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Abstract

Objective—This study aimed to 1) characterize morphological characteristics of the electrically-

evoked cortical auditory event-related potentials (eERP) and explore the potential association 

between onset eERP morphology and auditory vs non-auditory stimulation; 2) assess test-retest 

reliability of onset eERPs; 3) investigate effects of stimulation level on onset eERPs; and 4) 

explore the feasibility of using the onset eERP to estimate the lowest stimulation level that can be 

detected for individual stimulating electrodes in patients with auditory brainstem implants (ABIs).

Design—Study participants included five children (S1-S5) and two adults (S6-S7) with unilateral 

Cochlear Nucleus 24M ABIs. Pediatric ABI recipients ranged in age from 2.6 to 10.2 years (mean: 

5.2 years) at the time of testing. S6 and S7 were 21.2 and 24.6 years of age at the time of testing, 

respectively. S6 and S7 were diagnosed with neurofibromatosis II (NF2) and implanted with an 

ABI after a surgical removal of the tumors. All pediatric subjects received ABIs after being 

diagnosed with cochlear nerve deficiency. The lowest stimulation level that could be detected 

(behavioral T level) and the estimated maximum comfortable level (C level) was measured for 

individual electrodes using clinical procedures. For electrophysiological measures, the stimulus 

was a 100-ms biphasic pulse train that was delivered to individual electrodes in a monopolar-

coupled stimulation mode at stimulation levels ranging from sub-threshold to C levels. 

Electrophysiological recordings of the onset eERP were obtained in all subjects. For studies 

evaluating the test-retest reliability of the onset eERP, responses were measured using the same set 
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of parameters in two test sessions. The time interval between test sessions ranged from two to six 

months. The lowest stimulation level that could evoke the onset eERP was defined as the objective 

T level.

Results—Onset eERPs were recorded in all subjects tested in this study. Inter- and intra-subject 

variations in morphological characteristics of onset eERPs were observed. Onset eERPs with 

complex waveforms were recorded for electrodes that evoked non-auditory sensations, based on 

feedback from subjects, as well as for electrodes without any indications of non-auditory 

stimulations. Onset eERPs in patients with ABIs demonstrated good test-retest reliability. 

Increasing stimulation levels resulted in increased eERP amplitudes but showed inconsistent 

effects on response latencies in patients with ABIs. Objective and behavioral T levels were 

correlated.

Conclusions—eERPs could be recorded in both non-NF2 and NF2 patients with ABIs. eERPs 

in both ABI patient groups show inter- and intra-subject variations in morphological 

characteristics. However, onset eERPs measured within the same subject in this study tended to be 

stable across study sessions. The onset eERP can potentially be used to estimate behavioral T 

levels in patients with ABIs. Further studies with more adult ABI recipients are warranted to 

investigate whether the onset eERP can be used to identify electrodes with non-auditory 

stimulations.
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INTRODUCTION

The auditory brainstem implant (ABI) bypasses the cochlea and the auditory nerve and 

directly stimulates the cochlear nucleus (CN) in the auditory brainstem. It was initially used 

to partially restore hearing in patients with neurofibromatosis II (NF2) who lost their hearing 

due to the surgical removal of a tumor. Most recently, it has been used to establish auditory 

sensation in patients who have either absent or abnormally small auditory nerves (e.g. Choi 

et al., 2011; Colletti et al., 2009; Colletti & Shannon, 2005; Nevison et al., 2002; Sennaroglu 

et al., 2011).

Many aspects of the programming process are similar for patients with ABIs and patients 

with cochlear implants (CIs). Nevertheless, clinicians who work with patients with ABIs 

face unique challenges. One challenge is to determine which electrode(s) should be 

deactivated because their activation results in non-auditory sensation. This challenge is a 

result of the electrode pad design and the anatomical location of electrode placement of the 

ABI. The Cochlear Corporation N24 ABI was used for all subjects in this study. With this 

device, electrodes align tightly in three rows of seven electrodes per row on an oval-shaped 

electrode pad that is 8.5 mm × 3.0 mm in dimension. Due to the small size of electrode pad, 

electrical stimulation can spread and activate adjacent neural tissue. The surgical goal of 

ABI implantation is to place the electrode pad on the ventral cochlea nucleus in the lateral 

recess of the fourth ventricle. The length of cochlear nucleus (primarily the ventral cochlear 
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nucleus) located within this place is only about 7.6 mm (Quester & Schroder, 1999). The 

landmarks for identifying the lateral recess of the fourth ventricle may be difficult to locate 

in some patients due to anatomical distortions/variations. Therefore, the optimal electrode 

placement cannot be ascertained for individual patients at the time of surgery. The lateral 

recess of the fourth ventricle is surrounded by many neural structures, including the 

flocculus of the cerebellum, as well as the origins of facial, vestibulocochlear, 

glossopharyngeal and vagal nerves. These neural structures can be activated by electrical 

stimulation of the ABI due to current spread and/or less than optimal electrode placement. 

As a result, patients with ABIs often report non-auditory sensations when the device is 

activated (Colletti et al., 2005; Frohne et al., 2000; Goffi-Gomez et al., 2012; Herrmann et 

al., 2014; Marangos et al., 2000; Nevison et al., 2002; O'Driscoll et al., 2011b; Otto et al., 

2002). To avoid unwanted side effects of stimulation, any electrodes that evoke non-auditory 

sensations should either be deactivated, or have limited maximum current level during the 

programming process. It is possible to identify these electrodes in post-lingual adult ABI 

recipients during programming, because they can discriminate auditory from non-auditory 

sensations, and can provide reliable feedback. However, determining which electrodes, when 

activated, evoke non-auditory sensations in children with pre-lingual onset of deafness with 

ABIs is difficult, if not impossible, because of their lack of language and experience with 

sound. Having an objective tool for identifying electrodes that produce non-auditory 

stimulation would be useful to optimize program settings for pediatric ABI recipients.

To program the speech processor of an ABI, estimates of the minimum amount of charge 

that patients can detect (T level) for multiple stimulating electrodes are needed. Even though 

the importance of accurate T levels has not been established in ABI recipients, it has been 

shown to be critical for understanding of low-level speech and speech presented in noise in 

CI users (Baudhuin et al., 2012; Dawson et al., 2007; Davidson et al., 2009; Firszt et al., 

2004; Holden et al., 2007, 2011; James et al., 2003; Skinner et al., 1997, 1999, 2002; Spahr 

et al., 2007; van der Beek et al., 2015). Measuring T levels for multiple stimulating 

electrodes requires a significant amount of attention and effort to accomplish. Complicating 

programming efforts is the fact that many pediatric ABI recipients have multiple disabilities 

or medical conditions that limit their abilities to provide reliable behavioral responses 

regardless of age. Therefore, having objective tools for determining T level would be 

especially useful for pediatric ABI recipients.

