPh), 2.42 (s, 3H, Ts-CH3), 2.09–2.30 (m, 2H, C18-H), 0.90 (t, 3H, J=7.5Hz, C19-

H); 13C NMR (100 MHz, CDCl3) δ: 167.7, 166.9, 166.6, 159.2, 156.9, 154.2, 148.2, 145.4, 

144.5, 142.4, 140.1, 139.9, 132.2, 131.4, 131.2, 130.3, 129.2, 128.6, 126.3, 124.6, 124.0, 

121.6, 114.7, 114.6, 96.9, 76.7, 67.2, 55.2, 49.9, 43.2, 38.4, 31.8, 21.3, 7.4; MS-ESI m/z: 

752.2 [M+H]+.

4.2.31. Compound 16e—Yield 33%; m.p.163–165°C; 1H NMR (CDCl3, 400 MHz) δ: 

8.56 (s, 1H, C7-H), 8.15 (m, 2H, C9-H, C11-H), 7.74–7.79 (m, 3H, C10-H, Ts-H), 7.27 (s, 

1H, C14-H), 7.01–7.11 (m, 4H, Ts-H, p-CH3OPh-H), 6.85 (m, 2H, p-CH3OPh-H), 5.54 (m, 

2H, C17-H), 5.37 (m, 2H, C5-H), 4.12–4.19 (m, 4H, C23-H, C30-H), 3.75 (s, 3H, p-

CH3OPh), 2.42 (s, 3H, Ts-CH3), 2.05–2.18 (m, 2H, C18-H), 0.93 (t, 3H, J=7.6Hz, C19-H); 

MS-ESI m/z: 790.2 [M+K]+.

4.2.32. Compound 16f—Yield 45%; m.p. 131–133°C; 1H NMR (CDCl3, 400 MHz) δ: 

8.42 (s, 1H, C7-H), 8.22 d, 1H, J=8.4Hz, C9-H), 7.95 (d, 1H, J=8.0, C12-H), 7.81–7.86 (m, 

3H, C11-H, Ts-H), 7.68 (t, 1H, J=7.2Hz, C10-H), 7.23–7.25 (m, 2H, Ts-H), 7.07–7.10 (m, 

2H, p-CH3OPh-H), 6.99 (s, 1H, C14-H), 6.83–6.87 (m, 2H, p-CH3OPh-H), 5.76–5.79 (m, 

1H, C5-H), 5.43 (ABq, 2H, J=17.6Hz, C17-H), 4.13–4.38 (m, 4H, C23-H, C30-H), 3.76 (s, 

3H, p-CH3OPh), 3.64 (s, 3H, 5-OCH3), 2.38 (s, 3H, Ts-H), 2.05–2.23 (m, 2H, C18-H), 0.95 

(m, 3H, C19-H); 13C NMR (100 MHz, DMSO-d6) δ: 167.9, 167.2, 166.6, 158.1, 157.2, 

150.8, 148.9, 145.4, 144.3, 141.2, 140.8, 131.1, 130.1, 129.6, 129.0, 128.7, 128.1, 126.3, 
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125.6, 121.8, 121.5, 113.7, 95.3, 89.5, 76.3, 66.3, 57.5, 54.9, 42.3, 37.0, 30.1, 20.7, 7.4; MS-

ESI m/z: 759.1 [M+Na]+.

4.2.33. Compound 16g—Yield 48%; m.p. 201–203 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.37 (s, 1H, C7-H), 8.18 (d, 1H, J=8.4Hz, C9-H), 7.93 (d, 1H, J=8.0Hz, C12-H), 7.81–7.86 

(m, 3H, C11-H, Ts-H), 7.67 (t, 1H, J=7.6Hz, C10-H), 7.29 (d, 2H, J=7.6Hz, Ts-H), 7.10 (m, 

3H, C14-H, CH3OPh-H), 6.84 (d, 2H, J=8Hz, CH3OPh-H), 5.57 (ABq, 2H, J=17.2Hz, C17-

H), 5.23 (s, 2H, C5-H), 3.92–4.32 (m, 4H, C30-H, C23-H), 3.74 (s, 3H, p-CH3OPh), 2.75–

2.96 (m, 2H, E-ring-H), 2.38 (s, 3H, Ts-CH3), 1.78–2.20 (m, 2H, C18-H), 1.05 (t, 3H, 

J=7.2Hz, C19-H); 13C NMR (100 MHz, CDCl3) δ: 170.2, 167.4, 167.0, 159.4, 152.3, 152.1, 

148.7, 145.7, 142.7, 131.3, 129.3, 128.6, 128.1, 126.6, 126.3, 124.1, 122.5, 114.8, 97.7, 

76.7, 62.2, 55.2, 50.3, 43.9, 38.5, 37.5, 29.6, 21.4, 7.4; MS-ESI m/z: 743.2 [M+Na]+.

