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Abstract

Background—Tobacco smoke and alcohol drinking are the major risk factors for squamous cell 

carcinoma of the head and neck (SCCHN). Smoking and drinking cause DNA damage leading to 

apoptosis, and insufficient apoptotic capacity may favor development of cancer because of the 

dysfunction of removing damaged cells. In the present study, we investigated the association 

between camptothecin (CPT)-induced apoptotic capacity and risk of SCCHN in a North American 

population.

Methods—In a case-control study of 708 SCCHN patients and 685 matched cancer-free controls, 

we measured apoptotic capacity in cultured peripheral blood lymphocytes (PBLs) in response to in 

vitro exposure to CPT by using the flow cytometry-based method.

Results—We found that the mean level of apoptotic capacity in the cases (45.9±23.3%) was 

significantly lower than that in the controls (49.0±23.1%) (P = 0.002). When we used the median 

level of apoptotic capacity in the controls as the cutoff value for calculating adjusted odds ratios 

(ORs), subjects with a reduced apoptotic capacity had an increased risk (adjusted OR = 1.42, 95% 
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confidence interval [CI] = 1.13–1.78, P = 0.002), especially for those who were age ≥57 (1.73, 

1.25–2.38, 0.0009), men (1.76, 1.36–2.27, < 0.0001) and ever drinkers (1.67, 1.27–2.21, 0.0003), 

and these variables significantly interacted with apoptotic capacity (Pinteraction = 0.015, 0.005 and 

0.009, respectively). A further fitted prediction model suggested that the inclusion of apoptotic 

capacity significantly improved in the prediction of SCCHN risk.

Conclusion—Individuals with a reduced CPT-induced apoptotic capacity may be at an increased 

risk of developing SCCHN, and apoptotic capacity may be a biomarker for susceptibility to 

SCCHN.
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1. Introduction

Head and neck cancer is a heterogeneous group of tumors that involve multiple sites and 

cellular origins within the head and neck region. Squamous cell carcinoma of the head and 

neck (SCCHN), including cancers of the oral cavity, oropharynx, hypopharynx, and larynx, 

is the most common histological type (i.e., 90% of cases) and one of the six most common 

cancers worldwide [1]. In the United States, approximately 60,000 new cases are diagnosed 

annually and 12,000 die of this disease each year [2]. It is well known that tobacco smoke 

and alcohol use as well as prior human papilloma virus (HPV) infection (particularly for the 

oropharynx subsite) are the major risk factors that play an important role in the etiology of 

SCCHN. However, only a small fraction of smokers and/or drinkers will develop SCCHN, 

and a small proportion of those exposed to HPV will develop oropharyngeal cancer (OPC), 

suggesting that there is genetic susceptibility to this disease in the general population [3–5]. 

Indeed, tobacco smoke and consumption of alcoholic beverages contain several carcinogens 

that can cause different types of DNA damage in the target cells [6, 7]. Apoptosis functions 

to eliminate damaged cells and thus is a critical factor in the protection against tobacco and 

alcohol induced cancers, including SCCHN [8].

Apoptosis, also called programmed cell death, is a critical mechanism to maintain the 

balance of cell survival and death by removing irreparable damaged cells [9–11]. Cells have 

two main apoptosis signaling pathways, an extrinsic (death receptor) and an intrinsic 

(mitochondrial) pathway [12–14]. The extrinsic pathway, or the death receptor pathway, is 

initiated from outside of the cell, usually when conditions in the extracellular environment 

determine cell death. This pathway can be induced through the activation of death receptors, 

such as death receptor 3 (DR3), death receptor 4 (DR4), death receptor 5 (DR5), FAS and 

tumor necrosis factor alpha receptor (TNFαR), by their respective ligands. The intrinsic 

pathway, or the mitochondrial pathway, begins when DNA damage occurs within the cell. It 

involves a diverse array of non-receptor-mediated stimuli that produce intracellular signals 

that act directly on targets within the cell. In both pathways, the signaling leads to activation 

of the caspase family proteases responsible for dismantling and removing the dying cell [15–

17]. It is well known that apoptosis contributes to a wide variety of physiological and 

pathological processes, and dysregulation of apoptosis can disrupt the delicate balance 

between cell proliferation and cell death, leading to diseases including cancer [9, 18]. 
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Increasing evidence has demonstrated that insufficient apoptotic capacity can promote 

development of cancer [19, 20]. Therefore, it is important to detect apoptotic levels and their 

association with cancer risk through epidemiologic research.