The electrically-evoked auditory brainstem response (eABR) has been used to guide 

electrode placement and to assist in the programming process in patients with ABIs (Colletti 

et al., 2001, 2002, 2004a, 2004b, 2005; Herrmann et al., 2014; Goffi-Gomez et al., 2012; 

O'Driscoll et al., 2011a, 2011b). However, results of recent studies reveal a poor association 

between the presence/absence of the eABR and auditory stimulation in ABI recipients 

(Nevison et al., 2002; Goffi-Gomez et al., 2012; O'Driscoll et al., 2011a, 2011b). In addition, 

the morphology of the eABR can vary between and within test sessions (O'Driscoll et al., 

2011b), and reveal conflicting evidence regarding the ability of the eABR to distinguish 

between auditory and non-auditory stimulation (Herrmann et al., 2014; O'Driscoll et al., 

2011b). Finally, the association between behavioral T levels and eABR thresholds can vary 

across test sessions (O'Driscoll et al., 2011b). Overall, these results bring into question the 

value of the eABR as a tool for assisting the programming process in ABI recipients. 
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However, it should be noted that while the bipolar stimulation mode was used in eABR 

measures, the monopolar stimulation mode was typically used in programming maps in 

these studies. It is unclear whether the discrepancy between results of the eABR measures 

and the behavioral procedures can be accounted for by the difference in stimulation mode.

In addition to the eABR, Herrmann et al. (2014) measured the electrically evoked middle 

latency responses (eMLR) in four adult ABI recipients. Their results showed inter-subject 

variations in morphological characteristics of the eMLR. While the presence of an eMLR 

was indicative of an auditory sensation of the bipolar pair, the absence of an eMLR did not 

rule out an auditory perception.

The electrically-evoked cortical auditory event-related potential (eERP) is a response 

generated in the central auditory system that can be recorded from surface electrodes placed 

on the scalp. The presence of the onset eERP is indicative of auditory detection. One 

advantage the eERP has over the eABR and the eMLR is that it can be recorded in awake 

patients using the same stimuli as those used during the device programming process. 

Previous results have established an association between auditory perception and ERPs 

evoked by acoustic and electrical stimulation in human listeners (e.g. Chang et al., 2012; 

Cone & Whitaker, 2013; He et al., 2012; 2013, 2015a; Lightfoot & Kennedy, 2006; Visram 

et al., 2015). Additionally, morphological characteristics of onset eERPs that are associated 

with non-auditory sensations are different from those evoked by auditory stimulation in CI 

patients (He et al., 2012). Thus, the eERP holds promise as an objective tool to assist the 

programming process in ABI recipients.

The literature related to eERPs in ABI patients is scarce. Our previous report is the first 

study that described eERPs in human ABI recipients (He et al., 2015b). These preliminary 

results suggested that other neural systems, in addition to the auditory system, might 

contribute to the “eERP” recorded in some patients with ABIs. Therefore, even though the 

term “eERP” is still used in this study to refer to cortical responses evoked by electrical 

stimulation of the ABI, these neural responses may not be generated solely in the auditory 

system. While He et al. (2015b) demonstrated the feasibility of measuring eERPs in non-

tumor pediatric ABI recipients, it remains unknown whether eERPs can be recorded in 

patients with Neurofibromatosis Type II (NF2), who may have additional damage to the 

auditory system caused by the tumor and/or surgical procedures used to remove the tumor. 

More importantly, the eERP morphology has not been characterized in ABI patients. Finally, 

the association between eERP morphology and auditory vs non-auditory stimulation has not 

been explored in ABI recipients with NF2. Therefore, the first aim of this study was 

designed to address the following three questions: 1) what is the feasibility of measuring 

eERPs in NF-2 ABI patients, 2) what are the morphological characteristics of eERPs 

measured in both NF2 and non-NF2 patients with ABIs; and 3) what is the association 

between onset eERP morphology and auditory vs non-auditory stimulation.

As previously mentioned, morphological characteristics of the eABR change over time in 

patients with ABIs (O'Driscoll et al., 2011b). Although underlying mechanisms for these 

changes are not known, it is unlikely that they are caused by developmental changes in the 

auditory system because the measurements were repeated with a short time interval (i.e., 
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approximately eight weeks) between test sessions. This observation raises an additional 

question as to whether eERPs in ABI patients are repeatable across testing sessions. Like 

other auditory evoked potentials, it is important to demonstrate that these neural responses 

can be reliably measured if they are to be used clinically. Therefore, the second aim of this 

study was to assess the test-retest reliability of onset eERPs measured in ABI recipients.

Effects of stimulation levels on onset ERP responses have been investigated in normal-

hearing (NH) listeners (Beagley & Knight, 1967; Buchsbaum, 1976; Bruneau et al., 1985; 

Cone & Whitaker, 2013; Davis & Zerlin, 1966; Hensch et al., 2008; Lightfoot & Kennedy, 

2006; McCandless & Best, 1966; Pitcon et al., 1977; Purdy et al., 2013; Rapin et al., 1966). 

Overall, these studies showed that ERP amplitude increased as stimulation level increased 

up to 40-60 dB sensation level (SL). Further increases in stimulation levels caused amplitude 

saturation in some listeners. Changes in stimulation level show similar effects on eERP 

amplitudes measured in CI users (Firszt et al., 2002; Visram et al., 2015). The observation of 

similar level effects on response amplitude reported in NH listeners and CI users is not 

surprising. Previous studies have shown that central processing of intensity information can 

be described using the same temporal integration model for both listener groups (McKay & 

McDermontt, 1998; McKay et al., 2003). This model is based on the assumption that the 

amount of neural activity in the auditory nerve is the input information that the central 

auditory system relies on for encoding level cues in both subject groups. In comparison, 

studies assessing effects of stimulation level on response latency reported inconsistent 

results. While some studies reported decreases in response latencies as stimulation level 

increased (e.g. Cone & Whitaker, 2013; Hensch et al., 2008; Purdy et al., 2013), other 

studies have not observed these effects (Firszt et al., 2002). Differences in stimuli (speech 

vs. non-speech, acoustic vs. electrical stimulus), presentation levels (supra-threshold vs. 

near-threshold level) and subject groups (NH vs. CI listeners) may account for discrepancies 

in the results reported in these studies.

