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Introduction
Elevated concentrations of ambient ozone 
(O3) and fine particulate matter ≤ 2.5 μm 
in aerodynamic diameter (PM2.5) contribute 
to adverse health outcomes in exposed 
populations (Jerrett et al. 2009; Krewski 
et al. 2009). Epidemiological literature has 
described relationships between population 
exposure to these air pollutants and chronic 
and acute health effects, including premature 
mortality (Brook et al. 2002; Bell et al. 2004; 
Ito et al. 2005; Levy et al. 2005) and multiple 
morbidities (Zanobetti et al. 2009; Ji et al. 
2011; Mustafic et al. 2012; Levy et al. 2012).

A number of emitting source sectors that 
are spatially distributed across the United 
States contribute to total ambient concentra-
tions of these pollutants, including electricity 
generating units (EGUs), which burn fossil 
fuels like coal and natural gas to produce 
electricity, and residential combustion (RC) 
sources, including oil and natural gas-burning 
furnaces or wood-burning stoves to heat 
homes. Among the most significant contribu-
tors to air pollution-related health impacts 

are emissions related to EGUs, which are 
elevated stack point sources, and area sources, 
which are ground-level, widely distributed 
sources and include RC. In 2005, Fann et al. 
(2013) estimated EGUs contribute 38,000 
premature deaths per year across the United 
States, highest among source sectors, with 
area sources contributing another 27,000 
premature deaths per year. Similarly, a 
recent study estimated that EGUs contrib-
uted 53,900 premature deaths from PM2.5 
and O3 across the United States in 2005, 
while commercial and residential combus-
tion together contributed 42,150 deaths from 
PM2.5 and O3 (Caiazzo et al. 2013). Another 
recent study estimated PM2.5-related health 
risks of 41,660 premature deaths from EGUs 
and 35,790 premature deaths from commer-
cial and residential combustion (Dedoussi 
and Barrett 2014).

While these comparisons provide valuable 
insight about high-priority source sectors, 
they do not include information on impacts 
of specific emitted pollutants from individual 
states and source types for both PM2.5 and 

O3. Caiazzo et al. (2013) estimated total 
premature mortalities by state from a receptor 
perspective rather than a source perspective 
(i.e., the premature mortalities for popula-
tions living in California rather than the 
premature mortalities attributable to sources 
in California) and do not differentiate by 
emitted pollutant, providing less useful infor-
mation from a control strategy perspective. 
Dedoussi and Barrett (2014) estimate total 
premature mortalities by source-state for 
PM2.5 using a different modeling approach 
[adjoint modeling using GEOS (Goddard 
Earth Observing System)–Chem chemical 
transport model (http://www.geos-chem.org) 
with slightly coarser resolution] and lacking 
insight about O3-related impacts or impacts 
by source-state and precursor pollutant. 
GEOS-Chem chemical transport model with 
KPP chemical solver and RPMARES aerosol 
equilibrium model were used. Many federal 
policies targeting EGUs, including the U.S. 
Environmental Protection Agency’s (EPA) 
Clean Power Plan (U.S. EPA 2015a) and 
Cross-State Air Pollution Rule (U.S. EPA 
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to PM2.5 and O3 from RC and EGU emissions by precursor species, source sector, and source-state 
in the continental United States for 2005.

Methods: We used the Community Multiscale Air Quality model employing the decoupled 
direct method to quantify changes in air quality and epidemiological evidence to determine 
 concentration–response functions to calculate associated health impacts.

results: We estimated 21,000 premature mortalities per year from EGU emissions, driven by 
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(health damage functions) varied significantly across source-states for both source sectors and all 
precursor pollutants.
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control policies.
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2016) have mechanisms for differential actions 
by states, and it is important to understand 
how alternative combinations of emissions 
reductions could influence public health. RC 
may be influenced by a policy like the Clean 
Power Plan, which considers energy efficiency 
as one mechanism to achieve emissions reduc-
tions, and may be directly targeted as part of 
State Implementation Plans (SIPs) or other 
state policy measures. Quantification of source-
specific and pollutant-specific health risks by 
source-state provides a tool for policy makers 
to create efficient emission control strategies.

Premature mortalities from different source 
sectors can be estimated by combining source-
specific air quality changes with population 
characteristics and epidemiologically derived 
concentration–response functions (Fann and 
Risley 2013; Hubbell et al. 2009; Tagaris 
et al. 2009). In addition to determining total 
premature mortalities, health damage functions 
(estimated as premature mortalities per unit 
emissions) can be calculated to provide insight 
about sources and locations in which emissions 
reductions are more or less efficient from a 
public health perspective. Heterogeneity in 
health damage functions is associated with 
ambient atmospheric chemistry and meteo-
rology, source and chemical profiles of emitted 
pollutant precursors, and the geographic distri-
bution of exposed populations (Fann et al. 
2009). EGU and RC sources provide inter-
esting contrasts: EGUs are individual point 
sources that vary in location, stack height, age, 
and efficiency, while RC is a ground-level area 
source spread over a wider area and directly 
tied to population patterns. Both are spatially 
distributed across the United States, with 
between-sector and within-sector differences 
including proximity to populations, height 
of emissions origin, and atmospheric chem-
istry and meteorology in each location and 
downwind. Analysis of RC and EGUs specifi-
cally allows us to consider two sectors that 
would be influenced by policies such as the 
Clean Power Plan that target EGUs but could 

have ancillary effects on RC (e.g., through 
 residential energy efficiency).