There are many different experimental methods that can induce apoptosis in vitro, including 

radiation, benzo[a]pyrene-7,8–9,10-diol epoxide (BPDE), thapsigargin and camptothecin 

(CPT), which have somewhat different underlying mechanisms [21–26]. For example, CPT 

is an effective chemotherapeutic drug for treatment of patients with cancer [27]. Although 

the mechanisms underlying CPT-mediated responses in cancer cells are not fully understood, 

it has been identified that CPT induces apoptosis by inhibiting topoisomerase I, resulting in 

high levels of internally accumulated DNA double-strand breaks in the cell, ultimately 

leading to cell death [28–30]. CPT is believed to possess promising anticancer effect against 

a broad spectrum of cancer cell lines, such as those of the breast, colon, lung, and ovarian 

cancers, because many cancer cells exhibit downregulation of the topoisomerase I activity 

[30, 31]. To date, most experimental studies of CPT-induced apoptosis were conducted with 

some cancer cell lines and animal models [22, 25, 27, 32], and there are no reported assays 

that measure the CPT-induced apoptotic capacity in humans, such as using peripheral blood 

lymphocytes (PBLs) by flow cytometry in epidemiologic research. In the present study, by 

measuring the CPT-induced apoptotic capacity in PBLs with a flow cytometry-based 

Terminal Transferase dUTP Nick End Labeling (TUNEL) assay as previously described 

[33], we tested the hypothesis that suboptimal apoptotic capacity measured in PBLs is 

associated with risk of SCCHN in a case-controls study of 703 cases and 685 cancer-free 

controls of a North American population.

2. Materials and Methods

2.1. Study subjects

The analysis included a total 703 cases who were patients with newly diagnosed, untreated 

primary tumors of the oral cavity (n = 214; 30.4%), oropharynx (n = 367; 52.4%), 

hypopharynx (n = 20; 2.8%), larynx (n = 101; 14.4%), and unknown primaries (n = 1; 

0.1%). These cases were histologically confirmed and recruited at The University of Texas 

M.D. Anderson Cancer Center during the period between November 2005 and November 

2012. Patients with second SCCHN primary tumors, primary tumors of the nasopharynx or 

sinonasal tract, or any histopathologic diagnosis other than SCCHN were excluded. By 

frequency matching on age (±5 years), sex, and ethnicity, we also identified an additional 

685 cancer-free control subjects from among hospital visitors at M.D. Anderson Cancer 

Center during the same time period. Having provided a written informed consent, each of 

cases and controls completed a self-administered life-style questionnaire that collected 

information about risk factors, such as tobacco smoking and alcohol use, and donated a one-

time sample of 30 ml of blood for biomarker tests. The University of Texas M.D. Anderson 

Cancer Center Institutional Review Board approved the research protocol.
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2.2. Human peripheral blood lymphocytes (PBLs) culture and camptothecin (CPT) 
treatment

The method of PBL culture and CPT treatment have been previously reported [33]. Briefly, 

the PBLs were isolated from the whole blood by using Ficoll (Pharmacia Biotech Inc., 

Piscataway, NJ) gradient centrifugation and then cultured in RPMI 1640 supplemented with 

15% fetal calf serum (GIBCO BRL) and 56.25 μg/ml phytohemagglutinin (Murex 

Diagnostics, Norcross, GA) for 48 hours at 37°C in an incubator with 5% CO2. We used 

CPT to selectively induce apoptosis of the PBLs. The baseline or spontaneous apoptosis 

index was obtained from the same individual’s samples that were not incubated in parallel 

with those treated by CPT. The dose of 250 nmol/L CPT (Cat# C9911; Sigma-Aldrich, Inc.) 

for the in vitro treatment of the cells for 24 hours was determined according to a previous 

report [22]. At the indicated time points, the aliquotted samples of cultured cells were 

harvested and fixed with 1% paraformaldehyde, washed with 1x PBS and finally stored in 

70% ethanol at −20°C until used for the apoptotic detection by a flow cytometer.

