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Abstract

Various forms of penalty functions have been developed for regularized estimation and variable 

selection. Screening approaches are often used to reduce the number of covariate before penalized 

estimation. However, in certain problems, the number of covariates remains large after screening. 

For example, in genome-wide association (GWA) studies, the purpose is to identify Single 

Nucleotide Polymorphisms (SNPs) that are associated with certain traits, and typically there are 

millions of SNPs and thousands of samples. Because of the strong correlation of nearby SNPs, 

screening can only reduce the number of SNPs from millions to tens of thousands and the variable 

selection problem remains very challenging. Several penalty functions have been proposed for 

such high dimensional data. However, it is unclear which class of penalty functions is the 

appropriate choice for a particular application. In this paper, we conduct a theoretical analysis to 

relate the ranges of tuning parameters of various penalty functions with the dimensionality of the 

problem and the minimum effect size. We exemplify our theoretical results in several penalty 

functions. The results suggest that a class of penalty functions that bridges L0 and L1 penalties 

requires less restrictive conditions on dimensionality and minimum effect sizes in order to attain 

the two fundamental goals of penalized estimation: to penalize all the noise to be zero and to 

obtain unbiased estimation of the true signals. The penalties such as SICA and Log belong to this 

class, but they have not been used often in applications. The simulation and real data analysis 

using GWAS data suggest the promising applicability of such class of penalties.
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1. Introduction

In genome-wide association (GWA) studies, the goal is to identify the genetic factors such as 

single nucleotide polymorphisms (SNPs) that are associated with diseases. With the 

availability of a dense map of SNPs, it is statistically very challenging to select the important 

SNPs from millions of SNPs using only a couple of thousand samples. Regularized 

estimation procedures can be applied for simultaneous selection of important variables 

(SNPs) and estimation of their effects for high dimensional data in GWA studies. The 

objective function of the regularized estimation is composed of a model fitting metric (e.g., 

likelihood function) and a penalty function for the parameters subject to regularization. Prior 

to the usage of regularized estimation, screening can be applied to reduce the number of 

SNPs to be considered for penalized estimation. However, due to the high correlation of 

neighboring SNPs, the number of SNPs that pass a reasonable screening criterion is often 

larger than or much larger than the sample size.

We use the real SNP genotype data from a recent study (Wright et al., 2014) to illustrate the 

correlation structure of genotype data. We take the genotypes of 645,316 SNPs in 

chromosome 1 from 1,198 samples, and randomly pick 30 SNPs as important variables to 

simulate the response under the linear model. The effect size is simulated as 0.7 and the 

residual errors are standard normal variables. Figure 1 shows a Manhattan plot of the 

marginal association p-values. The 30 important SNPs are labeled by grey vertical lines. It is 

obvious that the high correlation among nearby SNPs leads to small p-values for those SNPs 

which are close to the 30 important SNPs. If we apply screening using the p-value cut-off 

10−4, 3,087 SNPs will be selected which include 20 of the 30 important SNPs. Alternatively, 

if the p-value cut-off is 10−8, 991 SNPs will be selected, which include only 13 of the 30 

important SNPs. Thus screening method can be helpful to certain extend, and screening with 

stringent threshold would lead to many false negatives. This conclusion is consistent with 

the extensive empirical study by Bühlmann and Mandozzi (2012). Therefore, the penalty 

function itself is still the key for high dimensional data analysis, and it is desirable to 

identify penalty functions that can tolerate higher dimension.

Several penalty functions have been proposed for high dimensional data analysis. One of the 

most popular penalty functions is the Lasso penalty (Tibshirani, 1996). The variable 

selection consistency of the Lasso requires the irrepresentable condition (Zhao and Yu, 

2006) that there is no strong correlation between the “important covariates” that have non-

zero effects and the “unimportant covariates” that have zero effects. This condition may not 

be satisfied in some applications, such as GWA studies. Recent studies have shown that a 

class of folded concave penalties can achieve variable selection consistency without 

requiring such an irrepresentable condition (Fan and Lv, 2010). These folded concave 

penalties include, but are not limited to SCAD (Smoothly Clipped Absolute Deviation) (Fan, 

1997; Fan and Li, 2001), MCP (Minimax Concave Penalty) (Zhang, 2010), SICA (Smooth 

Integration of Counting and Absolute deviation) (Lv and Fan, 2009), and a Log penalty 

(Friedman (2008), Sun, Ibrahim and Zou (2010)).