Under ideal conditions, electrical stimulation of the ABI is directly sent to the CN. In all 

mammals, the CN has multiple types of neurons with different neural response properties 

(McCreery, 2008; Møller, 2001; Pickles, 1988; Young, 2010). These neurons are sensitive to 

different stimulus features and have complex excitatory and inhibitory connections. In 

addition, results of previous studies suggested that unlike the auditory nerve, the “summed 

neural response” is not the only code that is used for neural encoding of intensity at the CN 

(Young, 2010). As a result, the intensity processing in the CN is much more complicated 

than that of the auditory nerve. In cases where neurons other than the CN are activated, 

changes in neural responses with intensity may be even more complicated and difficult to 

predict. To date, effects of stimulation levels on eERPs have not been investigated in ABI 

recipients. Therefore, the third aim of this study was to evaluate effects of stimulation levels 

on onset eERPs in patients with ABIs.

The association between the onset ERP and auditory detection threshold has been evaluated 

in NH listeners (Lightfoot & Kennedy, 2006), infants with sensorineural hearing loss (Chang 

et al., 2012), patients with auditory neuropathy spectrum disorder (He et al., 2012), and adult 

CI users (Visram et al., 2015). Results of these studies showed a strong correlation between 

thresholds measured using onset ERP measures and behavioral procedures. The extent to 
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which an association exists in patients with ABIs has not been examined. The fourth aim of 

this study was to evaluate the feasibility of using the onset eERP to estimate the behavioral T 

levels in patients with ABIs.

In summary, this study aimed 1) to characterize eERP morphology and explore its potential 

association with auditory vs non-auditory stimulation; 2) to assess the test-retest reliability 

of onset eERPs; 3) to investigate effects of stimulation level on onset eERPs; and 4) to 

explore the feasibility of using the onset eERP to estimate T levels in patients with ABIs. We 

hypothesize that 1) morphological characteristics of onset eERPs evoked by non-auditory 

stimulation will be different from those elicited by auditory stimulation; 2) onset eERPs 

measured in individual ABI recipients will be repeatable across test sessions; 3) onset eERPs 

in ABI recipients will decrease in amplitude and increase in latency as stimulation level 

decreases; and 4) behavioral T levels will be correlated with the onset eERP thresholds in 

these patients.

METHODS

Subjects

Study participants included five pre-lingual deaf children (S1 – S5) and two post-lingual 

deaf adults (S6 and S7). All subjects were unilaterally implanted with a Cochlear Nucleus 

24M ABI and had at least two months of listening experience with their ABIs prior to 

participating in this study. All pediatric ABI recipients were diagnosed with cochlear nerve 

deficiency. S6 and S7 were diagnosed with neurofibromatosis II (NF2) and implanted with 

an ABI after the surgical removal of the tumors. Pediatric ABI recipients ranged in age 

between 2.6 and 10.2 years (mean: 5.7 years; SD: 2.8 yrs) at the time of testing. S6 and S7 

were 21.2 and 24.6 years of age at the time of testing. S3 had a Cochlear Nucleus System 5 

(N5) CI and S5 had a Cochlear Nucleus Freedom (24RE) CI in the other ear. Electrically 

evoked intra-and post-operative eABRs were recorded for electrodes tested in this study in 

S2-S6. The presence/absence of the intra- or post-operative eABR in S1 and S7 is unknown 

because they were implanted at other medical centers.

ABI devices for all subjects were programmed using a SPEAK processing strategy. The 

stimuli used in their programming maps were presented with a pulse rate of 250 pulses per 

second (pps) per channel in monopolar-coupled stimulation mode (MP1+2). The pulse phase 

duration ranged from 100 to 300 μs per phase and the interphase gap was 45 μs. Active 

electrodes for the ABIs were initially selected based on the presence of intra- and post-

operative eABRs in S2-S5 and S6. However, in later programming sessions, one electrode 

was deactivated in S2, one electrode was deactivated in S3, four electrodes were deactivated 

in S4, ten electrodes were deactivated in S5, and one electrode was deactivated in S6 due to 

non-auditory stimulation or lack of reliable behavioral responses when electrical stimulation 

was delivered to these electrodes. The number of active electrodes at the time of testing 

ranged from 7 to 17. All subjects demonstrated reliable responses to electrical stimulation 

with their ABI devices.

For S3 and S5, their CIs were also programmed with SPEAK progressing strategy. The 

programming rate used in their CI speech processor program was 250 pps per channel with 
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an interphase gap of 45 μs. Both subjects had 20 active electrodes in their CI programming 

maps. S3 was using a pulse phase duration of 88 μs per phase. The pulse phase duration 

ranged from 75 to 88 μs per phase for S5. For these two subjects, onset eERPs were also 

measured with stimuli delivered to their CI sides.

Detailed demographic information of these subjects is listed in Table 1. Also shown are their 

averaged hearing thresholds with the ABI and/or the CI for 500, 1000 and 2000 Hz 

measured in the most recent test session. All subjects received payment for their 

participation. This study was approved by the local Biomedical Institutional Review Board. 

Written informed consent was obtained from all subjects and/or their legal guardians prior to 

participation.

Procedures

Data were collected during multiple visits. During each visit, the subject's behavioral T and 

C levels were measured. Other audiologic tests, including hearing thresholds measured in 

sound field were also measured or attempted in each subject. In addition to the hearing tests, 

each subject participated in eERPs measurements. These two procedures were undertaken in 

two sessions scheduled on the same day. Stimuli used for determining T and C levels had the 

same pulse rate and duration as those used for eERP recordings. Due to variations in 

subject's availability and subject compliance, not all subjects were able to participate in 

projects designed for all aims. The specific electrodes used for each subject can be found in 

Table 2.

Behavioral Measures—Prior to eERP measurements, during speech processor 

programming, behavioral T and C levels were estimated for each subject by using an 

ascending and bracketing method. The stimulus was initially presented at a very low level of 

charge, manipulating both pulse phase duration and current level, and gradually increased by 

a step size of 5 Current Level (CL). Response modes typically included conditioned play 

audiometry tasks, or for older pediatric and adult subjects, a pictured loudness scale was 

used. Communication mode for S1-S5 included sign language or Cued Speech. They were 

monitored for signs of non-auditory stimulation (facial stimulation, swallowing, coughing or 

other indications of discomfort with stimulation) as they lacked the experience to report 

these sensations except by sign, gestures, and involuntary behaviors. S6 and S7 provided 

verbal descriptions about the stimulation, and they were asked to indicate whether they had 

auditory perception only, auditory perception plus non-auditory sensation (e.g. tactile, 

vertigo, bad taste, shoulder pain, facial twitching and etc.), or non-auditory sensation only 

when each electrode was stimulated. The map parameters used in the speech-processor 

programs, including the T and C levels and pulse phase duration, were used for 

electrophysiological measures.

