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Introduction
Inorganic arsenic is a naturally occurring set 
of compounds that is classified as a known 
human carcinogen and is of potential concern 
because of its ubiquity in soil and water and 
the systemic nature by which it influences 
disease in humans (IARC et al. 2004; U.S. 
EPA 2001). Evidence regarding the asso-
ciation between ingested arsenic and human 
health has come mainly from populations 
exposed to high levels of arsenic in drinking 
water. In those studies, arsenic has been asso-
ciated with increases in all-cause mortality 
[e.g., Argos et al. (2010)], ischemic heart 
disease [e.g., Tseng et al. (2003)], nonma-
lignant respiratory disease [e.g., Mazumder 
et al. (2000)], and cancers at sites including 
lung, skin, bladder, and kidney [e.g., Wu 
et al. (1989)]. In contrast, most epidemio-
logical evidence regarding the health effects of 
inhaled inorganic arsenic comes from studies 
of exposure in workplaces. In such settings, 
the most consistent evidence of association 
with exposure to arsenic has been for lung 
cancer [e.g., Lubin et al. (2000)]. There is 
disagreement about whether data on airborne 
arsenic exposure provide evidence of associa-
tions with other health outcomes [e.g., Hertz-
Picciotto et al. (2000); Lubin and Fraumeni 
(2000)]. Lung cancer is relatively rare. Thus, 

the population impact of airborne arsenic 
exposure has been described mainly by high 
relative rates for a rare disease, which limits 
the apparent magnitude of the potential 
public health impact.

It is not clear whether the lack of asso-
ciations between airborne arsenic exposure 
and other causes of death is due to differ-
ences between the health effects by exposure 
route or whether it is due to bias that 
obscures health effect estimates in occupa-
tional studies. Previous authors have specu-
lated that such associations may be masked 
by healthy worker survivor bias (Arrighi and 
Hertz-Picciotto 1994), a bias in occupational 
studies that may obscure causal relationships. 
Healthy worker survivor bias occurs when 
healthier workers (those experiencing low 
rates of disease) are able to sustain employ-
ment longer than sicker workers, thus 
accruing greater exposure over time. Some 
authors assert that healthy worker survivor 
bias does not appreciably affect estimates 
of the health effects of arsenic (Lubin and 
Fraumeni 2000). We propose that progress in 
assessing the magnitude of the public health 
impact of inhaled arsenic can be made by 
reanalyzing occupational data using methods 
that can improve control of healthy worker 
survivor bias. Under the assumptions that 

will be discussed in this article, such methods 
can improve the accuracy of estimates of the 
public health impact of exposure.

Healthy worker survivor bias has been 
conceptualized as time-varying confounding 
by employment status (Hertz-Picciotto 
et al. 2000), which in some cases cannot be 
controlled in the multivariable regression 
models (Buckley et al. 2015) used in previous 
analyses. The parametric g-formula (hereafter, 
“g-formula”) can be used to appropriately 
control confounding in such settings (Robins 
1986). We have used the g-formula and data 
from a cohort of arsenic-exposed copper 
smelters to estimate the effects of hypo-
thetical interventions on occupational arsenic 
exposure on mortality from heart disease, 
respiratory cancers, and all other causes 
combined. We report the results from a range 
of hypothetical interventions to illustrate 
expected changes in mortality with increasing 
arsenic exposure.

Methods

Study Population

Our study population is a cohort of workers 
from a copper smelting facility in Anaconda, 
Montana, followed from 1938 through 
1990. This cohort, referred to as the Lee–
Fraumeni cohort, has been described in detail 
elsewhere (Lee and Fraumeni 1969). Briefly, 
the cohort comprises 8,014 white, male indi-
viduals who worked ≥ 1 year at the smelter 
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between 1 January 1938 and 31 December 
1956. Follow-up began after the worker was 
employed for 1 year.

Employment records provided the work 
area and dates of job changes or termination. 
Records spanned the start of employment 
through 30 September 1977, when 11% 
of the workforce remained. From 1977 to 
1980, when the smelter ceased operations 
permanently (Mercier 2001), no employment 
history is available.