A common concern in real data applications of penalized estimation is to tune the 

regularization parameters to achieve the two fundamental goals of penalized estimation: to 
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penalize all the noise to be zero and to obtain an unbiased estimation of the true signals. 

However, it may not be clear whether such “optimal” tuning is possible, and this is the focus 

of our study. Mazumder, Friedman and Hastie (2011) study the non-convex optimization 

problem for SCAD, MCP and Log penalties, but they did not address the roles of tuning 

parameters of those penalties in variable selection. Moreover, all the aforementioned folded-

concave penalties have two tuning parameters, and thus in practice, the immediate questions 

concern whether they both should be tuned, and what is the consequence of tuning only one 

of them in order to improve computational efficiency. Previous work has provided 

recommendations regarding the choice of tuning parameters, but there is no systematic 

asymptotic studies on the roles of multiple tuning parameters. To address those issues, we 

will relate the choice of tuning parameters to the difficulty of the variable selection problem, 

namely the minimum effect size and the dimensions, i.e., the number of important and 

unimportant covariates.

The results suggest that a class of penalty functions that bridges L0 and L1 penalties such as 

Log and SICA requires less restrictive conditions on dimensionality and minimum effect 

sizes, while achieving the two fundamental goals of penalized estimation. For the tuning of 

the regularization parameters, our study shows that both SICA and Log penalties have very 

limited performance if only one of the two regularization parameters is tuned, while tuning 

both regularization parameters can significantly improve their performances, although at the 

price of heavier computational burden. Our results are also insightful for designing other 

penalty functions. For example, our results imply that two tuning parameters are sufficient to 

achieve the two fundamental goals. Therefore, penalties with more than two regularization 

parameters may not be needed due to the substantial increase of computational cost.

We conducted empirical analyses of the penalty functions using both simulated data and real 

data in GWA settings. Those empirical results support the idea that the class of penalty 

functions that bridges L0 and L1 holds promise for genomic studies.

2. Theoretical results

2.1. Notations and problem setup

Let p 㛖(β) be a penalty function of β, where 㛖 are regularization parameters with arbitrary 

dimension. p 㛖(β) is referred to as a folded concave penalty if it satisfies the following 

condition:

Condition 1—p 㛖(β) is concave in β ∈ [0,∞), with continuous derivative , and 

.

We formulate the effects of the covariates via a generalized linear regression model, 

permitting continuous and discrete outcome variables. Consider a sample of n responses, y = 

(y1, . . . , yn)⊤, where each yi, i = 1, . . . , n, is independently generated from an exponential 

family distribution with a density: p(yi|θi) = exp {[yiθi – b(θi)]/ϕ + c(yi, ϕ)}, where θi is the 

canonical parameter and ϕ ∈ (0,∞) is the dispersion parameter. Let xij be the value of the j-
th covariate in the i-th sample, and let X = (xij) be a n × p matrix of the covariates’ values. 
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We assume that X has been normalized such that , for j = 1, . . . , p. Under the 

assumed generalized linear model, , where βj ’s are regression coefficients. 

Let E(y) = μ(θ) = (∂θ1b(θ1), . . . , ∂θnb(θn))⊤ and . We 

maximize the penalized likelihood , where ln(β) = n−1 [y⊤θ – 

1⊤b(θ)] is an affine transformation of the log-likelihood.

Without loss of generality, we assume that the first s covariates of X are important (i.e., 

having non-zero effect on the response variable) and denote them collectively by X1, and 

then denote the remaining p–s unimportant covariates by X2, such that X = (X1,X2). 

Similarly, we partition β for the important and unimportant covariates such that 

. Let  be the true coefficients, such that β02 = 

0. Let θ0 be the true values of θ such that θ0 = Xβ0.

It is difficult to analytically study the global maximizer of the penalized likelihood. 

Following the previous work (Fan and Lv, 2011), we study the local maximizer of the 

penalized likelihood that satisfies a set of sufficient and almost necessary conditions 

specified in Theorem 1 (see Appendix).