Electrophysiological Measures

Stimuli: During eERP measurements, the ABI speech processor was bypassed. The stimulus 

was a 100-ms train of biphasic charge-balanced electrical pulses with a pulse rate of 250 pps 

per channel presented in a monopolar-coupled stimulation mode (MP1+2). It was created 

using custom-designed software incorporating Nucleus Interface Communication 
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programming routines (NIC v2) and was delivered directly to individual electrodes. Prior to 

electrophysiological recordings, the stimuli were presented at the previously measured C 

level to each stimulating electrode to confirm that the subject did not experience any 

discomfort and/or could tolerate non-auditory stimulation if there was any.

For the onset eERP measurements, the stimulus was presented at C levels measured for all 

except two stimulating electrodes that were not associated with any obvious sign of non-

auditory stimulation. For two electrodes that clearly evoked non-auditory sensation (i.e. 

electrode 22 in S2 and electrode 19 in S6), the stimulus was presented at least 5 CL below 

the C level measured for these electrodes. The pulse train was presented at stimulation levels 

ranging from C to subthreshold levels for intensity series of eERPs. The same stimulating 

and recording parameters were used to evoke eERPs in two test sessions designed to 

evaluate test-retest reliability of the response. The inter-stimulus interval was 1000 ms.

Electrophysiological recordings: Each session lasted approximately two hours. Subjects 

were tested in a single-walled sound booth. They were seated in a comfortable chair or on a 

caregiver's lap and watched a silent movie with closed captioning or engaged in quiet play 

during testing. Breaks were provided as necessary.

Electroencephalographic (EEG) activity was recorded using a Neuroscan system (version 

4.4) and a SynAmp2 amplifier (Compumedics, Charlotte, NC). Disposable, sterile Ag-AgCl 

surface recording electrodes were used to record the EEG. The EEG was recorded 

differentially from high forehead (Fz, active) to contralateral mastoid (A1/2, reference) 

relative to a ground electrode placed at the low forehead (Fpz) in the initial test sessions with 

S1-S5. For S6-S7 and later test sessions with S2-S5, the EEG was recorded differentially 

between five active recording electrodes (Fz, FCz, Cz, C3 and C4) and A1/2, with the ground 

electrode placed on Fpz. These recording electrode sites were chosen since maturation of 

ERPs in children recorded at these sites is well described in previously published studies 

(e.g. Ponton et al., 2000; Wunderlich et al., 2006). Eye-blink activity was monitored by a 

pair of electrodes placed above and below the eye contralateral to the ABI or the CI. 

Electrode impedances were below 5000 Ω and the inter-electrode impedance difference was 

less than 2000 Ω. The recording window was 900 ms in length and included a 100-ms pre-

stimulus baseline. The EEG was sampled at 1000 Hz, amplified with a gain of 10, baseline 

corrected, and online filtered between 0.1 and 100 Hz (12 dB/octave roll off). Responses 

exceeding 120 μV were rejected from averaging. After artifact rejection, the remaining 

artifact-free sweeps were averaged and at least two averaged responses of at least 100 

sweeps were recorded for each stimulation condition in each subject. These recordings were 

digitally filtered between 1-30 Hz (12 dB/octave roll-off) offline before response 

identification. Replications measured in the same stimulation condition were averaged 

together and the averaged response was used for amplitude and latency measurements. The 

time interval between test sessions evaluating the test-retest reliability of the onset eERP was 

three months for S3, six months for S4 and two months for S5.
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Data Analysis

Both inter- and intra-subject variability in morphological characteristics of eERPs in ABI 

recipients was observed. Overall, eERPs measured in these subjects were categorized into 

two groups based on their morphologies. The first group of responses primarily consisted of 

a single vertex positive peak and a trough. For this type of response measured in pediatric 

ABI recipients, eERPs showed a vertex positive peak with a latency of 40-180 ms followed 

by a trough occurring approximately 100-220 ms later. In contrast, adult NF2 ABI recipients 

produced responses that were dominated by a trough with a latency around 50-100 ms 

followed by a vertex peak occurring around 150-220 ms after stimulus onset. To be 

consistent with results reported in our previous study (He et al., 2015b), this type of response 

was referred to as a Type I response. The other group of responses showed complex 

waveforms and consisted of up to three groups of positive and negative peaks within a time 

window of 25-500 ms after stimulus onset. This type of neural response was observed in 

both adult and pediatric ABI recipients and was referred to as a Type II response. Traditional 

peak labels (i.e. P1 and N2 for responses measured in children; P1, N1 and P2 for responses 

recorded in adults) are associated with specific neural generators. Neural sources of peaks 

observed in this study may be different from neural generators that are associated with those 

traditional peak labels. Therefore, all peaks in this study are described in terms of latency in 

order to avoid confusion. For example, P115 and N230 refer to a positive peak occurring 115 

ms and a trough occurring 230 ms after stimulus onset, respectively.

Replicated responses measured for each stimulation condition within the same test sessions 

were overlapped to show their repeatability. Neural responses were considered present only 

if all replications recorded for the same stimulation condition at all recording sites were 

repeatable. Responses were independently evaluated by two judges. The second judge was 

blind to subject identification and stimulation condition. eERPs were recorded for 153 

stimulation conditions in all subjects. Initial decisions regarding peak identification between 

the two judges were consistent for eERPs recorded for 142 stimulation conditions (i.e. 

approximately 92.8% inter-judge reliability). The disagreements were resolved through 

discussion for eERPs measured for nine stimulation conditions. One remaining disagreement 

was the lowest stimulation level that eERPs were recorded for electrode 2 in S4. In this case, 

the objective T level, defined as the lowest stimulation level that could evoke the onset eERP 

response, was taken as the lowest stimulation level for which both judges agreed that the 

eERP was recorded. The other disagreement was where the first positive peak located for 

eERPs recorded for electrode 21 in S2. The first judge chose the point with the largest 

amplitude immediately preceding the trough with a latency around 110 ms. The second 

judge chose the point with the largest amplitude around 30 ms post stimulus onset. In this 

case, the midpoint between peaks picked by two judges was used for peak amplitude and 

latency measures.

After peak identification was completed by these two judges, amplitude and latency of 

identified peaks were measured using custom-designed MATLAB (Mathworks) software. 