Exposure to arsenic was quantified 
using work-area measurements from a series 
of 702 measurements of airborne arsenic 
trioxide (As2O3) obtained between 1943 
and 1958 (Lee and Fraumeni 1969). From 
these measurements, personal exposure was 
classified as years employed in “heavy,” 
“medium” or “light” exposed jobs. These 
classifications were then used to create a 
quantitative exposure variable. The measure-
ments were used to estimate a time-weighted 
airborne concentration for each work area 
corresponding to 0.29 mg/m3 (light), 
0.58 mg/m3 (medium), and 11.4 mg/m3 
(heavy). Following the procedure described by 
Lubin et al. (2008), we created a quantitative 
exposure metric in milligrams/cubic meter-
years as the product of the duration of work 
and the airborne concentration in each area: 
d = 0.29 × years-light + 0.58 × years-medium 
+ γ × 11.4 × years-heavy, where d is estimated 
exposure, γ is a weight, and years-light/
medium/heavy are years employed in each 
job. The exposure metric was down-weighted 
for working in “heavy” exposed areas using 
γ = 0.1 to reflect the use of filtration masks 
(Lubin et al. 2000).

Using social security numbers provided 
by the company, the original investigators 
determined mortality from state health 
departments, Social Security claims records, 
insurance records, and the National Death 
Index. Causes of death were classified 
according to the International Classification 
of Disease, revision 8a (ICD-8a) as assigned 
to the underlying cause of death noted on 
death certificates [all deaths were coded to 
ICD-8a using an ICD cross-walk that was 
supplied to us by the lead author of Lubin 
et al. (2008)]. We created separate indicator 
variables for deaths caused by respiratory 
cancer (ICD-8a codes 160–163), heart disease 
[ICD-8a codes 410–414, 420–429; previ-
ously analyzed as “cardiovascular disease” by 
Hertz-Picciotto et al. (2000)], or all other 
causes (including deaths with unknown 
causes). The ICD codes that we used to define 
each outcome (see Table S1) were selected to 
maximize comparability to previous research 
in this cohort. Following the methods used 
by previous authors (Lubin et al. 2000, 2008; 
Robins 1986), we considered all individuals 
alive and at-risk through the earliest of the 

date of death, age 90, or the end of follow-up 
on 31 December 1990.

Age was the time scale for our analysis. 
We were primarily interested in the worker 
cohort as our target of inference. Thus, our 
analysis focused on contrasting the survival 
experience of the cohort under different inter-
ventions that could have been performed at 
the copper smelter to decrease (or increase) 
arsenic exposure.

Statistical Methods
We estimated the cumulative incidence, or 
risk, from age 20 onwards, for three causes of 
death. The cumulative incidence of death at 
age a is the probability that a person has died 
due to an outcome of interest by the time 
they have reached age a (Cole et al. 2015). 
In a closed cohort, cumulative incidence 
corresponds to the observed proportion of 
deaths from a specific cause. In contrast with 
other common survival analysis estimands for 
cause-specific mortality, such as the Kaplan–
Meier estimator (Kaplan and Meier 1958), 
the cumulative incidence does not depend 
upon the hypothetical removal of competing 
risks (Prentice et al. 1978).

The g-formula (Robins 1986) can be 
used to estimate the cumulative incidence 
using a time-varying version of standardiza-
tion. Such an approach is not subject to bias 
when confounders may be affected by the 
exposure of interest. In occupational studies, 
employment status is hypothesized to be one 
such confounder (Buckley et al. 2015). In 
regression approaches, bias can result either 
through adjusting away part of the exposure 
or by conditioning on a variable that results 
in the creation of noncausal association, 
referred to as collider bias. In the g-formula, 
the estimated cumulative incidence is stan-
dardized (rather than stratified) over levels of 
confounders, some of which may be affected 
by exposure. Thus, the g-formula can be used 
to control confounding while avoiding bias 
from stratifying on a variable affected by 
exposure. We used the g-formula to estimate 
the cumulative incidence of death from heart 
disease, respiratory cancer, and all other 
causes. When follow-up occurs over a long 
period of time or continuous covariates are 
used, the g-formula can be approximated 
using parametric models and a Monte Carlo 
algorithm (Keil et al. 2014). This approach 
involves fitting separate models for each 
outcome of interest, for each time-varying 
confounder, for loss to follow-up (when it 
occurs), and for exposure (in some cases, 
discussed below). The Monte Carlo algorithm 
involves sampling repeatedly from the data 
and simulating the values of confounders 
and outcomes predicted from the parametric 
models. Using these predicted values, we can 
estimate the expected cumulative incidence 

under a set of interventions on our exposure 
of interest.

We focused our analysis on comparing 
mortality in the cohort under workplace inter-
ventions that could have been implemented in 
1938, when follow-up started. Approximately 
one-third of the workers were hired before 
1938. We consider exposure before 1938 
as a potential confounder of the association 
of interest: mortality and arsenic exposure 
that occurred after enrollment. Thus, we are 
comparing the effects of interventions that 
could have been implemented in 1938.