2.2. The role of the tuning parameters

The dimension of the regression problem and the minimum effect size are assumed to satisfy 

the following conditions:

Condition 2.1—log p = O(nα) and s = O(nν), respectively, with 0 ≤ α < 1 and 0 ≤ ν < 1/2.

Condition 2.2—dn ≡ 2−1 min1≤j≤s{|βj0|} = O(n−γ0(log n)1/2) for some γ0 ∈ (ν, 1/2).

The restriction of γ0 > ν (which is equivalent to s < nγ0) in Condition 2.2 can be understood 

as an identifiability condition so that dns = O(nν−γ0(log n)1/2) can be bounded by a constant. 

Otherwise the response variable is unbounded, with non-trivial probability.

A maximizer of the penalized likelihood, , is considered to have weak oracle 

property if β2̂ = 0 with probability tending to 1 as n → ∞, and β̂1 is consistent under L∞ 
loss (Lv and Fan, 2009). We will study the role of tuning parameters by studying the 

conditions for the weak oracle property. To this end, we generalize the conditions for the 

weak oracle property in Fan and Lv (2011) to impose constraints on the penalty function 

rather than particular tuning parameters, which gives the following Conditions 3.1–3.3. This 

generalization is necessary because the original conditions are too stringent for any penalty 

function whose  involves more than one tuning parameter. For example, the Log 

penalty cannot satisfy the original conditions for the weak oracle property. After 

generalizing the conditions, we can show that the Log penalty can indeed fulfill the 

conditions of the weak oracle property.
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Condition 3.1— , where  with 

γs ≥ 0. A corollary of Condition 3.1 is .

Condition 3.2—

for K ∈ (0, 1).

Condition 3.3—  and 

, where K is defined in Condition 3.2, σ is a constant that is 

defined based on the range of the response variable y (see proposition A1 in the 

Supplementary Materials for details), and ηp = n−1/2+α/2(log n)1/2.

Condition 3.1 requires the derivative of the penalty function (i.e., the increase of 

penalization as the regression coefficient increases) for important covariates to be small 

enough. Condition 3.2 says that the ratio of the penalties’ derivatives for unimportant 

covariates and for important ones  should be large enough relative to the 

maximum correlation between important and unimportant covariates, which is a 

generalization of the irrepresentable condition for Lasso (Zhao and Yu, 2006). Condition 3.3 

requires the derivative of the penalty function for unimportant covariates to be large enough. 

In contrast to the conditions for the weak oracle property in Fan and Lv (2011), a critical 

modification is that we restrict the size of  in Condition 3.3, which replaces the 

condition λn ≫ n−α(log n)2 stated in equation (18) of Fan and Lv (2011). For SCAD and 

MCP, , and thus constraints on λn or  are equivalent. However, for Log 

and SICA, . Therefore, the generalized condition only requires the ratio 

of the two regularization parameters to be large enough instead of imposing a constraint on 

λn itself. Given Conditions 2.1–2.2, Conditions 3.1–3.3, and Conditions 4.1–4.4 (presented 

in the Appendix), which are for the design matrix X, we have the weak oracle property 

(Theorem 2 in the Appendix).

One immediate conclusion from Conditions 3.1–3.3 is that the constraints on the penalty 

function p 㛖(β) are applied on the two quantities  and . With an appropriate 

design, two tuning parameters can give enough degrees of freedom on these two quantities 

so that Conditions 3.1–3.3 are satisfied.

Next we discuss the implications of Conditions 3.1–3.3 for the four folded concave 

penalties: SCAD, MCP, Log, and SICA. It is more convenient to define SCAD and MCP by 

their derivatives.
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where λ > 0 and a > 2 are two regularization parameters.

where λ > 0 and a > 0 are two regularization parameters. The Log and SICA penalties are 

defined as

respectively, where λ > 0 and τ > 0 are two regularization parameters. In the following 

discussions, the tuning parameters employed by a penalty are indicated by subscripts. For 

example, the SCAD penalty with one tuning parameter λn (the other regularization 

parameter a being set as constant) is denoted by SCADλnand the SCAD penalty with two 

tuning parameters λn and an is denoted by SCADλn,an.