The peak-to-peak amplitude of Type I response was measured as the difference in volts 

between the vertex positive peak and the following trough in children and between the 

trough and the following vertex positive peak for adults. The peak-to-peak amplitude of 
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Type II response was measured as the difference in volts between each vertex positive peak 

and its following trough for both adult and pediatric ABI recipients. The intra-class 

correlation test was used to evaluate test-retest reliability of eERPs measured between test 

sessions. This statistical test has been successfully used for the same purpose in several 

previously published studies (Friesen & Tremblay, 2006; He et al., 2013; Tremblay et al., 

2003). Effects of stimulation level on eERP amplitudes and latencies were not evaluated 

using any statistical analysis test due to limited range of stimulation levels for which 

responses could be measured in most subjects. Related Samples Wilcoxon Signed Rank test 

was used to compare objective and behavioral T levels. The association between these two T 

levels was evaluated using a One-way Spearman Rank correlation test.

RESULTS

Electrodes with Non-Auditory Stimulations

Non-auditory stimulation was observed in several subjects. Due to limited communication 

skills, S1 did not indicate non-auditory sensation before or during eERP measures when 

electrode 21 was stimulated at the C level. However, he reported a “tingling” sensation in the 

ipsilateral neck in addition to auditory perception when this electrode was stimulated after 

eERP measures were completed. S2 pointed to his throat when electrode 22 was stimulated 

at the C level. S6 reported a vibrotactile sensation in the ipsilateral chest when electrode 19 

was stimulated at C levels. For these two subjects, the stimulation was decreased to a level 

that could be tolerated by the subject (at least 5 CL below the C level). Electrophysiological 

recordings were conducted at these low levels. Electrode 19 was deactivated for S6 in a 

following programming session scheduled four months later. S3 showed a balance sway 

when electrode 9 was stimulated. S5 showed sign of discomfort in the ipsilateral neck when 

electrodes 21 and 22 were stimulated and also had a clear balance sway when electrode 13 

was stimulated. These electrodes were subsequently deactivated and were not tested for 

electrophysiological recordings. No other non-auditory stimulation was reported, indicated 

or observed.

Morphological Characteristics of eERPs in ABI recipients

Figures 1 and 2 show onset eERPs recorded at Fz in five non-NF2 pediatric ABI recipients 

(S1-S5) and in two NF2 adult ABI recipients (S6 and S7), respectively. Each block of 

waveforms belongs to one subject, indicated by subject number in each panel. Due to 

variations in responses recorded among these subjects, different amplitude scales are used in 

these blocks. Responses measured in the same stimulation conditions are overlapped. 

Stimulating electrodes used to evoke these responses are noted on the right side of the 

waveforms. It should be pointed out that a subset of results recorded in S1-S4 was reported 

in our previous brief report (He et al., 2015b). However, the aim of that study was to 

establish the feasibility of measuring onset eERPs in non-NF2 pediatric patients with ABIs. 

Amplitude and latency of these onset eERPs have not been reported previously. Therefore, 

they were included in this study. Identifiable neural responses were not recorded for 

electrodes 8 and 11 in S5. Repeatable neural responses were recorded for all other 

electrodes. Black triangles are used to note the positive peaks identified in each set of 

responses. For the purpose of ease of visualization, troughs are not labeled in these figures. 
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Some of these responses (e.g., responses recorded in S4 and S7) contained a small positive 

peak at 0 ms, which represents stimulus artifact. Taken together, the eERPs shown in Figures 

1 and 2 are characterized by inter- and intra-subject variability in morphological 

characteristics. While eERPs recorded in S4 are similar for different stimulating electrodes, 

responses recorded in other subjects (e.g., S2 and S3) are more variable. Overall, Type I 

responses were observed when stimuli were delivered to 42 of 55 stimulating electrodes 

(~76%) used in this study. The averaged peak-to-peak amplitude of Type I response ranged 

from 2.08 to 5.29 μV. For pediatric ABI recipients, the averaged latency of the positive peak 

ranged from 54 to 145.83 ms and the averaged latency of the trough ranged from 159.86 to 

266.5 ms. The averaged latency of the troughs measured in S6 and S7 were 72.83 ms and 57 

ms, respectively. The vertex positive peak occurred around 140 ms later in both subjects. 

Type II responses were observed when stimuli were delivered to 13 of the 55 stimulating 

electrodes (~24%). These responses show larger inter-subject variations in response 

amplitudes and latencies than those measured for Type I responses. Table 3 lists electrodes 

where Type I and Type II responses were recorded in this study. Means and standard 

deviations of amplitudes are listed in Table 3.

In addition to the ABI, S3 and S5 used a CI in the other ear, which provides an opportunity 

for comparing eERPs evoked by ABIs to those elicited by CIs. The left and right panels of 

Figure 3 show onset eERPs evoked by electrical stimulation of the CIs in S3 and S5. Onset 

eERP responses recorded at recording site Fz are shown in order to facilitate comparison 

with results shown in Figure 1. Electrode numbers that were stimulated to evoke these 

responses are labeled at the right side of each set of responses. Vertex positive peaks are 

indicated using black triangles. Several waveforms contain a positive peak occurring at the 

stimulus onset, which is the result of contamination due to electrical stimulus artifact. For 

S3, responses evoked by electrical stimulation of CI electrodes are more uniform compared 

to those elicited by stimulating ABI electrodes. These CI-elicited eERPs consist of two 

vertex positive peaks followed by a trough within a time window of 120-480 ms, which is 

similar to morphology of eERPs evoked by stimulating electrode 21 of her ABI device. 

However, eERPs after stimulation of electrode 21 of her ABI showed larger peak-to-peak 

amplitudes than those measured for eERPs evoked following CI stimulation. For S5, the 

overall morphological characteristics of eERPs evoked by the CI are similar to those elicited 

by the ABI. Variations in eERP morphology are also observed across CI stimulating 

electrodes in this subject. Whereas eERPs evoked by stimulating electrode 12 of the CI are 

dominated by a vertex positive peak occurring at around 160 ms, eERPs observed following 

stimulation of other electrodes show more complex waveforms. The mean and the standard 

deviation of amplitudes and latencies measured for eERPs evoked by CI stimulation are also 

listed in Table 3.

Test-Retest Reliability of the eERP

Figure 4 shows onset eERPs recorded in two test sessions in S3, S4 and S5. Onset eERPs 

recorded in the first and the second test session are indicated using solid and dashed lines, 

respectively. The time interval between two test sessions ranged from two to six months. 