Complete elimination of exposure at work 
would likely be infeasible given the available 
technology, but it is nonetheless informative 
with respect to estimating the excess burden 
of disease from occupational exposure. 
Therefore, we compared the cumulative inci-
dence under different exposure scenarios with 
the cumulative incidence that would have 
been observed had exposure been eliminated 
for all person-time under follow-up (referred 
to as the “always unexposed” intervention). 
Following Robins (1986), our “always unex-
posed” intervention required an assumption 
that the effects of arsenic follow the parametric 
form specified in the models because the 
cohort included no unexposed workers. This 
assumption is commonly made in the arsenic 
literature, in which a linear model is frequently 
adopted (Lubin et al. 2008). We contrasted the 
cumulative incidence under the intervention 
“always unexposed” with the cumulative inci-
dence that would have been observed under 
the “natural course,” which represented the 
action of no change in exposure but improved 
study design to ensure complete follow-up. 
The natural course recreated the observed 
history of exposure, confounders, and causes 
of death using the models described above plus 
a model for exposure while at work. Use of the 
natural course as a comparator (instead of the 
observed data) helped to isolate differences in 
mortality among hypothetical interventions 
that were due solely to exposure rather than 
to the combined influence of exposure and 
incomplete follow-up. Even under limited 
loss to follow-up, use of the natural course 
yielded cumulative incidence estimates with 
lower variance relative to estimates from the 
observed data. In addition, we contrasted the 
cumulative incidence for each outcome under 
three interventions that would have resulted 
in “heavy,” “medium,” or “light” exposure 
for all employees while at work. These 
comparisons allowed an informal analysis of 
exposure–response and illustrated the mortality 
trends that might have occurred had changes 
to industrial hygiene practices (to reduce 
 occupational exposure) been implemented.

To estimate the parameters of the 
g-formula, we created parametric models 
for the following features of the data: death 
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from respiratory cancer, death from heart 
disease, other causes of death, leaving work, 
returning to work, and exposure at work 
(light, medium or heavy). Individuals were 
considered to be at risk up until they were 
confirmed to be dead or were censored 
at age 90 years or the end of follow-up, so 
no model for loss to follow-up was needed. 
For death and employment variables, we fit 
pooled logistic models. For exposure, we fit 
a pooled, ordinal logistic [proportional odds 
(McCullagh 1980)] model for categories of 
exposure (light, medium, heavy). For each 
model, we chose a set of candidate model 
forms based on the Akaike Information 
Criterion (AIC). The final set of models 
was chosen according to how well the joint 
model predictions matched the observed data, 
based on comparisons of the mortality rates 
and average exposures between the natural 
course and the observed data. All models 
included baseline covariates [location of 
birth (United States or other), time worked 
before 1938 (linear term), occupational 
arsenic exposure before 1938 (linear, using 
the quantitative value described above)] and 
time-varying covariates [active work status 
(yes or no), cumulative time at work after 
1938 (linear), cumulative arsenic exposure 
after 1938 (quantitative value, lagged 2 years 
allowing for different exposure coefficients by 
time since exposure (2–5 years, 5–10 years, 
10–20 years) and assuming no associations 
with exposure more than 20 years prior]. 
Cause-specific mortality model fit, based on 
the AIC, worsened after including exposure 
more than 20 years prior, so it was kept out 
of the models. We modeled age-specific 
intercepts using a restricted cubic spline and 

adjusted for calendar time (linear) and age 
by time interaction terms to allow for birth 
cohort and/or period differences in baseline 
rates of the outcomes. Specific model forms 
are listed in Tables S2 and S3. The discrete-
time rates of disease and employment changes 
under each intervention were simulated 
under each intervention using a Monte Carlo 
algorithm we have described previously (Keil 
et al. 2014), which numerically approximates 
the rates using simulated outcomes. Using 
the simulated outcomes, we estimated the 
cause-specific risk from age 20 with an exten-
sion of the Kaplan–Meier estimator that 
allows for competing risks to account for 
late entry on the age time-scale (Taubman 
et al. 2009). Accounting for late entry was 
necessary because not all workers were under 
 observation at age 20.

We estimated the risk difference by 
subtracting the cumulative incidence in the 
natural course intervention from the always 
unexposed intervention. We focused on the 
estimation and precision of our results rather 
than on hypothesis testing (Wasserstein 
and Lazar 2016). We report the statistical 
precision of our results using bootstrap, 
percentile-based 95% confidence intervals 
(CIs) for the risk difference using a nonpara-
metric, bootstrap standard error (1,500 itera-
tions). The cumulative incidence was used 
to estimate the number of deaths per 1,000 
workers for each cause (cumulative incidence 
× 1,000), and the risk difference was used 
to estimate the number of excess deaths per 
1,000 resulting from exposure (risk difference 
× 1,000). We focused our analysis primarily 
on mortality at age 70. To assess differences 
in excess mortality by age we also report on 
mortality at age 60.