Let ηp = n−1/2+α/2(log n)1/2, which is a monotone transformation of dimension log(p) = 

O(nα). Let ηd = min(nγ0/2(log n)−1/4, n−γ0+1/2), which, by Condition 2.2, is a function of the 

minimum effect size: dn ≡ min1≤j≤s{|βj0|} = O(n−γ0(log n)1/2). In the following propositions, 

we will discuss the properties of different penalties with respect to s (the number of non-zero 

coefficients), dn, ηd, and ηp.

Proposition 1 (SCADλn, SCADλn,an, or MCPλn). If dn ≫ ηp and s ≪ ηd, there exist λn 

such that dn ≫ λn > ηp to satisfy Conditions 3.1–3.3 for the weak oracle property. However, 
there is no such tuning parameter if dn ≪ ηp.

Proposition 2 (MCPλn,an). There are tuning parameters that satisfy Conditions 3.1–3.3 for 
the weak oracle property without further constraints other than s ≪ nγ0, as is specified in 
Condition 2.2.

Proposition 3 (SICAλnor Logλn). There are tuning parameters that satisfy Conditions 3.1–
3.3 for the weak oracle property if dn ≫ ηp, s ≪ ηd, and

where K ∈ (0, 1) was defined in Condition 3.3. There is no such tuning parameter if dn ≪ 
ηp.

Proposition 4 (SICAλn,τnor Logλn,τn). There are tuning parameters that satisfy Conditions 
3.1–3.3 for the weak oracle property without further constraints other than s ≪ nγ0, as is 
specified in Condition 2.2.
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Corollary 1 (Restriction on tuning parameter if dn ≪ ηp). To satisfy Condition 3.1–3.3 
requires an → 0+ for MCPλn,an, and τn → 0+ for SICAλn,τnand Logλn,τn.

The proofs of Propositions 1–4 and Corollary 1 are presented in the Supplementary 

Materials (Chen et al., 2016).

By Proposition 1, if dn ≫ ηp or dn ≪ ηp, SCAD has similar theoretical properties when one 

or two tuning parameters are used. This conclusion is consistent with many previous works 

where SCAD has satisfactory performance when the regularization parameter a is set to be a 

constant, e.g., 3.7. Using two tuning parameters (λn and an) does have some advantage over 

one tuning parameter (λn) when dn = O(ηp). However, since the situation of dn = O(ηp) only 

covers a negligible part of the space for dn, we do not discuss it further here. Proposition 1 

also states that if dn ≪ ηp (the effect size is not large enough relative to the dimension), then 

there is no tuning parameter of SCAD to satisfy Conditions 3.1–3.3. Specifically, Condition 

3.1 requires , and Condition 3.3 requires , where c is a constant. 

These two conditions cannot both be satisfied if dn ≪ ηp. Specifically, if SCAD satisfies 

Condition 3.3, then . Given dn ≪ ηp and ηp < λn/c, we have dn ≪ λn, and 

then we can show that , which contradicts Condition 3.1. In addition, we can see 

that in this situation, both  and  are functions of λn so that a plays no role in 

fulfilling Conditions 3.1 and 3.3. Therefore, tuning only one regularization parameter is 

sufficient and can be a computational advantage of SCAD.

By Propositions 1 and 2, tuning both λn and an significantly improves the performance of 

MCP if dn ≪ ηp. Specifically, if MCP satisfies Condition 3.3, then . Then 

given dn ≪ ηp, we have dn ≪ λn. However, given a properly tuned an = o(1) such that dn ≥ 

anλn, we have , which allows MCP to satisfy Condition 3.1.

By Proposition 3, if we set τ = O(1) and only tune the regularization parameter λ, then 

SICAλnand Logλn require the following condition to achieve the weak oracle property:

This condition is similar to the irrepresentable condition of Lasso because when τ = O(1), 

dn/τ + 1 → 1. Therefore, asymptotically SICAλnand Logλnwould perform in a way similar 

to Lasso. If dn ≪ ηp, then SICAλnand Logλncannot simultaneously satisfy Conditions 3.1 

and 3.3, even if the irrepresentable condition is satisfied.

By Proposition 4, tuning both λn and τn significantly improves the performance of SICA 

and Log. Specifically, SICA and Log can have satisfactory variable selection performances 

even if the minimum effect size is much smaller with respect to the dimension of the 

problem: dn ≪ ηp. This can be justified by the following arguments. For Log penalty, 

. Even Condition 3.3 requires a large value of ; a small 

enough τn can help  to satisfy Condition 3.1. SICA has similar properties since it has 
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. Therefore, the implications of Proposition 3 and Proposition 

4 for the practical use of SICA and Log penalties would be that we should not treat τ as a 

constant.