2.3. Apoptotic analysis with flow cytometry

For the measurement of CPT-induced apoptotic capacity, we used the TUNEL assay as 

previously described [33]. Briefly, we detected apoptotic cells with an APO-Brdu kit 

(Phoenix Flow Systems, San Diego, CA), which contained apoptosis-positive and -negative 

cells as the assay controls, and we used a two-color staining method for labeling DNA 

breaks and total cellular DNA. The kit included washing, reaction, and rinsing buffers for 

processing each step of the assay; terminal deoxynucleotidyl transferase enzyme, 

bromodeoxyuridine triphosphate, and fluorescein-labeled anti-bromodeoxyuridine antibody 

for labeling DNA; and propidium iodide/RNase A solution for counterstaining the total 

DNA. The ratio of apoptotic cells (1 × 105) was calculated based on the measurements by 

flow cytometry (with the Epics Profile II Flow Cytometer, Beckman Coulter, Inc.) according 

to the instructions of the manufacturer.

2.4. Statistical analysis

The differences in selected demographic variables, smoking, and alcohol use between 

SCCHN cases and controls were evaluated by using the χ2-test. The two-sided Student’s t 
test was used to test the difference between cases and controls for baseline and CPT- induced 

apoptotic capacity levels. The apoptotic capacity was determined by the formula [(Percent 

experimental apoptosis – percent spontaneous apoptosis)/(100 – percent spontaneous 

apoptosis)] × 100% [34]. The median apoptotic capacity (%) of control subjects was used as 

the cutoff value: values greater than or equal to the median were considered high levels of 

apoptotic capacity, and values below the median were considered low/suboptimal levels of 

apoptotic capacity. The quartiles of apoptotic capacity in controls subjects were used as the 

cut-off values to evaluate the apoptotic capacity dose-response effect on SCCHN risk. We 

also dichotomized apoptotic capacity by the median of controls to evaluate its effect on risk 

of SCCHN by computing odds ratios (ORs) and their 95% confidence intervals (CIs) from 

both univariate and multivariate logistic regression models in the case-control analysis. 

These analyses were performed with or without adjustment for age (in years), sex, smoking 

and drinking status. Subjects who had smoked <100 cigarettes in their lifetimes were defined 
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as never smokers; all others were defined as ever smokers. Among ever smokers, those who 

had quit and had not smoked for >1 year before the interview were defined as former 

smokers and the others were defined as current smokers. Similarly, subjects who had 

reported drinking alcoholic beverages at least once a week and longer than 1 year prior to 

diagnosis or interview were defined as ever drinkers and the remaining as never drinkers. 

Among ever smokers, those who had quit drinking for longer than 1 year prior to diagnosis 

or interview were defined as former drinkers and the others as current drinkers.

We also performed a stratified analysis followed by an assessment of interactions between 

the quartiled apoptotic capacity and selected variables, such as age, sex, ethnicity, smoking 

and drinking status, tumor sites and stages as previously described [35, 36]. The 

multiplicative interaction was estimated by including the interaction term (i.e., the quartiled 

apoptotic capacity × risk factor) in one multivariate logistic regression model, which also 

included the main effect of the quartiled apoptotic capacity and other covariates. To assess 

the effect of apoptotic capacity on SCCHN risk prediction, receiver operating characteristic 

(ROC) curves were plotted from the logistic regression models, and the area under the curve 

(AUC) were used to assess the classification performance of the models. Statistical 

significance of the improvement in AUC after adding apoptotic capacity to the model with 

existing covariates (e.g., age, sex, ethnicity, smoking and drinking status) was calculated by 

Delong’s test as previously described [36, 37]. All tests were two sided, and all statistical 

analyses were performed with the SAS software (version 9.1.3; SAS Institute, Inc., Cary, 

NC).

3. Results

3.1. Characteristics of the study population

As shown in Table 1, there were no significant differences in the distributions of age and sex 

between 703 cases and 685 cancer-free controls, with a similar age distribution (P = 0.745) 

with mean ages of 56.9 (±10.7) and 56.8 (±11.1) years, respectively, but the cases were more 

likely than the controls to be ever smokers (64.4% versus 46.9%) or ever drinkers (73.4% vs. 

57.0%). Furthermore, the differences in tobacco smoke and alcohol consumption between 

cases and controls were statistically significant (both P <0.001). However, all these variables 

were further adjusted for any confounding effect in the multivariate logistic regression 

models later. Overall disease stage distribution of SCCHN patients was 13.8%, 10.3%, 

14.4%, and 61.5% for stages I–IV, respectively (Table 1).

3.2. Association between apoptotic capacity and risk of SCCHN

When apoptotic capacity (%) was analyzed as continuous variable, the mean apoptotic 

capacity in PBLs was significantly lower in the cases than in the controls (45.9+23.3% vs. 