All analyses were performed using 
standard procedures in SAS 9.4 (SAS Institute 
Inc.) following the methods described in a 
previous analysis (Keil et al. 2014). Original 
data collection procedures have been described 
in detail by Lee and Fraumeni (1969). 
Deidentified data for the current manu-
script were provided to the authors from the 
National Cancer Institute. This study was 
approved by the University of North Carolina 
Institutional Review Board committee, which 
granted a waiver of informed consent.

Results
The median age at entry was 32, and the 
median time of work prior to study entry was 
1 year (Table 1). Most workers were born 
in the United States. By the end of follow-
up in 1990, only 39% were still alive, with 
21% having died with heart disease as the 
underlying cause and 6% having died with 
respiratory cancer as the underlying cause. 
As shown in Figure 1, the distributions of 
observed ages at death were similar among 
respiratory cancer [median, interquartile 
range (IQR) = 65, 58–71], heart disease 
(median, IQR = 67, 58–75) and deaths from 
other causes (median, IQR = 66, 56–75).

The cumulative incidence functions 
for respiratory cancer, heart disease, and 
other causes showed good correspondence 
between the observed data and the cumula-
tive incidence predicted for the natural course 
(Figure 2). The observed median cumulative 
arsenic exposure across all person-time in 
the study was 1.7 mg/m3-years (interquar-
tile range: 0.87–4.1). The predicted exposure 
under the natural course intervention corre-
sponded well with the observed data [median, 
IQR = 1.7 (0.87–4.4) mg/m3-years]. A 

Table 1. Demographic, exposure, and vital status 
characteristics of the study population, 8,014 
copper smelter workers, Anaconda, Montana, 
1938–1990.

Characteristic Median (IQR)a

Age at study entry 31.6 (23.2–43.6)
Age at hire 25.3 (19.6–35.3)
Age at last employment 46.4 (32.2–60.6)
Date of birth (year) 1912 (1901–1922)
Date of hire 1942 (1929–1949)
Arsenic exposure at entry  

Exposed, number (%) 7,802 (97.4)
Cumulative mg/m3-years 0.29 (0.23–0.77)

Years employed at entry 0.99 (0.81–1.83)
U.S. born, number (%) 6,945 (86.7)
Vital status, number (%)b  

Alive 3,136 (39.1)
Deceased, respiratory cancerc 445 (5.6)
Deceased, heart diseased 1,690 (21.1)
Deceased, other or unknown cause 2,743 (34.2)

IQR, interquartile range.
aMedian (IQR) unless otherwise indicated.
bVital status as of the earlier of age 90 or 31 December 1990.
cInternational Classification of Diseases, revision 8a, 
codes 160–164.
dInternational Classification of Diseases, revision 8a, 
codes 410–414, 420–429.

Figure 1. Age at death distribution for respiratory cancer (Resp. cancer), heart disease (Heart dis.), and other 
causes. The study population comprised 8,014 copper smelter workers, Anaconda, Montana, 1938–1990.
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1-mg/m3-year increase in exposure during the 
preceding 1–5 years increased the log-odds of 
leaving work by 2.3 (standard error = 0.02), 
suggesting that healthy worker survivor bias 
in this cohort could not be controlled by 
simply adjusting for employment status in a 
regression model because it is associated with 
prior exposure.

The cumulative incidence of respiratory 
cancer by age 70 (46 deaths per 1,000) was 
approximately one-third that of heart disease 
(150 deaths per 1,000) and one-fifth that for 
other causes of death (270 per 1,000). We 
estimated that arsenic exposure resulted in an 
excess of 22 (95% CI: 10, 35) deaths from 
all causes per 1,000 individuals (the sum of 
all cause-specific excess deaths), of which we 
attribute 7.2 (95% CI: –1.1, 15) to heart 

disease, 4.0 (95% CI: –0.8, 8.2) to respira-
tory cancer, and the remaining 11 (95% CI: 
0.0, 15) to other causes (Table 2). Under 
the intervention “if at work, receive heavy 
exposure,” we estimate that all specific causes 
of death would have been elevated relative to 
the natural course. Excess mortality under the 
interventions “if at work receive light/moderate 
exposure” were intermediate between the 
“always unexposed” and the “heavy exposure” 
interventions. By age 90, the risk difference 
between the natural course and the “never 
exposed” intervention had diminished for 
cardiovascular disease and all-cause mortality, 
whereas it had grown for lung cancer mortality 
(Figure 3). The estimate of excess deaths was 
generally lower and more precise for each cause 
of death at age 60 versus age 70 (Table 2).