Corollary 1 shows that for a difficult variable selection problem where dn ≪ ηp, the tuning 

parameter an of MCP or τn of SICA or Log should be on the scale of o(1). Zhang (2010) 

suggests that a larger tuning parameter a in MCP leads to a bigger bias and less accurate 

variable selection, a = 1 leads to a singularity problem, and a < 1 leads to a dramatic increase 

in computational cost. Similarly, Lv and Fan (2009) suggest that for penalized estimates 

using SICA, the bias decreases to 0 as τn goes to 0+, but the computational difficulty 

increases because the maximum concavity goes to infinity. Similar conclusions apply to Log 

penalty. Although MCPλn,an, SICAλn,τn, and Logλn,τnhave similar theoretical properties by 

Propositions 2 and 4, the following numerical studies show that the computation cost for 

SICA and Log is more affordable than that of MCP.

3. Algorithm and tuning parameter selection

We obtain the penalized estimates using SCAD or MCP by the coordinate descent 

algorithms implemented in the R package ncvreg (Breheny and Huang, 2011). We 

implement the penalized estimation using SICA and Log penalties by a combination of the 

coordinate descent algorithm and Local Linear Approximation (LLA) (Zou and Li, 2008). 

Specifically, we update the estimate of each regression coefficient sequentially (which is the 

coordinate decent part), and the solution of each coefficient is obtained after applying a local 

linear approximation. The details can be found in the Supplementary Materials.

We select a particular combination of tuning parameters from the initial tuning parameter 

pool using the extended BIC (Chen and Chen, 2008, 2012). As discussed in Chen and Chen 

(2008), if log p/logn > 0.5, the conventional BIC (Schwarz, 1978) is not consistent. In all the 

scenarios considered in this paper, log p/ logn > 1. Our empirical studies confirm that in 

these scenarios the conventional BIC tends to be too liberal, and the extended BIC performs 

satisfactorily. The extended BIC for the linear model m is:

where dfm is the degrees of freedom for model m and ς(Sdfm) is the number of the models 

containing dfm covariates. We take the number of the nonzero coefficient estimates in the 

model m as dfm and set , the number of combinations of dfm covariates 

chosen from p covariates. In addition, we set ϱ ≃ 1 – 1/(2log p/log n) as ϱ > 1 – 1/(2log 

p/log n) is suggested in Chen and Chen (2008). The extended BIC for a generalized linear 

model m is:
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where dfm is the number of nonzero coefficient estimates, and similar to the above ϱ ≃ 1 – 

1/(2log p/log n), as suggested in Chen and Chen (2012).

4. Simulation

We evaluated those four penalties using a set of simulated data for multiple loci mapping 

problems. Specifically, the response variable is either a continuous trait (linear regression) or 

the case/control status (logistic regression), and the covariates are the genotypes of the 

SNPs. One particular challenge in a multiple loci mapping problem is that nearby SNPs 

often have correlated genotypes due to linkage disequilibrium, and such correlations may 

violate the irrepresentable condition, which is needed for the consistency of Lasso. To 

faithfully reproduce such correlation structure, we directly used genotype data of European 

Ancestry (EA) samples from a GWAS study of schizophrenia (Shi et al., 2009). The dataset 

was obtained from NCBI dbGaP, which includes GAIN (Genetic Association Information 

Network) samples (2,686/2,656: cases/controls, dbGaP Accession: phs000021.v3.p2) and 

non-GAIN samples (1,217/1,442: cases/controls, dbGaP Accession: phs000167.v1.p1) 

genotyped by Affymetrix 6.0 SNP arrays with ~900,000 SNPs.