The Community Multiscale Air Quality 
(CMAQ) model, a peer-reviewed atmospheric 
chemistry and transport model capable of 
modeling gas-phase, aerosol, and aqueous 
chemistry including the formation of O3 
and PM2.5 from emitted precursors, can 
predict changes in ambient air quality asso-
ciated with these two source sectors, among 
others (Byun and Ching 1999; Byun and 
Schere 2006). Utilized with the decoupled 
direct method (DDM), which decouples 
sensitivity equations from model equations 
to allow for stability and accuracy of values 
and computational efficiency, CMAQ-DDM 
has the power to determine individual source 
contributions by analyzing the sensitivity of 
ambient concentrations of PM2.5 and O3 to 
specific precursor emissions in the presence 
of different atmospheric and meteorological 
conditions (Dunker 1984; Dunker et al. 
2002; Koo et al. 2007). CMAQ-DDM has 
been used in previous studies to quantify 
exposure to pollutants from source-tagged 
precursors (Bergin et al. 2008; Odman et al. 
2002; Itahashi et al. 2012), and has been used 
to assess health impacts due to climate change 
in the United States (Tagaris et al. 2010).

In this study, we quantified premature 
mortalities from EGUs and RC for each 
emitted pollutant and source-state individu-
ally across the continental United States. We 
used CMAQ version 4.7.1 (Byun and Ching 
1999; Byun and Schere 2006) instrumented 
with DDM-3D (Dunker 1984; Napelenok 
et al. 2006) to determine estimated changes 
in ambient pollutant concentrations of PM2.5 
and O3 based on EGU and RC emissions, 
using these air quality changes to determine 
predicted total premature mortalities and health 
damage functions by source-state and sector. 
This approach will allow state and federal policy 
makers to determine which sources to target 
to decrease public health burdens and which 
policies will be most efficient in achieving 

improvements. Comparisons of health damage 
functions by source sector and source-state 
will allow further assessment of differential 
 attributes of RC and EGU emissions.

Methods

Study Design

Key model components are presented in 
Figure 1. Briefly, to determine changes in 
ambient air quality associated with EGUs 
and RC, we used CMAQ (Byun and Ching 
1999; Byun and Schere 2006) instrumented 
with DDM in three dimensions (Dunker 
1984; Napelenok et al. 2006). This model 
isolated PM2.5- and O3-specific contributions 
from state-wide EGU and RC precursors to 
assess the sensitivity of ambient pollutant 
concentrations to these precursors. Resultant 
ambient pollutant concentrations were then 
linked with population and mortality rate 
data from the Centers for Disease Control 
and Prevention (CDC 2015). Concentration-
response functions associating ambient 
pollutant concentrations with health effects 
were derived from the epidemiological 
literature. We estimated total premature 
mortalities for each source sector by source-
state for each precursor pollutant-ambient 
concentration relationship, including primary 
elemental carbon (PEC), primary organic 
carbon (POC), and primary sulfate (PSO4) 
as primary PM2.5 precursors; nitrogen oxides 
(NOx), sulfur dioxide (SO2), and volatile 
organic compounds (VOCs) as secondary 
PM2.5 precursors; and NOx and VOCs as 
O3 precursors, detailed in Table S1. We also 
estimated health damage functions, or prema-
ture mortality risk per 1,000 tons of precursor 
emissions. Emissions details can be found in 
Figures S1 and S2 and Tables S2 and S3.

CMAQ-DDM Design and Modeling
Due to the computationally intensive nature 
of CMAQ-DDM, it was not practical to 
construct separate runs for each source sector 

Figure 1. Health damage function model inputs and outputs.
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and source-state. To maximize efficiency, we 
incorporated one to three states into a single 
DDM run for each of RC and EGUs, and we 
developed algorithms to separate the concen-
tration impacts from each state (described 
in Section 2.3 and in “Image Segmentation 
Algorithm” in the Supplemental Material). 
To design these runs, we overlaid concentra-
tion surface results from a pilot analysis of 
SO2 tracer emissions from multiple source-
states and grouped states to minimize errors 
in source-state attribution with the smallest 
number of runs. For EGUs, a subset of states 
cut across electricity dispatch regions, so we 
subdivided those states into two areas to 
facilitate future connection with energy effi-
ciency or renewable energy projects. In total, 
65 model runs were conducted (described in 
Table S4), including 25 groups of states for 
modeling RC and 40 groups of states (and 
partial states) for modeling EGUs.