Discussion
We estimated that an intervention in 1938 to 
eliminate arsenic exposure in this cohort of 
copper smelters would have delayed approxi-
mately 22 deaths per 1,000 by age 70. The 
estimated effect of reducing exposure relative 
to the natural course, measured by the excess 
deaths due to exposure at age 70, is nearly 
as high among causes other than respiratory 
cancer and heart disease mortality as it is 
among the excess deaths for those two causes 
combined. Estimated excess deaths from other 
causes were not influenced greatly by other 
malignant causes of concern, such as bladder 
and skin cancer, which comprised < 5% of 
the 1,010 cancer deaths (data not shown). 
Our results are consistent with the hypoth-
esis that airborne arsenic acts systemically 
to influence nonmalignant and nonrespira-
tory fatal diseases. As in a prior report on the 
association between arsenic and circulatory 
diseases in this cohort (Lubin and Fraumeni 
2000), the estimated cumulative incidence 
differences for heart disease mortality were not 
statistically significant at age 70. However, our 
findings suggest that the public health burden 
of mortality (at age 70) for heart disease and 
respiratory cancer may be similar, if not higher 
for heart disease. The estimated impact from 
other causes of death was higher still.

Authors of previous reports on the same 
cohort of copper smelters have concluded 
that airborne arsenic exposure is not associ-
ated with an increase in heart disease mortality 
(Lubin and Fraumeni 2000; Lubin et al. 
2000). Our results are not formally compa-
rable to previous research on this topic. Lubin 
et al. (2000) reported standardized mortality 
ratios, which rely on a referent group from 
the general population. The proportion of 
smokers in a subset of this cohort was esti-
mated to be ~80%, which makes internal 
comparisons desirable for smoking-related 
diseases such as respiratory cancer and heart 
disease (Welch et al. 1982). Our results are 
a comparison of the same group of workers 
under different hypothetical scenarios, which 

Figure 2. Cumulative incidence estimates for the observed data (dashed lines) and under the “natural 
course” intervention in the g-formula (solid lines) for all-cause and cause-specific mortality [respiratory 
(Resp.) cancer mortality (International Classification of Diseases, revision 8a codes 160–164); heart disease 
mortality (cardiovascular disease; International Classification of Diseases, revision 8a codes 410–414, 
420–429)]. The study population comprised 8,014 copper smelter workers, Anaconda, Montana, 1938–1990.

Table 2. Cause-specific and all-cause mortality per 1,000 and excess deaths per 1,000 at age 60 and age 70.

Age (years)/ 
Cause of mortality

Deaths per 1,000a (95% CI) Excess deaths per 1,000b (95% CI)

No exposure Natural course If at work, light exposure If at work, medium exposure If at work, heavy exposure
Age 60

All causes 224 (211, 239) 14 (5.0, 22.3) 12 (4.1, 20) 27 (14, 40) 60 (33, 88)
Respiratory cancer 17 (13, 20.2) 1.7 (–0.4, 3.9) 1.6 (–0.5, 3.7) 4.0 (0.6, 7.3) 10 (2.6, 20)
Heart disease 65 (58, 73) 4.8 (0.2, 9.1) 4.1 (–0.4, 8.4) 8.7 (1.4, 16) 18 (2.8, 34)
Other causes 143 (132, 156) 7.3 (–0.1, 15) 6.5 (–0.3, 14) 14 (2.3, 26) 32 (8.0, 58)

Age 70
All causes 441 (423, 460) 22 (10, 35) 20 (8.3, 31) 42 (23, 62) 89 (51, 128)
Respiratory cancer 42 (35, 50) 4.0 (–0.8, 8.2) 3.6 (–0.7, 7.4) 8.9 (0.7, 16) 21 (2.3, 43)
Heart disease 138 (126, 152) 7.2 (–1.1, 15) 6.4 (–1.2, 13) 13 (–0.9, 26) 25 (–2.5, 54)
Other causes 261 (244, 279) 11 (0.0, 23) 9.9 (–0.7, 21) 20 (1.8, 40) 43 (4.2, 83)