4.2.34. Compound 16h—Yield 30%; m.p. 130–133 °C; 1H NMR (CDCl3, 400 MHz) δ: 

8.17 (s, 1H, C7-H), 8.09 (d, 1H, J=8.8 Hz, C9-H), 7.84 (d, 2H, J =8.0 Hz, Ts-H), 7.73 (t, 1H, 

J=7.2Hz, C11-H), 7.68 (d, 1H, J=8.4Hz, C12-H), 7.54 (s, 1H, C14-H), 7.50 (t, 1H, J=7.6Hz, 

C10-H), 7.37 (s, 1H, O=CNH-), 7.26–7.28 (m, 2H, Ts-H), 7.16 (d, 2H, J=8.4Hz, p-CH3OPh-

H), 6.87 (d, 2H, J=8.4Hz, p-CH3OPh-H), 6.40 (s, 1H, C20-OH), 5.43 (s, 2H, C17-H), 5.07–

5.20 (m, 2H, C5-H), 4.14–4.25 (m, 2H, 30-H), 3.73 (s, 3H, p-CH3OPh), 3.25–3.50 (m, 4H, 

O=CNHCH2CH2-), 2.38 (s, 3H, Ts-CH3), 2.27–2.33 (m, 2H, C18-H), 2.02 (s, 3H, 

OCOCH3), 0.96 (t, 3H, J=6.8Hz, C19-H); MS-ESI m/z: 774.2 [M+Na]+.

4.3. Cytotoxicity assays

Cytotoxic activity was determined by the sulforhodamine B (SRB) colorimetric assay as 

previously described [22]. In brief, the cells (3–5 × 103 cells/well) were seeded in 96-well 

plates filled with RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) 

containing various concentrations of samples, and incubated for 72 h. At the end of the 

exposure period, the attached cells were fixed with cold 50% trichloroacetic acid for 30 min 

followed by staining with 0.04% SRB (Sigma Chemical Co.) for 30 min. The bound SRB 

was solubilized in 10 mM Tris-base and the absorbance was measured at 515 nm on a 

Microplate Reader ELx800 (Bio-Tek Instruments, Winooski, VT) with a Gen5 software. All 

results were representative of three or more experiments.

4.4. Molecular docking study

The binding modes of two compounds 9 and 15c were investigated using molecular docking 

modeling in the AutoDock 4.2 software. Before starting the docking process, the protein 

structure was subjected to optimization step in order to minimize the crystallographic 

induced bond clashes. The Kollman united atom charges and polar hydrogen was added to 

the receptor and the crystallographic waters were removed. PyMol was used to construct the 

3D structure of the compounds 9 and 15c on the basis of camptothecin in the crystal. 

Charges of the Gasteiger type were assigned to the new constructed structures in AutoDock. 

Non-polar hydrogen atoms were merged and rotatable bonds were defined. The grid maps of 

the protein were calculated using AutoGrid module embedded in AutoDock software. The 

grid was set in a way to include not only the active site amino acids but also the considerable 

portions of the surrounding surface. Hence, a grid size of 60×60×60 Å points and 0.375 Å 
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spacing were generated based on the binding position of camptothecin in the protein. 

Docking simulations were performed using the autodock module of the software. Every 

docking program was taken out in 250000 energy evaluation with 15 conformations kept and 

the most favorable pose of each compound was exhibited.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

20(S)-Sulfonylamidine CPT-derivatives were prepared and tested for cytotoxicity.

Several analogues showed superior cytotoxic activity compared to irinotecan.

Key structural features related to cytotoxicity were identified by SAR analysis.

Compounds 9 and 15c interacted with Topo I-DNA by a different binding mode from 

CPT.

These compounds are new generation CPT-derived antitumor agents.
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Fig.1. 
Structures of camptothecin derivatives
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Fig. 2. 
Chemical structures of target compounds
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Figure 3. 
Compounds 1, 9, and 15c in the binding site of DNA-Topo-I. Topo I is shown as a grey 

ribbon diagram, double strand DNA is displayed in orange, and the ligands are indicated by 

sticks with carbon atoms in different colors (1 in green, 9 in magenta, 15c in blue).
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Figure 4. 
The binding mode of compound 9 (spheres on the left and sticks on the right with carbon 

atoms colored magenta). The atoms from double strand DNA bases are shown in orange, 

and the residues from Topo I are shown in grey ribbon diagrams as well as grey sticks. The 

direct H-bonds formed between 9 and DNA bases or Topo I residues are indicated by green 

dashed lines.
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Figure 5. 
The interactions between compound 9 and DNA. Double strand DNA is shown by spheres.
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Figure 6. 
The binding mode of compound 15c. The protein residues represented by sticks with 

carbons in white; the bases from DNA involved in the interaction network are shown as 

orange sticks.
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Scheme 1. 
General synthetic procedure for target compounds
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Table 1

In vitro cytotoxicity of compounds against three tumor cell lines.