49.0+23.1%; P < 0.002; Table 2; Supplementary Figure 1). As shown in Table 2, in the 

controls, men, ever smokers and drinkers had significantly higher apoptotic capacity than did 

women, never smokers and drinkers (P < 0.0001, 0.003 and <0.0001, respectively); in the 

cases, the younger subjects (<57 years) had significantly higher apoptotic capacity than did 

older subjects (≥57 years, P = 0.025). There were no other significant differences in 

apoptotic capacity by subgroups of selected variables for both cases and controls. In the 
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case-control analysis, we found that the cases were more likely to have a lower apoptotic 

capacity than the controls, particularly in the older subjects (≥57 years, P = 0.0009), men (P 
= <0.0001), Caucasians (P = 0.031), ever smokers (P = 0.005), ever drinkers (P < 0.0001), 

and OPC (P = 0.024) (Table 2; Supplementary Figure 1). We also controlled for multiple 

testing with the Bonferroni method, and found the results of older subjects, males and ever 

drinkers passed the Bonferroni threshold (0.05/38 tests = 0.0013) (Table 2).

When apoptotic capacity values were categorized by the median or quartile of the controls, 

the decreased apoptotic capacity was consistently associated with an increased risk of 

SCCHN, as assessed in the logistic regression models. As shown in Table 3, when the 

dichotomized apoptotic capacity was used, we found that individuals with a low apoptotic 

capacity had a significantly increased risk (i.e., OR with adjustment for age, sex, ethnicity, 

smoking and drinking status) of SCCHN (adjusted OR = 1.42; 95% confidence interval [CI] 

= 1.13–1.78, P = 0.002), compared with those with a high apoptotic capacity. Similarly, 

compared with the highest apoptotic capacity quartile (≥67.9%) of the controls, this 

increased risk was dose dependent [the second highest quartile (57.3–67.8): adjusted OR, 

1.18; 95% CI, 0.85–1.65; the third quartile (31.4%–57.2%): adjusted OR, 1.49; 95% CI, 

1.08–2.06; and the fourth quartile (<31.4%): adjusted OR, 1.61; 95% CI, 1.17–2.22, 

respectively; P = 0.015]. This trend of increasing risk with decreasing apoptotic capacity 

was statistically significant (Ptrend = 0.002; Table 3, Figure 1).

3.3. Stratified analysis of apoptotic capacity by selected variables

We assessed possible interactions on multiplicative scales, between apoptotic capacity and 

the related variables listed in Table 4. We found a significant interaction of apoptotic 

capacity with age and sex as well as drinking status (Pinteraction = 0.015, 0.005 and 0.009, 

respectively) on SCCHN risk, which suggested that older subjects (≥57 years), men and ever 

drinkers with low apoptotic capacity had the highest risk of SCCHN, as compared with their 

corresponding baseline group (Figure 2).

We further performed stratified analyses to evaluate the effects of apoptotic capacity on the 

risk of SCCHN in subgroups of age, sex, ethnicity, smoking status, alcohol consumption, 

tumor sites and tumor stages using the median value in controls for calculating ORs. As 

shown in Table 4, the stratified analysis showed that the inverse association of apoptotic 

capacity with SCCHN risk remained significant among subjects with the following 

characteristics: cases were more likely than the controls to have reduced apoptotic capacity: 

1.73 times for the older subjects (adjusted OR = 1.73; 95% CI = 1.25–2.38, P = 0.0009); 

1.76 times for male (adjusted OR = 1.76; 95% CI = 1.36–2.27, P < 0.0001); 1.48 times for 

ever smokers (adjusted OR = 1.48; 95% CI = 1.10–1.99, P = 0.009); 1.67 times for ever 

drinkers (adjusted OR = 1.67; 95% CI = 1.27–2.21, P = 0.0003); 1.59 times for OPC 

(adjusted OR = 1.59; 95% CI = 1.21–2.07, P = 0.0008); 1.47 times for T1/T2 stages 

(adjusted OR = 1.47; 95% CI = 1.15–1.89, P = 0.002); 1.49 times for N2/N3 stages (adjusted 

OR = 1.49; 95% CI = 1.14–1.94, P = 0.003); and 1.51 times for stages III/IV (adjusted OR = 

1.51; 95% CI = 1.18–1.93, P = 0.001).
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3.4. Prediction of the SCCHN risk by apoptotic capacity

To evaluate the performance of apoptotic capacity in SCCHN risk prediction models, we 

calculated the AUC using multivariate logistic regression and ROC. As shown in Figure 3, 

the model included age, sex, race, smoking and drinking status as classifiers, it had an AUC 

of 63.2%; with the addition of apoptotic capacity, the AUC was significantly improved to 

64.4% (P = 0.029, by the DeLong’s test). With age, sex, ethnicity, smoking and drinking 

status as classifiers, the model specific for OPC had an AUC of 63.9%; with the addition of 

apoptotic capacity, the AUC was significantly improved to 66.0% (P = 0.010, by the 

DeLong’s test).