Details of the CMAQ-DDM modeling 
are provided in “Community Multiscale Air 
Quality (CMAQ) model” in the Supplemental 
Material. RC sources were modeled as low-
level area sources including all residential fuel 
types, aggregated to county level for appor-
tionment to grid cells by state. EGUs were 
modeled by power plant and aggregated to 
grid cells by state. Cells of 36 km × 36 km 
covering the continental United States 
were used to grid state-specific emissions 
from each source sector. Because modeling 
the full year was computationally intensive, 
we selected 2 months (January and July) to 
provide bi-seasonal representation, using all-
source emissions and meteorology from 2005. 
To provide initial background conditions, a 
spin-up period of 11 days prior to each month 
was simulated. Whole-month sensitivity values 
from January and July were averaged to repre-
sent annual estimated contributions of state-
wide RC and EGU sources to ambient PM2.5 
and O3 concentrations. Values are reported as 
24-hr averages for PM2.5 constituents and 8-hr 
maximum values for O3 for consistency with 
current regulatory policies. These values were 
used in total health impact and health damage 
function calculations.

Separation of State-Specific 
Concentration Surfaces
To separate contributions of individual 
source-state’s contributions to ambient 
concentrations from one another within a 
DDM run, we applied image separation 
techniques using MATLAB 8.1.0, R2013a 
(MathWorks, Natick, MA). We developed 
a region-growing algorithm to determine 
regions of concentrations attributable to each 
source-state for each emitted precursor and 
associated ambient pollutant relationship 
within each model run and season. This algo-
rithm allowed for both positive and negative 

sensitivities to be included within regions, and 
ensured that within a run, a smaller state’s 
region could capture the extent of its health 
impacts. Quality assurance (QA) analyses were 
performed, including analysis of total health 
impact and health damage function distribu-
tions for resultant health values, as well as 
visual inspection of concentration surfaces. 
For runs that did not meet QA criteria, we 
re-ran CMAQ-DDM for individual states 
in isolation. This process allowed determina-
tion of emissions impacts from individual 
source-states within a CMAQ-run group. 
“Image Segmentation Algorithm” in the 
accompanying Supplemental Material contains 
more information regarding the image 
 segmentation algorithm.

Total Health Impact Calculation and 
Health Damage Function Modeling
Calculation of total premature mortalities 
by source-state and source sector is analo-
gous to the calculation of health damage 
functions, with the exception of normaliza-
tion by precursor emissions. Changes in air 
quality associated with state-wide emissions 
were linked with premature deaths using a 
standard health impact modeling equation, 
calculated separately for each precursor and 
associated ambient pollutant pair for each 
source sector. The equation is as follows:
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where i is row number and j is column 
number, N is total number of rows and M 
is total number of columns in the CMAQ 
grid. Δy is change in mortality across the 
continental United States, y0 is baseline 
mortality incidence rate in grid cell at 
location ij, β is concentration–response 
function as derived from the epidemio-
logical literature, Δx is change in air quality 
for a given precursor in grid cell ij, and Pop 
is the population of interest in grid cell ij. 
To associate premature mortalities with 
PM2.5 concentrations, we applied a central 
estimate  concentration-response function of 
a 1% increase in mortality associated with 
every 1-μg/m3 increase in annual average 
PM2.5 concentration (Roman et al. 2008). 
To associate premature mortalities with O3 
concentrations, we applied a central estimate 
concentration–response function of 0.4% 
increase in daily mortality per 10-ppb increase 
in daily 8-hr maximum O3 concentrations, 
based on major multi-city and meta-analysis 
studies that evaluated health impacts across 
the year (Ji et al. 2011; Bell et al. 2004, 2005; 
Ito et al. 2005; Levy et al. 2005; Schwartz 
2005). To estimate county-wide popula-
tion and baseline mortality rates for adults 
≥ 25 years old in 2005, values from 2001 to 

2010 were obtained from CDC WONDER 
(CDC 2015) and averaged for stability of 
values. County-wide values were projected as 
Lambert conformal conic in ArcMap (version 
10.1; ESRI, Redlands, CA, USA) and inter-
sected with grid cells, assuming uniform 
density of population and mortality rate 
within counties.

Total premature mortalities were calculated 
by emitted precursor and associated ambient 
pollutant pair for each source-state for both 
EGUs and RC, assuming January and July 
each represent 6 months. These 6-month 
values were summed to obtain annual health 
impact estimates. Health damage function 
values were calculated by normalizing total 
premature mortalities by total amount of 
emitted precursor for January and July, each 
representative of what the health damage 
function would be if these individual month 
conditions were present for an entire year. 
Annual health damage function estimates were 
calculated by averaging January and July health 
damage functions, interpreted as the mortality 
risk associated with uniform emissions across 
the year. Ozone estimates were calculated for 
both January and July given epidemiological 
evidence based on year-round exposures.

Comparison of RC and EGU 
Source Sectors
Descriptive statistics were calculated for total 
premature mortalities and health damage 
functions for EGU and RC by precursor and 
source-state. We examined between-state 
variation in total premature mortalities and 
health damage functions by source sector 
and precursor pollutant, as well as between-
pollutant and within-state variation. To 
facilitate interpretation, we calculated the 
percentage of source-state mortalities found 
within that state (i.e., percentage of deaths 
from California RC emissions that occur in 
California), examined emissions inventories 
and mapped source locations.