CI, confidence interval.
The cohort comprised 8,014 copper smelter workers, Anaconda, Montana, 1938–1990.
aCumulative incidence × 1,000.
bRisk difference × 1,000 (relative to no exposure; negative values imply that higher exposures would decrease the risk of mortality).
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increases comparability in mortality risk 
factors, such as smoking, among exposure 
groups. Lubin and Fraumeni (2000) reported 
stratified rate ratios, which are also not directly 
comparable with our results because we report 
marginal effect estimates on a different scale 
and over a different age range. Thus, we 
could only make qualitative comparisons to 
the prior literature. In contrast to Lubin and 
Fraumeni’s interpretation of their results, we 
inferred that arsenic exposure was associated 
with an increase in the risk of both respira-
tory cancer and heart disease at age 70. After 
adjusting for baseline mortality differences 
between the workers and the general popula-
tion, Lubin et al. (2008) estimated standard-
ized mortality ratios that were elevated but not 
statistically significant (α = 0.1) at cumulative 
exposure levels < 10 mg/m3-years. Similarly, 
we estimated that the respiratory cancer excess 
estimate was low, relative to its precision, for 
the lowest exposures.

Our estimates of excess lung cancer are 
consistent with prior analyses of these data 
(Lubin et al. 2008), and perhaps coherent 
with inhalation as the primary exposure route 
in this occupational setting. However, arsenic 
ingestion through drinking water is also asso-
ciated with lung cancer (Celik et al. 2008), 
and a pooled dose–response analysis by Smith 
et al. suggested that the association between 
urinary arsenic and lung cancer is similar, 
regardless of whether arsenic exposure is 
from drinking water or smelter work (Smith 
et al. 2009). Thus, the exposure route may 
not be the driving force between the lack of 
association between arsenic and heart disease 
in previous occupational studies. Our recent 
work has shown that healthy worker survivor 
bias in occupational studies may result in 
potentially large underestimates of exposure–
response metrics for mortality, including 
lung cancer (Keil et al. 2015), and the asso-
ciation between prior exposure and employ-
ment status suggests that such bias may have 
occurred in previous analyses of this cohort. 
Healthy worker survivor bias may explain, in 
part, why occupational studies often do not 

estimate positive associations between arsenic 
exposure and heart disease.

Much of the evidence for the health 
effects of chronic arsenic exposure comes 
from observational studies, which are 
primarily restricted to the ingestion exposure 
route. Further, we found no experimental 
studies that focused on cardiovascular 
outcomes associated with inhalation of 
arsenic trioxide. Little is known about how 
inorganic arsenic absorption differs between 
ingestion and inhalation routes, although 
arsenic trioxide is readily soluble in the lungs 
(WHO 2001). Arsenic-containing dusts may 
be ingested as well as inhaled (Roels et al. 
1982), or they may be transported from the 
lungs to the mouth via mucociliary clear-
ance. Thus, we would expect that occupa-
tional studies would replicate many of the 
findings of the large population-based studies 
of arsenic ingestion.

The choice of a relevant age is key to inter-
preting our results. We chose to focus on the 
mortality risk at age 70 because at this age, 
individuals would be expected to maintain a 
high quality of life, but employment-based 
exposures would likely have already begun 
to show any potential effects. Our results 
comparing the mortality risk among hypo-
thetical interventions depend on this a priori 
choice both qualitatively and statistically. 
The number of excess deaths from exposure 
depends strongly on age, as shown in Table 2 
and Figure 3, and statistical precision will 
generally be lower at older ages. The results at 
age 60 were generally more precise than those 
at age 70 (Table 2). We could have alterna-
tively quantified mortality using estimands 
such as the average lifespan. This measure 
is not straightforward to interpret when 
considering specific causes of death, however, 
because exposure may accelerate the disease 
course or cause death from a different disease 
(Morfeld 2004; Robins and Greenland 1991). 
Our data were not sufficient to differentiate 
between these two potential mechanisms, and 
excess risk provides a summary measure of the 
total impact of exposure.

According to our analysis, the asso-
ciation between arsenic and heart disease was 
stronger in intermediate age ranges (Figure 3). 
These results are consistent with previous 
analyses of this cohort in which early analysis 
indicated an excess of heart diseases relative 
to the general population (Lee and Fraumeni 
1969; Lubin et al. 1981; Welch et al. 1982), 
whereas analysis after many more years of 
follow-up did not (Lubin et al. 2000). As 
an alternative measure of arsenic’s impact 
across the life course, the g-formula allowed 
us to calculate years of life lost for all causes 
by simply comparing the person-time under 
each intervention, which suggested an overall 
detriment that is not apparent in the cumula-
tive incidence at age 90. This approach is not 
possible for specific causes of death, however 
(Morfeld 2004; Robins and Greenland 1991). 
Because heart diseases may reduce the quality 
of life for many years before death, the true 
public health burden from airborne arsenic 
exposure may lie mainly in its effects on 
cardiovascular outcomes. This is a limitation 
of using mortality as an end point, which is 
likely a better indication of incident disease 
for respiratory cancer (which is characterized 
by low survival) than for heart disease.