To compare the performances of those penalty functions, we use two criteria to select the 

tuning parameters. One is the extended BIC as introduced earlier, and the other is an oracle 

criterion that uses the knowledge of the true model to select the tuning parameters. Certainly 

the oracle criterion is not applicable in practice when the true model is unknown. However, 

in simulation studies, the oracle criterion permits us to evaluate the performance of a penalty 

function rather than the combined outcome of a penalty function and a tuning parameter 

selection method. The oracle criterion is defined as follows. Let D be the number of 

discoveries, i.e., the covariates with non-zero regression coefficient estimates. D = TD + FD, 

where TD and FD are the number of true discoveries and false discoveries, respectively. The 

oracle criterion evaluates a model based on the three measures, the false discovery rate 

FD/D, power TD/s, and the sum of squared error of regression coefficient estimates 

, where β0j is the true value of βj . The model with the minimum of 

 is selected, where wt is a weight to balance the 

number of true/false discoveries and bias. Models selected with larger wt tend to have more 

true discoveries and fewer false discoveries, but have a larger bias in their regression 

coefficient estimates.

4.1. Linear model

For computational efficiency when there are a large number of simulations, we randomly 

selected n = 222 samples and 12,656 SNPs with no missing values, and with a minor allele 

frequency greater than 5% on chromosome 20. The response variables y were simulated by 

y = Xβ + ε, where ε ~ N(0, In×n). We considered 3 situations involving different 

combinations of p and s: p = 12,656 and s = 12, 16, or 20. Let . 

When s = 12, 16, and 20, β0 are set by repeating u1 three, four, and five times, respectively. 

In addition, we considered null situations with s = 0 and p = 12,656.
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The tuning parameter grids were chosen as follows: a = (2.1, 2.5, 3.0, 3.7, 4.5, 6.0) for 

SCAD, a = (1.1, 2.0, 3.0, 4.0, 5.0, 6.0) for MCP, and 6 τ ’s for Log and SICA as described in 

the Supplementary Materials. We also applied Lasso implemented in R/glmnet. For each of 

these five penalties, 100 λ’s uniformly distributed on a log scale were generated as 

described in the Supplementary Materials.

We used the extended BIC and oracle criteria  to select 

the tuning parameters. We give the term (FD/D – TD/s) a larger weight of 10 so that the 

oracle criterion selects the model with the smaller false discovery rate FD/D, greater power 

TD/s first, and use the sum of squared error of regression coefficient estimates 

 as a secondary criterion. Additional simulation results using various values 

of weight can be found in the Supplementary Materials.

For null simulation situations, all penalties have at most 1 or 2 false discoveries by the 

extended BIC tuning parameter selection criterion. Table 1 summarizes the simulation 

results in non-null situations with 12, 16, or 20 important covariates. The folded concave 

penalties perform better than the Lasso penalty. Among the four folded concave penalties, 

SICA, Log and MCP have comparable performance, and are better than SCAD when the 

tuning parameters are selected by the oracle criterion. When the tuning parameters are 

selected by the extended BIC, SICA and Log have comparable performance, and are better 

than SCAD and MCP. In additional simulation studies that are presented in the 

Supplementary Materials, SCAD and MCP with one tuning parameter (λ) have slightly 

worse performance than the situations with two tuning parameters. In contrast, Log and 

SICA with one tuning parameter (λ) have much worse performance than the situations with 

two tuning parameters. Therefore, the extra tuning parameter (a or τ ) gives SCAD and MCP 

limited additional advantage, but significantly improves the performances of Log and SICA.

4.2. Simulation for logistic model

For penalized logistic regression, a larger sample size is needed for simulations with 

reasonable effect sizes. We randomly selected 10,156 SNPs (with a minor allele frequency 

larger than 5%) from chromosomes 1 to 22 and X and 750 samples (with a missing values 

percent smaller than 3%). We simulated the individual SNP effect so that the disease odds 

ratios are 2.0, corresponding to regression coefficients of 0.7. The binary response variables 

y were simulated based on the logistic regression model: log{Pr(y = 1)/Pr(y = 0)} = Xβ, 

where s = 4, 8, or 12. In addition, the null model where s = 0 was simulated. The intercept 

was set as −2, corresponding to a disease prevalence of 0.12. The initial pool of tuning 

parameters were generated in the same way as linear regression, and then a particular 

combination of tuning parameters was selected to minimize the extended BIC, or an oracle 

criterion .