Results

Total Health Impacts

Total number of premature mortalities per 
year for each precursor were modeled for 
each state for both RC and EGUs (Figure 2; 
see also Tables S5 and S6). RC contributes 
10,000 additional deaths per year, and EGUs 
contribute 21,000 additional deaths per year 
from both PM2.5 and O3.

States contributing the most deaths 
related to RC are those with combustion-
type home heating near or upwind of highly 
populated areas, including Ohio, California, 
Maryland, and New York (Figure 2a). RC 
emissions are tied to population, so highly 
populated areas will have both greater emis-
sions and greater exposed populations. 
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Primary PM2.5 precursors contribute 74% 
of premature mortalities for RC, driven 
by POC, and the vast majority of primary 
PM2.5 emissions are associated with wood 

burning (see Figure S2). The percentage of 
RC-related premature mortalities found 
within the source-state varies widely across 
states (Figure 2C), with values exceeding 75% 

in geographically large states without substan-
tial downwind populations (e.g., Washington, 
California, Florida) and values below 10% 
in smaller states with large downwind 

Figure 2. (A) Total premature deaths associated with source-state RC emissions (e.g., California RC emissions caused 980 premature deaths across all states). 
(B) Total premature deaths associated with source-state EGU emissions (e.g., EGU emissions from Ohio caused 2,300 premature deaths across all states) (U.S. 
Census Bureau 2016) (continued)
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populations (e.g., Washington District of 
Columbia, Delaware, Vermont).

States with the greatest total mortali-
ties from EGUs are those with the greatest 

coal-fired power plant emissions upwind 
of highly populated areas, including Ohio, 
Indiana, and Pennsylvania (Figure 2B). For 
EGUs, SO2 contributes most to premature 

mortality burden, with 77% of premature 
mortalities related to secondary PM2.5 or 
O3 attributable to SO2 and NOx. The vast 
majority of SO2 and NOx emissions from 

Figure 2. Continued. (C) Percentage of source-state premature deaths from RC emissions occurring in the source-state (e.g., 93% of the 980 premature deaths 
from California RC emissions occurred in California). (D) Percentage of source-state premature deaths from EGU emissions occurring in the source-state 
(e.g., 21% of the 2,300 premature deaths from Ohio EGU emissions occurred in Ohio).
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EGUs are related to coal combustion (see 
Figure S1). As anticipated, given the domi-
nance of secondarily-formed pollutants, the 
percentage of premature mortalities found 
within the source-state for EGUs is less 
than that for RC (22% vs. 38% overall). In 
contrast to RC, only 3 states have more than 
half of their EGU-related health impacts 
within the source-state (California, Florida, 
and Washington), with only 12 states having 
> 25% of their EGU-related health impacts 
within the source-state (Figure 2D).

Ra t io s  o f  RC-re l a t ed  dea th s  to 
EGU-related deaths vary greatly across source-
states. Deaths from RC exceed those from 
EGUs for source-states in the Northeast and 
West Coast where population density is high, 
EGU coal combustion is limited, and wood 
or oil is used in some homes for heating. In 
contrast, deaths from EGUs exceed those from 
RC in source-states with appreciable EGU coal 
combustion and significant usage of electricity 
for home heating. Excluding the five lowest 
emitting states for primary PM2.5 from RC 
and SO2 from EGUs, where health damage 
functions may be biased due to limited emis-
sions (explained further in Section 3.2), ratios 
of EGU-related deaths to RC-related deaths 
vary from 0.05 to 20 across source-states.

There is significant seasonal variation in 
total premature mortalities by source sector 
and precursor-pollutant pair. RC-related 
deaths are dominated by cold weather emis-
sions, as deaths are 20 times greater for 
January (representing cold months) versus July 
(representing warm months). RC emissions 
are greatest for January in the Northwest, 
Midwest and Northeast, driven by climate, 
population density, and fuel types (see 
Figure S3). Conversely, EGU-related deaths 
are 5 times greater for July than for January, 
given the substantial contribution from SO2 
emissions and enhanced secondary particle 
formation from SO2 in warmer seasons. EGU 
emissions of SO2 are most prominent in 
the Midwest and Mid-Atlantic regions (see 
Figure S4). The impact of NOx on O3 has 
an inverse relationship with deaths in January 
due to O3 titration in cold weather and a 
positive relationship with deaths in July, as 
high temperatures are needed for O3 forma-
tion and high ambient NOx can contribute to 
VOC-limited regimes.

Health Damage Functions
Health damage functions for RC and EGUs 
were modeled for each precursor and season 
for each source-state. Figure 3 shows the 
distribution of health damage functions for 
RC and EGUs by precursor for January and 
July. Health damage functions for primary 
PM2.5 precursors are greatest on average 
for January EGU emissions, while distribu-
tions of RC and EGU July health damage 

functions for primary PM2.5 precursors are 
similar to one another. States with very low 
emissions provide abnormally inflated health 
damage functions, which have been excluded 
from Figure 3 (but shown in Tables S7–S10).