Each panel shows data recorded in one subject with subject numbers indicated in the bottom 

right corner. Onset eERP responses were only recorded at recording electrode site Fz in the 
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first test session. Therefore, only onset eERPs recorded at Fz are shown in this figure even 

though onset eERPs were recorded at five surface electrode locations in the second test 

session. In general, these results show that onset eERPs recorded for the same stimulating 

and recording conditions are stable across test sessions. The intra-class correlation 

coefficients (ICCs) range from 0.5 to 0.96 with a mean of 0.81 (SD = 0.14).

Effects of Stimulation Levels on eERPs

Figure 5 shows eERP intensity series in six subjects. Responses were recorded from a 

recording electrode located at Cz. Intensity series of onset eERP were recorded for two 

stimulating electrodes in S3 and S5, and for thee stimulating electrodes in S4. Only one 

intensity series is shown for these three subjects in this figure. Each graph shows results 

measured in one subject. Vertex positive peaks for these traces are indicated using black 

triangles. These data show that onset eERPs were recorded for a range of intensities in all 

six subjects. Overall, onset eERPs showed broader peaks with reduced amplitude as the 

stimulation level decreased. However, effects of stimulation level on response component 

latencies are less consistent across subjects. Results measured in S1-S3 and S6 show longer 

latencies as stimulation levels decreased. This systematic change in latency is not observed 

for eERPs measured in S4 and S5. In addition, some response components of eERPs 

measured for electrode 16 in S5 were only recorded at high stimulation levels.

Figure 6 shows amplitudes, peak and trough latencies of the eERP responses plotted as a 

function of stimulation level (i.e. input-out function) for each subject as indicated by 

different symbol types. For onset eERPs recorded for seven stimulating electrodes in five 

subjects, the response components that could be consistently identified with decreased 

stimulation levels were the vertex positive peak followed by a trough 35-300 ms after 

stimulus onset. Input-output (I/O) functions of peak and trough latencies and peak amplitude 

of these eERPs are shown in the left column of Figure. 6. In general, amplitudes increased 

with stimulation level, although this effect was non-monotonic. Effects of stimulation level 

on peak and trough latencies are less consistent across subjects. While responses recorded in 

S1, S2 and S6 generally showed longer latencies with decreased stimulation levels for both 

the peak and the trough, responses recorded in other subjects did not follow this trend.

For responses evoked by stimulation of electrode 18 in S3 and electrode 19 in S5, two 

positive peaks and troughs were recorded within 25-480 ms after stimulus onset (right 

column, Figure. 6). While the responses from both subjects consist of two peaks followed by 

troughs and increasing stimulation level increased peak amplitudes, these eERPs showed 

different characteristics. First, eERPs measured for electrode 19 in S5 have longer latencies 

and larger amplitudes than those observed in S3. Second, whereas peak and trough latencies 

in S3 decreased as stimulation level increased, response latencies in S5 are not affected by 

stimulation level.

Figure 7 shows intensity series of eERPs measured at Cz in two test sessions using the same 

stimulating and recording parameters in S4 and S5. The time intervals between test sessions 

were three and two months for S4 and S5, respectively. Negative troughs are labeled for 

these traces. Despite variations in amplitude and latency between the two test sessions, these 

eERPs demonstrate good test-retest reliability. The ICCs measured in S4 ranged from 0.38 
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to 0.83 with lower ICCs measured at lower stimulation levels (mean = 0.56; SD = 0.20). The 

ICCs for S5 ranged from 0.45 to 0.92 (mean = 0.74; SD = 0.20). Most importantly, intensity 

series from two recording sessions yielded the same objective T levels in both subjects.

Association between Objective and Behavioral T Levels

Figure 8 plots behavioral T level as a function of objective T levels for all six subjects. It 

should be pointed out that more than one stimulating electrode was tested in S3-S5. Results 

shown in Figure 8 are data collected for all stimulating electrodes in these six subjects. The 

solid line represents a linear regression fit to the data, which accounted for 85% of variance. 

The slope of the regression line is 0.89, which is statistically significantly different from 

zero (p<0.01). Results of Related Samples Wilcoxon Signed Rank test show that objective T 

levels are significantly higher than behavioral T levels (p<0.05). Results of a one-way 

Spearman Correlation test show a correlation between objective and behavioral T levels for 

these subjects (ρ= 0.91; p<0.001).

DISCUSSION

eERP Morphological Characteristics

The feasibility of measuring eERPs in pediatric non-NF2 subjects with ABIs was 

demonstrated previously (He et al., 2015b). Results of this study show that onset eERPs can 

also be recorded in NF-2 patients despite the potential damage to the auditory system caused 

by the tumor and/or surgical procedures used to remove the tumor. Similar to our previous 

findings, onset eERPs in the present study were variable across subjects, as well as across 

stimulating electrodes within individual subjects. Based on the number of identifiable peaks, 

these responses were categorized into two types of responses, and inter- and intra-subject 

variations in amplitudes and latencies were observed for both response types. Type I 

responses consist of a single vertex peak followed by a trough. Averaged peak-to-peak 

amplitude of this type of responses ranged from 2.08 to 5.29 μV, which is similar to those 

measured in pediatric and adult CI users (e.g. Brown et al., 2008, 2015; Firszt et al., 2002; 

Gordon et al., 2005, 2011; Sharma et al., 2002, 2009). Type 1 responses accounted for 76% 

of total responses recorded in the present study. The remainders of onset eERPs were 

classified as Type II responses. The Type II response has a complex waveform consisting of 

multiple vertex peaks followed by troughs occurring within 25-480 ms following stimulus 

onset. Averaged maximum peak-to-peak amplitude of this response was 24.28 μV, which is 

larger than what has been reported for onset eERPs measured in CI users (e.g. Brown et al., 

2008, 2015; First et al., 2002; Gordon et al., 2005, 2011; Sharma et al., 2002, 2009). Neural 

generators for onset eERPs recorded in ABI patients remain unknown. Results of this study 

do not suggest a clear association between onset eERP morphology and electrode location 

on the electrode pad. Although eERPs have been described in pediatric and adult CI users 

(e.g. Brown et al., 2008, 2015; First et al., 2002; Gordon et al., 2005, 2011; Sharma et al., 

2002, 2009), a direct comparison between responses recorded in ABI and CI patients are 

difficult due to differences in etiology, electrode design and placement, and potential 

differences in neural pathways activated by these devices.
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Inspection of Figures 1 and 2 suggests that onset eERPs evoked by ABI electrical 

stimulation, especially in S3 and S5, show morphological variations. Due to their young age 

and limited listening experiences, these two subjects were not able to report on their 

perceptions of electrical stimulation delivered by different ABI electrodes. Therefore, 

underlying mechanisms or associations with auditory perception of these variations are 

unknown. These morphological variations could be due to multiple factors including, but not 

limited to, anatomical variations in the auditory system and surgical placement of electrode 

pad. Response components originating from other systems could also contribute to these 

variations. For example, the positive peak occurring around 30 ms in eERPs recorded for 

electrode 18 in S3 could be post-auricular muscle response. Further studies are needed to 

investigate this possibility.

eERP Morphology and Auditory vs Non-Auditory Stimulation

The association between onset eERP morphology and auditory vs. non-auditory stimulation 

was explored in this study. We hypothesized that eERP morphology as a result of non-

auditory stimulation would be different from those elicited by auditory stimulation. Overall, 

results of our study did not provide conclusive evidence to support this hypothesis.