For the simulation of null models, all penalties have at most 1 or 2 false discoveries by the 

extended BIC tuning parameter selection criterion. The simulation results of non-null 

models are shown in Table 2. In general, the results of logistic model simulation have a trend 

similar to that of linear model simulation. When the oracle criterion is used, all penalties 
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have satisfactory variable selection performances though SICA and Log have a smaller bias 

on effect size estimation. It can be observed that the models chosen by the oracle criterion 

are different from those selected by the extended BIC for SCAD and MCP. This is because 

the models chosen by the oracle criterion tend to have larger biases, which reduces the 

likelihood, and thus increases the realized value of the extended BIC. On the other hand, for 

Log and SICA, the models chosen by the oracle criterion are similar to those chosen by the 

extended BIC since they have a smaller bias on effect size estimation. Additional 

simulations presented in the Supplementary Materials confirm that SCAD with one or two 

tuning parameters have similar performance, and an additional tuning parameter improves 

MCP’s performance. The additional tuning parameter significantly improves the 

performance of the SICA and Log penalties.

Finally, Table 3 presents the comparison of the computational burden for MCP, Log and 

SICA across various values of a and τ , respectively. It can be observed that the computation 

time of Log and SICA is much less than that of MCP.

In summary, Log and SICA have a smaller bias for the coefficient estimates of important 

covariates, and therefore, more accurate estimates of the likelihood function. In addition, 

they have lower computational burden compared to MCP. As a consequence, Log and SICA 

penalties have advantages in empirical usage.

5. Real data analysis

We analyzed the data of GWA studies of schizophrenia on European-ancestry samples 

(2,195 cases vs. 2,617 controls). The missing genotypic data were imputed using BEAGLE 

software (Browning and Browning, 2007), and 677,163 autosome SNPs with minor allele 

frequency no less than 5% were selected for the analysis. We included 23 principle 

components (PCs) of genotype data in the model to account for possible population 

stratification. First, a univariate logistic regression is conducted on the case-control status for 

each of the 677,163 SNPs, conditioning on the covariates: age, gender and 23 PCs. Using 

the resulting 677,163 p-values, we calculated a genomic control factor of 1.0445 (Devlin and 

Roeder, 1999), implying that there is no strong population stratification not accounted for in 

our model. The 7,984 SNPs with p-values smaller than 0.01 were selected for the following 

variable selection. We applied the penalized logistic regression on the 7,984 SNPs and 4,812 

samples with the four folded-concave penalties, while accounting for the effects of age, 

gender and 23 PCs, by including them as unpenalized covariates.

We applied SCAD with a = 3.7 and MCP with a = 3, the default value of R package ncvreg, 

and chose to use two tuning parameters for SICA and Log. Using the extended BIC for 

tuning parameter selection, the penalized logistic regressions with Log and SICA selected 38 

and 22 SNPs, respectively (Supplementary Table 1–2). However, penalized logistic 

regressions with both MCP and SCAD selected the null model since the null model has the 

lowest value of the extended BIC.

A joint model was fitted by a logistic regression using the 38 SNPs identified by the Log 

penalty together with age, gender, and 23 PCs to obtain the p-values for the 38 SNPs. The 
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results are illustrated in Figure 2, together with the marginal p-values for the 677,163 SNPs. 

There are 43 genes within 10kb distance of these 38 SNPs, and among them 21 are in the 

Database for Annotation, Visualization and Integrated Discovery (DAVID) (Huang, Sherman 

and Lempicki, 2008). By functional category enrichment analysis at the DAVID website, 16 

of the 21 genes are bound by transcription factor FOXO1, with significant enrichment p-

value after a Benjamini correction. Recent studies have shown that FOXO1 regulates 

neuroblastoma differentiation (Mei et al., 2012), which is relevant to schizophrenia. In 

contrast, we also did the functional category analysis for those genes within 10 kb of the 38 

SNPs with the smallest marginal p-values, but no functional category was significantly over-

represented.

6. Conclusion and discussion

Although the methods with folded concave (nonconvex) penalties may not be desirable in 

terms of computational efficiency, they may lead to nice statistical properties in high 

dimensional setting (Fan and Li, 2001). To investigate the applicability of the nonconvex 

penalty functions in challenging high dimensional settings such as genomic studies, we 

conducted a theoretical analysis on the roles of tuning parameters with respect to the 

dimension of the problem and minimum effect size. The results suggest that the derivatives 

of the penalty function around 0 and the minimum effect size are two important quantities to 

be considered. A good performance of the penalized estimation requires that these two 

quantities be asymptotically different. Among the four penalties discussed in this paper, 

tuning one regularization parameter is sufficient to exploit the advantages of SCAD. In 

contrast, MCP, SICA and Log’s performances can be significantly improved if two instead 

of one (λ) regularization parameter is tuned. These theoretical conclusions are well 

supported in the empirical studies. In the simulations, we also observe that a penalized 

estimation using SICA or Log appears to be computationally more efficient than using MCP. 