Across both source sectors, health damage 
function values are much smaller for secondary 
pollutants compared with primary pollutants. 
SO2-PM2.5 damage functions display more 

seasonality than NOx-PM2.5, with heightened 
impacts per unit emissions in July. NOx-O3 
health damage functions are generally negative 
for RC in January but positive in July. 
NOx-O3 health damage functions for EGUs 
display smaller negative values in January and 
less variability overall. VOC-O3 health damage 
functions are significantly higher for RC than 
for EGUs in both seasons.

Figure 3. Box plots of health damage functions for RC and EGUs for January and July by precursor-
pollutant pair. (A) Health damage functions as mortality risk per 1,000 tons precursor emissions for PM2.5 
related to PEC; (B) PM2.5 related to POC; (C) PM2.5 related to PSO4; (D) PM2.5 related to NOx; (E) PM2.5 
related to SO2; (F) PM2.5 related to VOC; (G) O3 related to NOx; (H) O3 related to VOC. Note: y-axes display 
different ranges for each panel. Boxplots show 5%, first quartile, median, third quartile, and 95% values for 
each precursor and associated pollutant damage function.

A. PEC - PM2.5 B. POC - PM2.5

C. PSO4 - PM2.5 D. NOx - PM2.5

E. SO2 - PM2.5 F. VOC - PM2.5

G. NOx - O3 H. VOC - O3
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While Figure 3 is able to show the range 
of health damage functions for both source 
sectors, it does not describe their relationship 
on a state-by-state basis, which is important 
in understanding relative magnitudes of 
pollutant impacts from different sources. The 
relationship between health damage functions 
for RC and EGUs varies greatly across states 
(see Figures S5 and S6). Many states with low 
RC primary PM2.5 health damage functions 
also have low EGU primary PM2.5 damage 
functions, especially for July emissions. 
States where RC and EGU primary PM2.5 
health damage functions differ greatly from 
one another (e.g., South Dakota, Montana, 
Maine, Oklahoma) tend to be large low-
population states where EGUs are located 
in areas geographically removed from the 
locations of RC combustion (see Figures S3 
and S4). In comparison with primary PM2.5, 
the association between EGU and RC health 
damage functions is similar for NOx but not 
SO2 and VOCs. O3-related health damage 
functions for EGUs are smaller in magnitude 
than those for RC, with an inverse association 
between RC and EGU values.

Discussion
We estimated the premature mortality 
burden of ambient PM2.5 and O3 concen-
trations attributable to RC and EGU emis-
sions by source-state and precursor pollutant 
in the continental United States using 
CMAQ-DDM and health damage function 
modeling based on 2005 air quality and 
population estimates. Health impacts of 
these source sectors have not previously been 
compared directly, nor has the literature 
provided insight about dominant pollutants 
and source-states. We quantify 10,000 addi-
tional premature deaths per year due to RC 
emissions and 21,000 additional premature 
deaths per year due to EGU emissions, with 
RC health impacts dominated by PEC and 
POC emissions and EGU health impacts 
dominated by SO2 and NOx emissions 
(forming PM2.5 and O3).

Comparing Total Health Impacts 
with Other Studies
While comparisons with previous studies are 
challenging given underlying model differ-
ences, examination of similarities and differ-
ences in estimates can provide insights about 
our findings. Total mortalities associated with 
EGUs have been previously calculated for 
the continental United States for 2005 from 
PM2.5 and O3 (Caiazzo et al. 2013; Fann et al. 
2013). Fann et al. (2013) found EGUs were 
responsible for 38,000 premature deaths in 
2005 versus the 21,000 in our study. For RC, 
while Fann et al. (2013) do not report a value 
directly, their sectoral values imply approxi-
mately 8,000 deaths per year from residential 

wood combustion. The vast majority of our 
10,000 attributable premature deaths are 
likely related to wood combustion given its 
dominance in primary PM2.5 emissions. In 
addition, EPA recently published a regulatory 
impact analysis for residential wood heaters 
and utilized data from Fann et al. (2013) to 
determine 0.07 deaths per ton of primary 
PM2.5 emissions (U.S. EPA 2015b), identical 
to our national average value. Caiazzo et al. 
(2013) estimated EGUs caused 52,000 prema-
ture deaths from PM2.5 and 1,700 premature 
deaths from O3, and commercial and residen-
tial combustion combined contributed 41,800 
deaths from PM2.5 and 350 deaths from O3 
in 2005. While we found O3 contributed 
2,000 premature deaths from EGUs and 320 
premature deaths from RC, values in line with 
Caiazzo et al. (2013) estimates, our estimates 
for PM2.5-related premature deaths are a 
factor of 2–3 lower for EGUs and a factor 
of 4 lower for RC, albeit with commercial 
combustion included in Caiazzo et al. (2013). 
All three studies analyzed health impacts for 
2005 conditions using the National Emissions 
Inventory, yet magnitude differences are 
expected given utilization of different atmo-
spheric dispersion models [CMAQ-DDM, 
version 4.7.1 in our study; CMAQ, version 
4.7.1 brute force in Caiazzo et al. (2013), 
Comprehensive Air Quality Model with 
Extensions (CAMX), version 5.30 using 
SMAT/MATS for Fann et al. (2013)] and 
different concentration–response functions.