On one hand, onset ERPs recorded for electrode 21 in S1, electrode 22 in S2, and electrode 

19 in S6 had complex waveforms with large amplitudes. These subjects provided evidence 

of non-auditory sensations when these electrodes were stimulated. In addition, intensity 

series when stimuli were delivered to electrode 16 in S5 (see Figure 5) showed that the large 

peaks occurring between 230 and 400 ms after stimulus onset vanished rapidly as 

stimulation level decreased, which suggested that these peaks might indicate myogenic 

activity. On the other hand, these complex waveforms were also observed for onset eERPs 

recorded for stimulating electrodes where subjects who did not report non-auditory 

sensations. For example, waveforms as a result of stimulation of electrodes 17 and 22 in S2 

had similar morphologies. Non-auditory responses were indicated only when electrode 22 

was stimulated. In addition, non-auditory stimulation was not observed in S3 despite the fact 

that onset eERPs recorded for electrodes 15, 18 and 21 showed complex waveforms with 

amplitudes that were at least one magnitude larger than those recorded in any other subjects. 

Factors accounting for this discrepancy are unclear. It should be pointed out that the lack of 

any sign of discomfort does not guarantee the absence of non-auditory stimulation. It is 

possible that subjects might have experienced tolerable non-auditory sensations and they did 

not show any sign of discomfort when these electrodes were stimulated.

Furthermore, reliable behavioral responses to electrical stimulation were not observed for 

stimuli delivered to electrodes 6, 7, 10 and 12 in S5 after six months of ABI use even though 

repeatable neural responses were observed following stimulation of these electrodes. 

Because of absent behavioral responses, these electrodes were deactivated in the 

programming map. The underlying mechanisms responsible for the lack of behavioral 

responses to electrical stimulation delivered through these electrodes in this subject are not 

well understood. Retrospective review of this patient's medical record suggested that several 

factors that might have contributed to her lack of response to stimulation of these electrodes. 

First, this patient did not use her ABI on a full time basis and had not received consistent 
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speech therapy within the six months prior to testing. Second, this subject was only 2.8 years 

of age when these electrodes were deactivated. It is challenging to obtain reliable behavioral 

responses at this young age from individuals who have a paucity of auditory experience thus 

far in their lives. Finally, these neural responses were not necessarily evoked by auditory 

stimulation.

In summary, the results of this study do not provide conclusive evidence for the association 

between onset eERP morphology and auditory vs non-auditory stimulation. Further work 

with more adult, post-lingual ABI recipients is warranted in order to better understand the 

relation between response morphology and stimulation type.

Test-Retest Reliability of the eERP

The second of aim of this study was to evaluate the test-retest reliability of onset eERPs in 

subjects with ABIs. Onset eERPs were recorded in two test sessions in three subjects using 

the same stimulating and recording parameters. In addition, test-retest reliability was 

evaluated by measuring an intensity series for one electrode in two subjects. Overall, our 

results demonstrated that onset eERPs recorded in these subjects were stable across test 

sessions. For response measured at the C level, the ICCs ranged from 0.50 to 0.96 with a 

mean of 0.81 (SD = 0.14), which is consistent with results in young listeners with normal 

hearing (Beauducel et al., 2000; Carrillo-de-la-Pena, 2001; Hegerl et al., 1988; Hensch et al., 

2008; Sandor et al., 1999), elderly listeners (Tremblay et al., 2003), and CI users (He et al., 

2013; Friesen and Tremblay, 2006).

Due to time constraint, the test-retest reliability was only evaluated for intensity series of 

eERPs measured for electrode 4 in S4 and electrode 19 in S5. These results showed that 

ICCs decreased as the stimulation level decreased, which is expected since the signal-to-

noise ratio decreased as stimulation levels decreased. Similar effects of stimulation levels on 

reliability coefficients have been reported for ERPs measured in NH listeners in Hensch et 

al. (2008).

In pediatric CI users, morphological characteristics of eERPs change as listening experience 

with CI increases (e.g. Dorman et al., 2007; Ponton et al., 2001; Sharma et al., 2009). 

Specifically, eERPs measured in these listeners typically show decreased peak latencies 

within the first year of CI use. In comparison, eERPs recorded in our pediatric ABI patients 

did not show noticeable morphological changes across testing sessions. Differences in 

listener groups (CI vs ABI recipients) and relatively short time intervals between test 

sessions used in this study might account for this discrepancy.

Effects of Stimulation Level on eERPs

The third aim of this study was to evaluate effects of stimulation level on onset eERP 

amplitude and latency in patients with ABI. Onset eERPs were expected to show increased 

amplitude and reduced latency as stimulation level increased. Results of this study showed 

that eERPs measured in all subjects had non-monotonic increases in amplitude as 

stimulation level increased, which is consistent with our hypothesis and results measured in 

CI users (Firszt et al., 2002; Visram et al., 2015). Amplitude saturation was observed for 
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responses measured for electrodes 2 and 4 in S4 and electrode 18 in S3, which is consistent 

with results reported for CI users in Firszt et al. (2002). .

Despite the general association between stimulation level and eERP amplitude, variations in 

the I/O function of eERP amplitude were observed across subjects. While a linear I/O 

function was recorded in S1, functions recorded in other subjects showed two or even three 

stages of amplitude increase (e.g. S2 and S4). In addition, I/O functions measured for 

different components of eERPs recorded for the same electrode (i.e. electrode 18 in S3 and 

electrode 19 in S5) differed in slope and shape (see Figure 6). eERPs recorded in this study 

represents the synchronous firing of a large population of electrically stimulated neurons. 