We focused on mortality from respira-
tory cancer (85% of which was lung cancer 
deaths) and heart disease primarily for compa-
rability to prior analyses, where disagreement 
regarding healthy worker survivor bias and 
the health effects of airborne arsenic centered 
primarily on these two outcomes (Arrighi 
and Hertz-Picciotto 1996; Hertz-Picciotto 
et al. 2000; Lubin and Fraumeni 2000; Lubin 
et al. 2008). In an analysis of another smelter 
cohort, Hertz-Picciotto et al. reported a 
positive exposure–response between arsenic 
and heart disease (termed “cardiovascular 
disease” by those authors) after attempting 
to reduce healthy worker survivor bias by 
adjusting for employment status (Hertz-
Picciotto et al. 2000). In response to that 
article, Lubin analyzed data from the present 
cohort and suggested that there was no asso-
ciation between arsenic and heart disease, even 

Figure 3. Cumulative incidence curve under hypothetical interventions on arsenic exposure for respiratory cancer mortality (A), heart disease mortality (B) and 
all-cause mortality (C). The study population comprised 8,014 copper smelter workers, Anaconda, Montana, 1938–1990. Light/medium exposure interventions not 
included for clarity.
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after adjusting for employment status (Lubin 
and Fraumeni 2000). However, adjusting 
for employment status may not remove this 
bias (Buckley et al. 2015) and could poten-
tially increase it (Keil et al. 2015). Both 
Hertz-Picciotto et al. (2000) and Lubin and 
Fraumeni (2000) focused on relative measures 
of effect, which can understate the apparent 
public health impact of common diseases. We 
elaborated on previous work by appropriately 
controlling for healthy worker survivor bias 
and by estimating absolute effects of exposure 
using the g-formula. By estimating the effects 
of interventions that could decrease (“never 
exposed,” “if at work, receive low exposure”) 
as well as increase (“if at work, receive 
medium/heavy exposure”) exposure relative to 
the natural course, we informally assessed the 
exposure–response curve.

Healthy worker survivor bias can arise 
when employment status acts as a confounder 
of the association of interest (Buckley et al. 
2015). Employment status is consistently 
associated with many health outcomes and 
is a strong (often deterministic) predictor of 
subsequent exposure. In our study, employ-
ment status was independently (from other 
confounders) associated with prior exposure, 
thus fitting the criteria for a time-varying 
confounder affected by prior exposure. 
Confounding by such variables can be 
controlled by the g-formula but not by multi-
variable regression (Keil et al. 2014). Under the 
assumptions of noninterference (one person’s 
exposure cannot affect another’s outcome), 
correct model specification, positivity (inter-
vention levels of exposure are possible within 
all strata of confounders), and no unmeasured 
confounding (conditional exchangeability), the 
g-formula can be used to estimate the distri-
butions of health outcomes that we would 
expect under interventions on exposure, such 
as changes in regulatory conditions or work-
place policies (Robins 1986). Although our 
approach included exposure–response trends 
through parametric modeling, our primary 
results are expressed as expected excess mortality 
under a discrete set of interventions. Based on 
these results, we expect larger excesses of death 
resulting from respiratory cancer, heart disease, 
and other causes at higher exposures.

Compared with standard regression 
analyses, the parametric g-formula is more 
sensitive to the assumption of correct model 
specification, an assumption that will never 
hold exactly (Robins 1986). However, we 
assert that our models held at least approxi-
mately because we favored model flexibility 
over model parsimony. The results shown in 
Figure 1 support this claim because for the 
natural-course intervention, our models 
closely matched what was observed in the 
data. Although the agreement between the 
observed survival times and the predictions 

from standard regression models can be used 
to assess model fit, comparisons are not often 
made between model predictions and observed 
data, which represents an advantage to our 
approach. A further advantage of the g-formula 
over standard regression models is that even 
with highly flexible models that allow for 
nonlinearity and interactions, the inference 
remains a simple contrast of mortality under a 
limited number of hypothetical scenarios, as in 
a clinical trial. As is the case in all approaches 
that rely on modeling, however, there is no 
guarantee that models are correctly speci-
fied, and bias may result. If, for example, our 
model for heart disease underestimated the 
rate at zero exposure but not at higher levels 
of exposure, then we would likely overesti-
mate the effect of arsenic on heart disease. 
Such an error could occur, for example, if the 
true exposure response followed a threshold 
model. With respect to lung cancer, the 
results reported by Lubin et al. (2008) 
suggest that linear extrapolation of the excess 
rate gives a reasonable approximation of the 
exposure–response curve at low exposures.