Total Health Impact Analysis
Total health impacts from RC are driven 
by POC emissions across the United States. 
The number of deaths caused by each source-
state is related to population, which influ-
ences both the extent of residential emissions 
and size of the exposed population, the need 
for home heating, and the degree to which 
wood, oil, and gas are used. As such, states 
causing the most deaths from RC have large 
populations within the state and immediately 
downwind and experience cold weather. In 
contrast, while downwind population plays a 
role for EGU-related premature mortalities, 
SO2 emissions patterns from EGUs differ 
greatly from POC emissions patterns from 
RC, and regional-scale atmospheric chem-
istry and transport plays a more significant 
role. States with the greatest EGU health 
impacts have the greatest coal-fired power 
plant emissions and atmospheric conditions 
amenable to secondary PM2.5 formation, 
specifically sulfate aerosol that is abundant 
in the eastern United States (Bell et al. 2007) 
during summer months. Our analyses of 
geographic patterns of health impacts rein-
forces the greater spatial extent of impact for 
secondarily formed pollutants from EGUs 
versus primarily emitted pollutants from RC.

Health Damage Function Analysis
Health damage functions do not follow 
the same patterns as total health impacts. 
Considering between-state differences, 
states with high health damage functions 
for primary PM2.5 emissions are similar for 
RC and EGUs, largely in the Northeast and 
Mid-Atlantic regions. The highest health 
damage functions for secondary PM2.5 
precursors are in those same regions, with 
higher population states having higher health 
damage functions for RC than for EGUs. 
Western states, which tend to have lower 
populations with other low population states 
surrounding them, have the lowest health 
damage functions for primary PM2.5 precur-
sors, but not secondary PM2.5 precursors, 
as they may be in areas that favor secondary 
particulate formation. O3-related health 
damage functions follow different patterns, 
with a tight association between values for 
EGUs and RC for both NOx and VOCs.

Limitations
Despite this study’s use of a sophisticated 
air quality model and epidemiologically 
derived concentration–response functions 
to estimate total premature mortalities and 
health damage functions associated with RC 
and EGU emissions, there are a number of 
limitations, some of which are related to 
computational limitations. To determine 
sensitivity of ambient pollutant concentra-
tions to precursor emissions from a source 
it is advantageous to model each source 
individually for an entire year. Due to 
computational constraints we chose not to 
model each state’s emissions individually and 
instead created CMAQ-DDM runs for sets 
of two and three states whose concentration 
surfaces would be sufficiently far from one 
another such that they could be separated 
and attributed to their source-state. Our 
separation algorithm deliberately omitted a 
small fraction of total premature deaths to 
ensure sufficient separation of concentration 
surfaces and attribution to the appropriate 
source-state. This omission was less than 10% 
for each run, providing a modest downward 
bias in total premature deaths, but poten-
tially greater biases for individual states 
included in multi-state runs. Similarly, we 
had to limit modeling to 2 months—January 
and July—chosen to be representative of 
opposing meteorological and atmospheric 
conditions. Choosing only 2 months requires 
us to assume that each of January and July 
reasonably represents half of the year, and 
that the average of these 2 months reasonably 
represents annual patterns. This approach 
has been used in previous studies and has 
been shown to represent seasonal and annual 
conditions appropriately, and our modeling 
of baseline concentrations showed only 
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modest differences in comparison with full 
annual runs (< 5% on a domain average 
basis for both PM2.5 and O3, represented in 
Figure S5), but will have greater uncertainty 
than annual runs in predicted concentrations.

Outlier health damage function values 
appear in states with very low emissions. For 
example, Idaho emits 0.02 tons per year of 
primary PM2.5 from EGUs, far less than other 
states. These small emissions lead to very low 
modeled health impacts (0.05 deaths) over 
the course of a year, so the influence on total 
premature mortalities across the United States 
is miniscule, but the premature mortalities 
per ton emitted are much higher than antici-
pated. There may be an issue with utilizing 
CMAQ-DDM in discerning sensitivity of 
ambient concentrations to these miniscule 
emissions values, which is only pointed out 
in assessing the health damage function as 
normalized by these small emissions. This 
indicates there may be a lower limit on 
emissions when applying CMAQ-DDM in 
this manner.

Calculation of total premature mortali-
ties and health damage functions relies upon 
accurate population and baseline mortality 
values, which were obtained as county-wide 
values and spatially joined to CMAQ’s 
36 km × 36 km grid cells assuming uniform 
population characteristics. As population 
density is not uniform across a county, this 
assumption may have led to misattributed 
premature mortalities and health damage 
functions in specific grid cells. Because of 
the large spatial domains over which health 
impacts occur, these uncertainties are likely 
modest, although sources in dense urban areas 
with relatively small downwind populations 
could exhibit greater errors, especially for 
primary pollutants where the spatial domain 
of impact is smaller. Concentration-response 
functions contain uncertainty not presented 
within our analysis, but all values would scale 
linearly and conclusions about variability 
would be unaffected.