Many types of neurons with different excitatory and/or inhibitory properties are likely 

activated. Therefore, the recorded eERP represents the results of a complicated interaction of 

neural excitations and inhibitions. Due to the nature of eERP responses, our results could not 

provide information about underlying mechanisms for observed variations of I/O functions. 

We can only speculate that responses recorded across subjects and electrodes might have 

different generators with different response properties.

eERPs latency increased with decreased stimulation levels in four subjects (S1-S3 and S6), 

which is consistent with results reported in CI users by Firszt et al (2002). However, effects 

of stimulation levels on eERP latencies were not obvious in S4 and S5. Latency has been 

interpreted as the speed of neural transduction. In CI users, as the stimulation level 

increases, more neurons are recruited and neural firing becomes more synchronized which 

contributes to larger responses. Given the same neural diameter and myelination status, 

larger neural response tends to transduce at a fast rate, which may result in shorter eERP 

latencies. Nevertheless, situations are more complex in the case of ABI recipients because 

eERP latency could be affected by other factors, including, for example, the spread of 

excitation changes with stimulation level. As a result, neurons responding to low stimulation 

levels might be different from those recruited at high stimulation levels. Therefore, neural 

resources of recorded eERPs could potentially be different at different stimulation levels.

eERP Threshold and Auditory Detection

The fourth aim of this study was to explore the feasibility of using the onset eERP to 

estimate behavioral T levels for device programming in ABI recipients. We observed a 

correlation between onset eERP threshold and behavioral T levels, which is consistent with 

results of previous studies (Chang et al., 2012; Lightfoot & Kennedy, 2006; Visram et al., 

2015). This result suggested that the onset eERP holds promise as an objective tool for 

estimating T levels in ABI recipients. It should be emphasized that the association between 

onset eERP threshold and behavioral T levels does not provide information that would allow 

one to determine whether ABI patients use auditory and/or non-auditory sensation to detect 

electrical stimulation. This ambiguity is due, at least in part, to the fact that neural responses 

generated by both auditory and/or non-auditory systems would have been recorded through 

surface electrodes in this study.
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Study Limitations

Despite these findings, this study has several limitations. One limitation is the relatively 

small number of subjects who could provide meaningful description of how electrical 

stimulation of the ABI was perceived. Due to this limitation, results of this study did not 

provide answers to the critical question of whether eERP can be used to identify electrodes 

with non-auditory stimulation. A second limitation of this study is that stimulation levels 

used to elicit eERPs were based on behavioral T and C levels in individual subjects. This 

procedure might have introduced a subjective bias into our results that would favor the 

observation of an association between objective and behavioral T levels. However, over-

stimulation can be life threatening for ABI patients. This procedure was chosen to assure 

subject safety. A third limitation of this study is that stimulation levels that were used to 

measure eERP I/O functions were not well controlled across subjects. In many subjects, only 

a few stimulation levels were used due to time constraint and subject compliance. This 

limited the extent to which the effects of stimulation level on eERP amplitudes and latencies 

could be investigated. Finally, subjects tested in this study varied in age (young children vs 

adult) and etiology (i.e. CND vs NF2). Therefore, results of this study do not provide 

information about whether eERPs in ABI patients are subject to the same developmental 

impact as that reported in CI users (e.g. Dorman et al., 2007; Ponton et al. 2001; Sharma et 

al., 2009). Due to these limitations, the results from this study should be considered as 

descriptive or exploratory. Further study with a larger group of adult subjects and with well 

controlled stimulating parameters is warranted in order to better understand the predictive 

value of onset eERPs for determining stimulation type (i.e., auditory versus non-auditory) 

and behavioral thresholds that might be useful in programming ABIs. In addition, 

longitudinal studies with individual pediatric ABI recipients are needed to investigate 

developmental effects on eERPs in ABI recipients.

CONCLUSIONS

The eERPs were recorded in both non-NF2 and NF2 ABI patients. eERPs in both ABI 

patient groups show inter- and intra-subject variability in morphological characteristics. 

However, onset eERPs measured in similar stimulating conditions within the same subject in 

this study tended to be stable across two test sessions. Onset eERPs potentially can be used 

to estimate behavioral T levels in patients ABI. Further studies with more adult ABI patients 

are warranted to investigate whether onset eERP can be used to identify electrodes with non-

auditory stimulations.
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Figure 1. 
eERPs recorded at Fz in five pediatric ABI recipients (S1-S5). Each graph shows results 

recorded in each subject. Grey dashed lines represent replications recorded at each 

stimulating electrode and black lines represent the averaged responses of these replications.
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Figure 2. 
eERPs recorded at Fz in two adult ABI recipients (S6 and S7). Results recorded in S6 and 

S7 are shown in the left and right panel, respectively. Grey dashed lines represent 

replications recorded at each stimulating electrode and black lines represent the averaged 

responses of these replications.
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Figure 3. 
eERPs evoked by electrical stimulation of cochlear implants in two subjects (S3 and S5). 

Grey dashed lines represent replications recorded at each stimulating electrode and black 

lines represent the averaged responses of these replications. Identifiable vertex positive 

peaks are indicated with black triangles.
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Figure 4. 
eERPs recorded in two test session for S3, S4 and S5. Each line represents an average of 

300-artifact free sweeps. Solid and dashed lines show results recorded in the first and second 

test session, respectively. The electrode number that was used to evoke these responses is 

labelled for these traces.
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Figure 5. 
Intensity series of the eERP recorded in six subjects. Grey dashed lines represent 

replications recorded at each stimulation level and black lines represent the averaged 

responses of these replications. Stimulation levels used to evoke these responses are labelled 

for these traces. Identifiable vertex peaks are indicated using black triangles. Subject number 

and electrode are shown in each graph.
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Figure 6. 
Input-output functions of eERPs amplitudes and latencies recorded in six subjects. Left 

column shows results measured for the Type I responses recorded for seven electrodes in 

five subjects (S1, S2, and S4-S6). Right column shows results measured for the Type II 

response recorded in two subjects. Results recorded for different electrodes in these subjects 

are indicated using different symbols.
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Figure 7. 
Intensity series of eERPs recorded in two test sessions for electrode 4 in S4 [panel (a)] and 

electrode 19 in S5 [panel (b)]. Solid and dashed lines represent results recorded in the first 

and second test sessions, respectively. Stimulation levels used to evoke these responses are 

labelled for these traces.
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Figure 8. 
Subject T levels plotted as a function of objective T levels. Results of one-way Spearman 

Rank correlation test are in the lower right corner.
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