4. Discussion

In this hospital-based case-control study, we observed that SCCHN patients had a 

significantly lower CPT-induced apoptotic capacity in their PBLs than that of the controls. 

When using the median level of apoptotic capacity in the controls as a cutoff, individuals 

with a lower apoptotic capacity had a 1.42 times greater risk for having SCCHN than those 

with a higher apoptotic capacity, which suggests that reduced apoptotic capacity may play a 

role in the etiology of SCCHN. Stratified analysis further showed that this association was 

more evident in subgroups of older subjects (≥57 years), men, ever smokers, ever drinkers, 

OPC, tumor stages T1/T2, N2/N3, and overall stages III/IV. These findings are consistent 

with the notion that apoptosis capacity may be involved in cancer risk associated with 

exposure to tobacco smoke and alcohol drink, because old subjects, men and ever smokers 

and drinkers are more likely to have a higher level of exposure to tobacco smoke and 

alcoholic beverage [5, 38]. Our additional analyses of the AUC further suggested that 

apoptotic capacity could significantly improve the prediction of SCCHN risk.

Apoptosis plays a crucial role in many biological and cellular processes, while dysfunction 

of apoptosis may lead to oncogenesis and development of cancer [18, 39]; thus, evasion of 

apoptosis is considered one of the hallmarks of human cancers [40]. In fact, pro-apoptotic 

genes might act as tumor suppressors, whereas oncogenes might fulfill anti-apoptotic 

functions [40]. Apoptosis defects are now considered an important complement of proto-

oncogene activation [41], and establishing targeted pro-apoptotic therapeutic protocols and 

developing apoptosis-inducing drugs have been under way since the 1990s, which have 

provided novel approaches to the successful treatment of cancers [42].

Apoptotic capacity has been suggested as a biomarker for risk of several types of cancer, 

including SCCHN, but results from epidemiologic studies have been inconclusive [19, 21, 

43–45]. For example, Zhao et al. found that among 30 lung cancer patients and 22 controls, 

apoptosis levels were significantly lower in the cases than in controls [43]. In a pilot case-

control study of 29 patients with neoplasms of the salivary and thyroid glands and 29 cancer-

free control subjects, we observed that the low apoptotic capacity was associated with a 10 

or four-fold increased risk of salivary and thyroid carcinoma [46]. In a study of 68 lung 

cancer patients and 74 cancer-free controls, we measured the apoptotic capacity in their 

cultured PBLs in response to in vitro exposure to an ultimate tobacco carcinogen, 

benzo[a]pyrene diol epoxide (BPDE), by using the terminal dUTP nucleotide end labeling 

(TUNEL) and flow cytometry, we observed a significantly lower apoptotic capacity in the 
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cases than in the controls [19]. Similarly, in a 243 female breast cancer patients and 75 

cancer-free controls after their PBLs were irradiated or mock-treated, breast cancer patients 

shown significantly reduced apoptotic response, compared with normal controls [44]. While 

in a study of 211 breast cancer patients and 170 cancer-free controls, Docherty et al. 
investigated the apoptotic response to ionizing radiation in PBLs, but the authors failed to 

reveal any difference in DNA damage-induced apoptosis between the cases and the controls 

[47].

In the present study that included 703 SCCHN cases and 685 matched cancer-free controls, 

we found an association between apoptotic capacity and risk of SCCHN, a finding consistent 

with previous studies that found that a low apoptotic capacity in PBLs was associated with 

an increased risk of several types of cancers, such as lung cancer [19, 43], breast cancer [44], 

and salivary and thyroid carcinoma [46]. Our finding also supports a previous study in which 

the Bcl-2 protein, an inhibitor of apoptosis, played a role in the regulation of T lymphocyte 

apoptosis [48]. In one relatively small study of 23 laryngeal carcinoma cases and 20 healthy 

controls in a Poland population, the expression of the Bcl-2 protein in T lymphocytes in 