A considerable strength of our modeling 
platform is that precursor-specific findings 
along with characterization of background 
concentrations could allow for sensitivity 
analyses on these assumptions in future 
analyses. Although our analysis includes a 
number of uncertainties including those from 
use of the National Emissions Inventory, 
meteorological fields used, and CMAQ 
atmospheric model, we have not constructed 
distributions around our output values or 
formally propagated uncertainty. This is in 
part because of the complexity in quanti-
fying CMAQ-DDM uncertainty for indi-
vidual sources, and because of our focus on 
relative comparisons within this manuscript, 
but remains a limitation in interpreting and 
applying our results.

Conclusions
In this study, we generated a novel set of 
estimates of both health impacts and health 
damage functions for RC and EGUs for the 
continental United States. We attribute prema-
ture deaths to emissions by source-state and 
precursor pollutant, which has not been done 
previously. These estimates can be used to 
address strategic emissions control policies on 
a state-by-state basis. Health damage functions 
can be used to determine which targeted emis-
sions reductions will have the largest health 
benefits, an important part of creating effi-
cient control strategies and designing SIPs that 
optimize health. Our use of CMAQ-DDM 
coupled with a complex image segmentation 
technique to isolate impacts of individual states 
can be extended to other source sectors, and 
source-based health damage functions can 
allow for understanding of how emissions 
impact health in a manner that can be helpful 
for state and federal policy makers.

RefeRences

Bell ML, Dominici F, Ebisu K, Zeger SL, Sarnet JM. 2007. 
Spatial and temporal variation in PM2.5 chemical 
composition in the United States for health effects 
studies. Environ Health Perspect 115(7):989–995.

Bell ML, Dominici F, Samet JM. 2005. A meta-analysis 
of time series studies of ozone and mortality with 
comparison to the National Morbidity, Mortality, 
and Air Pollution Study. Epidemiology 16(4):436–445.

Bell ML, McDermott A, Zeger SL, Samet JM, Dominici F. 
2004. Ozone and short-term mortality in 95 US urban 
communities, 1987–2000. JAMA 292(19):2372–2378.

Bergin MS, Russell AG, Odman MT, Cohan DS, 
Chameides WL. 2008. Single-source impact analysis 
using three-dimensional air quality models. J Air 
Waste Manag Assoc 58(10):1351–1359.

Brook RD, Brook JR, Urch B, Vincent R, Rajagopalan S, 
Silverman F. 2002. Inhalation of fine particulate 
air pollution and ozone causes acute arterial 
vasoconstriction in healthy adults. Circulation 
105(13):1534–1536.

Byun DW, Ching JKS, eds. 1999. Science Algorithms 
of the EPA Models-3 Community Multiscale Air 
Quality (CMAQ) Modeling System. EPA/600/R-99/030. 
Research Triangle Park, NC:US Environmental 
Protection Agency.

Byun DW, Schere KL. 2006. Review of the governing 
equations, computational algorithms, and other 
components of the Models-3 Community Multiscale 
Air Quality (CMAQ) modeling system. Appl Mech 
Rev 59(2):51–77, doi: 10.1115/1.2128636.

Caiazzo F, Ashok A, Waitz IA, Yim SHL, Barrett SRH. 
2013. Air pollution and early deaths in the United 
States. Part I: quantifying the impact of major 
sectors in 2005. Atmos Environ 79:198–208.

CDC (Centers for Disease Control and Prevention). 
2015. CDC WONDER. Underlying Cause of Death 
1999–2015. Hyattsville, MD:National Center for 
Health Statistics.

Dedoussi IC, Barrett SRH. 2014. Air pollution and early 
deaths in the United States. Part II: attribution 
of PM2.5 exposure to emissions species, time, 
location and sector. Atmos Environ 99:610–617.

Dunker AM. 1984. The decoupled direct method for calcu-
lating sensitivity coefficients in chemical kinetics. J 
Chem Phys 81(5):2385, doi: 10.1063/1.447938.

Dunker AM, Yarwood G, Ortmann JP, Wilson  GM. 
2002. The decoupled direct method for sensitivity 
analysis in a three-dimensional air quality model – 
implementation, accuracy, and efficiency. Environ 
Sci Technol 36:2965–2976.

Fann N, Fulcher CM, Baker K. 2013. The recent and future 
health burden of air pollution apportioned across 
U.S. sectors. Environ Sci Technol 47(8):3580–3589.

Fann N, Fulcher CM, Hubbell BJ. 2009. The influence of 
location, source, and emission type in estimates of 
the human health benefits of reducing a ton of air 
pollution. Air Qual Atmos Health 2(3):169–176.

Fann N, Risley D. 2013. The public health context for 
PM2.5 and ozone air quality trends. Air Qual Atmos 
Health 6(1):1–11.