The good performance of tuning two regularization parameters comes with the cost of added 

computational time. In real data analysis, one needs to judge the difficulty of the 

penalization problem in terms of effect size and dimensionality in order to choose whether 

one or two regularization parameters are needed, and the theoretical results of this paper can 

guide such choices. These theoretical results are based on the sufficient conditions of the 

weak oracle property, and thus they could be refined if the sufficient and necessary 

conditions of the weak oracle property are available.

For the future work, it will be of great interest to study if the regularized methods using 

those four nonconvex penalties achieve feature selection consistency under the necessary 

and sufficient condition derived by Shen et al. (2013). Furthermore, Shen et al. (2013) have 

demonstrated that constrained approaches may offer both theoretical and computational 

advantages. Therefore, our following study may derive the constrained counterpart 

approaches for Log or SICA to enhance better empirical performances. In addition, Wang, 

Kim and Li (2013) have proposed an calibrated CCCP algorithm that produces a consistent 

solution path which contains the oracle estimator with probability approaching one. They 

also proposed a high-dimensional BIC criterion and showed that it can be applied to the 

solution path to select the optimal tuning parameter which asymptotically identifies the 

oracle estimator. Take the penalty SCAD at a fixed tuning value of a = 3.7 for example. The 
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calibrated CCCP algorithm introduces another parameter τ, and then two convex 

minimization problems using τλ and λ are solved sequentially. For penalties that are 

sufficient to use one tuning parameter such as SCAD, the calibrated CCCP algorithm is 

ready to be applied. However, for the penalties required the usage of both of the tuning 

parameters such as Log penalty, it warrants future research on how to calibrate the two 

tuning parameters simultaneously in an efficient way. After the algorithm has been built, it 

will be interesting to see how different high-dimensional BIC criteria may influence the 

empirical performances and how the new devised methods perform in the genetic studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

We present the following Theorem 1 of Fan and Lv (2011) for the self-completeness of this 

paper. This Theorem gives a set of sufficient and almost necessary conditions of a local 

maximizer of the penalized likelihood.

Theorem 1 (Characterization of PMLE). β̂ ∈ Rp is a strict local maximizer of the non-

concave penalized likelihood  if

(1)

(2)

(3)

The following Conditions 4.1–4.4 are for the design matrix X, and they are essentially the 

same as the corresponding conditions from Fan and Lv (2011). We first define a few 

notations used in the following regularity conditions. L∞ norm of a matrix is the maximum 

of the L1 norm of each row. λmax()/λmin() denotes the maximum/minimum eigen-value of a 
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symmetric matrix, respectively. Denote a neighborhood of the non-zero coefficients as 0 = 

{δ ∈ Rs : ||δ – β01||∞ ≤ dn}.

Condition 4.1

, where

Condition 4.2

, where the derivative μ″(X1δ) is 

taken component-wise.

Condition 4.3

 if the responses are unbounded.

Condition 4.4

, where κ(p 㛖, δ) is defined as the 

local concavity of a penalty function at v=(v1, . . . , vq)⊤:

For the penalties with continuous second derivatives,

Given Conditions 1 to 4, we have the following weak oracle property.

Theorem 2 (Weak oracle property). Given the Conditions 1 to 4, with probability at least 
Pconverage = 1–2 [sn−1 + (p – s) exp(−nα log n)], there exists a penalized likelihood estimator 

 which satisfies (a) Sparsity: β̂2 = 0, (b) .
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Fig 1. 
Marginal association p-values for 645,316 SNPs on chromosome 1. The grey vertical lines 

denote the positions of 30 important SNPs. The genomic location spans 248,484,829 base-

pairs. Note that a SNP is at a single base-pair location.
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Fig 2. 
GWA marginal p-values (colored circles) and the 38 SNPs (black crosses) identified by 

penalized logistic regression using Log penalty.
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