As occurs with many occupational cohort 
studies, we lack information on potential 
confounders of associations between occu-
pational exposures and mortality, such 
as smoking. We did not have smoking data 
and were thus unable to directly control for 
smoking, which is a cause of both lung 
cancer and heart disease. Previous authors 
have observed that workers in the copper 
smelter cohort with persistent work in high-
exposure jobs had a 2–5% larger proportion 
of smokers than those with persistent work 
in lower-exposure jobs (Welch et al. 1982). 
However, this small difference is unlikely to 
explain our results. Our approach assumed that, 
conditional on the modeled covariates, annual 
arsenic exposure is not associated with smoking. 
Such an association could arise if, for example, 
smokers were preferentially placed into higher- 
(or lower-) exposed jobs. However, if smoking 
affects exposure only by its effects on one’s 
ability to stay employed (or if employment 
and smoking status share a common cause), 
we could control unmeasured confounding 
by annual smoking simply by adjusting for 
employment status. Thus, smoking could be 
one reason why adjusting for employment 
status is important to control healthy worker 
survivor bias (Buckley et al. 2015). Other 
measures or determinants of health status, such 
as undiagnosed incident cardiovascular disease, 
were also unmeasured and may play a similar 
role in healthy worker survivor bias.

Ideally, we would like to estimate the 
impact of interventions on all workers who 
worked at the Anaconda smelter, which was 
built in 1919. However, all cohort members 
had to have worked ≥ 1 year at the smelter 
after 1938 before becoming eligible for the 

cohort. The long-term workers who were 
working in 1938 (33% of the cohort) likely 
had different prognoses from those of former 
workers of a similar age and date of hire 
because those with poor prognosis would 
likely have already left employment or died 
and consequently have become ineligible for 
the study, a process referred to as left trun-
cation (Applebaum et al. 2011). Thus, we 
could estimate the effects of hypothetical 
interventions before 1938, and our estimates 
of excess risk were conditional on being alive 
and employed through the beginning of entry 
into the study. Because we could estimate the 
excess mortality at different exposure levels, 
our results directly estimated the population 
impact of exposure and the possible effects that 
implementing different exposure standards 
may have had in this cohort. The generaliz-
ability of our estimates to other populations 
is uncertain given that the workers were all 
employed males and not representative of the 
U.S. population. Similarly, predicting risk into 
the future for current workers under changing 
regulations is difficult because of secular 
trends in disease and demographic differ-
ences between worker populations. Specific 
conditions under which our results could 
be formally generalized or transported to a 
broader population are discussed by Pearl and 
Bareinboim (2014).

Measurement error, in both the exposure 
and causes of death, is an important limita-
tion to our study. Our quantitative estimate 
of arsenic exposure is based on work-area 
means. The exposure assessment approach 
is liable to both classical and Berkson-type 
measurement errors, which may bias cumu-
lative exposure–response associations and 
may also substantially reduce the precision 
of estimated associations (Armstrong 1998). 
In the g-formula, prior exposure is treated 
as a confounder, so measurement error 
in the exposure may also lead to residual 
confounding. Further, this study relied on 
cause-of-death information from death certifi-
cates; errors resulting from imperfect sensi-
tivity and specificity of the death certificate 
for classification of the underlying cause of 
death may be additional sources of bias and 
imprecision in these estimates. The accuracy of 
coding for cardiovascular events, such as heart 
disease, may have changed over the course of 
follow-up as diagnostic procedures improved. 
The extensive modeling in the parametric 
g-formula may increase sensitivity to measure-
ment error, but the magnitude of these biases 
is unknown and is an area of active research.

Conclusion
Our findings have implications for highly 
exposed occupational groups, such as 
smelters, among whom healthy worker 
survivor bias may result in underestimation 
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of the detrimental effects of arsenic. Ambient 
arsenic exposure is generally low compared 
with ingestion (European Commission 
2001), but these findings suggest a need for 
further research regarding the cardiovascular 
effects of airborne arsenic exposure in certain 
nonoccupational settings where airborne 
exposure may be nonnegligible, such as those 
burning coal within the home (Liu et al. 
2002). As of Summer 2016, arsenic has been 
under consideration for risk assessment by the 
U.S. Environmental Protection Agency, and 
the public health impacts of exposure from all 
sources should be considered.
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