Entry
IC50 (μM)

A-549 KB KBvin

13a 0.0408 ± 0.0228 0.0665 ± 0.0293 0.0453 ± 0.0018

13b 0.0302 ± 0.0229 0.0578 ± 0.0274 0.0399 ± 0.0170

13c 0.0375 ± 0.0130 0.0550 ± 0.0209 0.0325 ± 0.0025

13d 0.0349 ± 0.0253 0.0542 ± 0.0158 0.0435 ± 0.0158

13e 0.0319 ± 0.0144 0.0516 ± 0.0259 0.0222 ± 0.0149

13f 0.0540 ± 0.0179 0.1048 ± 0.0211 0.0635 ± 0.0246

13g 0.0549 ± 0.0122 0.1000 ± 0.0167 0.0648 ± 0.0392

13h 0.0141 ± 0.0033 0.0169 ± 0.0030 0.0225 ± 0.0051

13i 0.0165 ± 0.0016 0.0730 ± 0.0111 0.0248 ± 0.0090

13j 0.0149 ± 0.0010 0.0149 ± 0.0024 0.0149 ± 0.0019

13k 0.0174 ± 0.0020 0.0739 ± 0.0114 0.0275 ± 0.0082

13l 0.0765 ± 0.0065 0.0938 ± 0.0030 0.1226 ± 0.0134

13m 0.0162 ± 0.0030 0.0687 ± 0.0056 0.0256 ± 0.0108

13n 0.0481 ± 0.0232 0.0642 ± 0.0288 0.0786 ± 0.0287

14a 0.0889 ± 0.0047 0.6219 ± 0.0496 0.5267 ± 0.0093

14b 0.4478 ± 0.0185 0.8299 ± 0.0521 0.9550 ± 0.0339

14c 0.0218 ± 0.0034 0.0045 ± 0.0014 0.0282 ± 0.0111

14d 0.0640 ± 0.0009 0.0631 ± 0.0046 0.1010 ± 0.0184

14e 0.3445 ± 0.0129 0.1414 ± 0.0064 0.3048 ± 0.0201

15a 0.0160 ± 0.0051 0.0842 ± 0.0187 0.0227 ± 0.0031

15b 0.0102 ± 0.0014 0.0836 ± 0.0279 0.0195 ± 0.0041

15c 0.0068 ± 0.0001 0.0094 ± 0.0015 0.0101 ± 0.0026

15d 0.0072 ± 0.0009 0.0895 ± 0.0344 0.0185 ± 0.0086

15e 0.0610 ± 0.0083 0.0952 ± 0.0178 0.0982 ± 0.0326

15f 0.0198 ± 0.0078 0.0167 ± 0.0001 0.0258 ± 0.0080

15g 0.0129 ± 0.0034 0.0133 ± 0.0030 0.0160 ± 0.0042

16a 0.0869 ± 0.0005 0.1087 ± 0.0196 0.1508 ± 0.0366

16b 0.1399 ± 0.0051 0.2326 ± 0.0253 0.1592 ± 0.0312

16c 8.2696 ± 0.1356 9.0460 ± 0.6230 9.1334 ± 0.4951

16d 6.2726 ± 0.5033 7.0354 ± 0.8968 4.5833 ± 0.1234

16e 13.9377 ± 0.4889 11.2886 ± 0.4375 10.7481 ± 0.9274

16f 7.3051 ± 0.0591 7.5645 ± 0.0671 6.8826 ± 0.2515

16g 0.0836 ± 0.0100 0.2315 ± 0.0194 0.2628 ± 0.0373

16h 0.6877 ± 0.0035 0.9372 ± 0.0105 0.9469 ± 0.0721

9 (YQL-9a) 0.0314 ± 0.0035 0.142 ± 0.0178 0.0263 ± 0.0130

1 (Camptothecin) 0.016 ± 0.0005 0.037 ± 0.0031 0.12 ± 0.0091

3 (Irinotecan) 9.480 ± 0.106 9.828 ± 0.481 >20
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