CD4+ and CD8+ T lymphocytes measured by flow cytometry was significantly higher in 

laryngeal carcinoma patients than in the controls [48]. More recently, in another study of 43 

SCCHN cases’ tumor tissues and 10 normal mucosa samples in a Chinese population, a 

higher expression of survivin (also called BIRC5, an inhibitor of apoptosis-related protein) 

in the nuclei of tumor cells than in those of normal mucosa cells [49], and one study 

identified that survivin inhibited apoptosis through inhibiting both Bax and Fas-induced 

apoptotic pathways [50]. In contrast with our observations, another study assessed the 

apoptosis levels using the TUNEL assay by flow cytometry in peripheral blood mononuclear 

cells from subjects of 22 head and neck cancer patients after treatment by surgery, or surgery 

and radiation or surgery and chemoradiotherapy and 16 healthy controls and found that 

cancer patients showed higher apoptotic response than healthy subjects at the time of blood 

draw (0 time) and after 24 hours incubation [51]. Such a small study is likely to generate 

unstable estimates.

In the stratified analysis, we also observed that OPC patients had a significantly lower 

apoptotic capacity in PBLs than that of the controls. It is well known that HPV infection has 

been implicated as the most important risk for the development of OPC. Among the known 

HPV types, high-risk HPV-16 is the most common, accounting for approximately 90% or 

more of HPV-positive OPC cases [52]. There is an increasing molecular evidence that HPV 

causes human cancers by expressing E6 oncogenic protein, which not only binds to p53 and 

inhibits its activity, resulting in reduced protein function, but also inhibits p53-independent 

apoptotic pathways, promoted by different stimuli [53–55]. It has been reported that HPV-16 

E6 inhibited drug-induced apoptosis in cells lacking p53 [56]. In transgenic mice expressing 

HPV-16 E6 in the ocular lens, it has been identified that HPV E6 prevented apoptosis in both 

wild-type and p53-null animals [57]. Our finding in the present study provided additional 

epidemiologic evidence that low apoptotic capacity is associated with an increased risk of 

HPV-related OPC.

To the best of our knowledge, the present study is the first larger population study to 

epidemiologically show the association of reduced apoptotic capacity with an increased risk 
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of SCCHN. However, the present study also had several limitations. First, this is a hospital-

based case-control study of the CPT-induced apoptotic capacity assay with some inherited 

selection bias, although we had applied a stringent frequency-matching strategy in recruiting 

cases and controls to control for potentially confounding variables. Second, no information 

of genetic susceptibility was involved in the present study, although such as apoptotic gene 

mutations and single nucleotide polymorphisms (SNPs) may also influence apoptotic 

capacity in individuals [19, 58], but the phenotypic measurement of apoptosis may have 

reflected the sum of all possible genetic variants. Third, although reduced apoptotic capacity 

has been found to be associated with increased SCCHN risk, we cannot exclude the 

influence of other potential confounder (e.g., HPV infection status) that was not controlled 

in the present study, and the retrospective nature of the present study may not exclude the 

possibility that the disease status may have some effect on the apoptotic capacity. Fourth, the 

apoptotic capacity was measured in PBLs that were used as a surrogate for head and neck 

epithelial cells; however, it has been reported that lymphocytes are a good surrogate for 

estimating cancer risk associated with apoptosis phenotypes as markers for genetic 

susceptibility [19, 41]. Finally, variations in apoptotic capacity may be due to difference in 

the interval between blood sample collection and the cell-based experiments, because no 

repeated blood samples were collected in the study design.

In conclusion, the present study offers the first evidence that reduced CPT-induced apoptotic 

capacity in PBLs is associated with an increased risk of SCCHN. If our results are validated 

in large, prospective cohort studies, this apoptotic phenotype could be used as a biomarker 

for identifying individuals at risk of SCCHN, who might benefit from targeted cancer 

prevention programs.
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Table 2

Apoptotic capacity (AC, %) between squamous cell carcinoma of the head and neck (SCCHN) patients and 

healthy control subjects in a North American population.

a
AC= [100 × (experimental apoptosis − spontaneous apoptosis)/(100 − spontaneous apoptosis)].

b
P values for the differences between subgroups were determined by the Student t test.
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c
P values for the difference between cases and controls.

d
Missed 1 patients’ and 2 controls’ information.

e
Tests that could pass the Bonferroni threshold (0.05/38 tests =0.0013) for multiple testing correction.
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