Hubbell B, Fann N, Levy JI. 2009. Methodological 
considerations in developing local-scale health 
impact assessments: balancing national, regional, 
and local data. Air Qual Atmos Health 2(2):99–110.

Itahashi S, Uno I, Kim S. 2012. Source contributions of 
sulfate aerosol over East Asia estimated by CMAQ-
DDM. Environ Sci Technol 46(12):6733–6741.

Ito K, De Leon SF, Lippmann M. 2005. Associations 
between ozone and daily mortality: analysis and 
meta-analysis. Epidemiology 16(4):446–457.

Jerrett M, Burnett RT, Pope CA III, Ito K, Thurston G, 
Krewski D, et al. 2009. Long-term ozone exposure 
and mortality. N Engl J Med 360(11):1085–1095.

Ji M, Cohan DS, Bell ML. 2011. Meta-analysis of the 
association between short-term exposure to 
ambient ozone and respiratory hospital admissions. 
Environmental Research Letters Environ Res Lett 
6(2):024006, doi: 10.1088/1748-9326/6/2/024006.

Koo BD, Dunker AM, Yarwood G. 2007. Implementing 
the decoupled direct method for sensitivity 
analysis in a particulate matter air quality model. 
Environ Sci Technol 41:2847–2854.

Krewski D, Jerrett M, Burnett RT, Ma R, Hughes E, 
Shi Y, et al. 2009. Extended follow-up and spatial 
analysis of the American Cancer Society study 
linking particulate air pollution and mortality. Res 
Rep Health Eff Inst 140:5–114.

Levy JI, Chemerynski SM, Sarnat JA. 2005. Ozone 
exposure and mortality. Epidemiology 16(4):458–468.

Levy JI, Woody M, Baek BH, Shankar U, Arunachalam S. 
2012. Current and future particulate-matter-related 
mortality risks in the United States from aviation 
emissions during landing and takeoff. Risk Anal 
32(2):237–249.

Mustafic H, Jabre P, Caussin C, Murad MH, Escolano S, 
Tafflet M, et  al. 2012. Main air pollutants and 
myocardial infarction: a systematic review and 
meta-analysis. JAMA 307(7):713–721.

Napelenok SL, Cohan DS, Hu Y, Russell AG. 2006. 
Decoupled direct 3D sensitivity analysis for 
particulate matter (DDM-3D/PM). Atmos Environ 
40(32):6112–6121.

Odman MT, Boylan JW, Wilkinson JG, Russell AG, 
Mueller SF, Imhoff RE, et al. 2002. SAMI Air Quality 
Modeling Final Report. Asheville, NC:Southern 
Appalachian Mountains Ini t iat ive.  ht tp: / /
samiproject.ce.gatech.edu/Documents/Reports/
final_report.pdf [accessed 5 March 2015].

Roman HA, Walker KD, Walsh TL,  Conner L, 
Richmond  HM, Hubbell BJ, et  al. 2008. Expert 
judgment assessment of the mortality impact of 
changes in ambient fine particulate matter in the 
U.S. Environ Sci Technol 42(7):2268–2274.

Schwartz J. 2005. How sensitive is the associa-
tion between ozone and daily deaths to control 
for temperature? Am J Respir Crit Care Med 
171(6):627–631. 

Tagaris E, Liao KJ, Delucia AJ, Deck L, Amar P, 
Russell  AG. 2009. Potential impact of climate 



Penn et al.

332 volume 125 | number 3 | March 2017 • Environmental Health Perspectives

change on air pollution-related human health 
effects. Environ Sci Technol 43(13):4979–4988.

Tagaris E, Liao KJ, DeLucia AJ, Deck L, Amar P, 
Russell AG. 2010. Sensitivity of air pollution-
induced premature mortality to precursor 
emission under the influence of climate change. 
Int J Environ Res Public Health 7(5):2222–2237, doi: 
10.3390/ijerph7052222.

U.S. Census Bureau. 2016. TIGER/Line® Shapefiles. 
https://www.census.gov/geo/maps-data/data/
tiger-line.html [accessed 12 November 2016].

U.S. Environmental Protection Agency (U.S. EPA). 
2015a. Carbon pollution emission guidelines 
for existing stationary sources: electric utility 
generating units. http://www2.epa.gov/sites/
production/files/2015-08/documents/cpp-final-rule.
pdf [accessed 31 December 2016].

U.S. EPA. 2015b. Regulatory impact analysis (RIA) for 
residential wood heaters NSPS revision: Final 
report. https://www3.epa.gov/ttnecas1/docs/ria/
wood-heaters_ria_final-nsps-revision_2015-02.pdf 
[accessed 15 August 2015].

U.S. EPA. 2016. Final cross state air pollution rule 
update. https://www.epa.gov/airmarkets/final-
crossstate-air-pollution-rule-update [accessed 
31 December 2016]. 

Zanobetti A, Franklin M, Koutrakis P, Schwartz J. 2009. 
Fine particulate air pollution and its components 
in association with cause-specific emergency 
admissions. Environmental Health Environ Health 
8:58, doi: 10.1186/1476-069X-8-58.




