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HEKn: Neonatal human epithelial kerotinocytes 

Hu Skin: Human skin  
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pNPA: 4-Nitrophenyl acetate  

RT-qPCR: Real-time polymerase chain reaction  
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Abstract 

 The penta-ethyl ester prodrug of the chelating agent diethylene triamine pentaacetic acid 

(DTPA), referred to as C2E5, effectively accelerated clearance of americium after transdermal 

delivery. Carboxylesterases (CESs) play important roles in facilitating C2E5 hydrolysis. 

However, whether CESs in human skin hydrolyze C2E5 remains unknown. We evaluated the 

gene and protein expression of CESs in distinctive human epidermal cell lines: HEKa, HEKn, 

HaCaT and A431.  The substrates, p-nitrophenyl acetate (pNPA) and 4-nitrophenyl valerate (4-

NPV), were used to access esterase and CES activity. C2E5 hydrolysis was measured by 

radiometric HPLC after incubating [14C]-C2E5 with S9 fractions prepared from skin cell lines 

with analysis. CESs specific inhibitors were used to access metabolism in human skin S9 

fractions with analysis by LC/MS/MS. We identified the CES1 and CES2 bands in the western 

blot. The gene expression of these enzymes was supported by a real-time polymerase chain 

reaction (RT-qPCR).  pNPA and 4-NPV assays demonstrated esterases and CESs activity in all 

the cell lines that were comparable to human skin S9 fractions.  The prodrug C2E5 was 

hydrolyzed by skin S9 fractions resulting in a primary metabolite, C2E4. In human skin S9 

fractions, inhibition of C2E5 hydrolysis was greatest with a pan CES inhibitor (benzil). CES1 

inhibition (troglitazone) was greater than CES2 (loperamide), suggesting a primary metabolic 

role for CES1. These results indicate that human keratinocyte cell lines are useful for the 

evaluation of human cutaneous metabolism and absorption of ester-based prodrugs. However, 

keratinocytes from skin provide a small contribution to the overall metabolism of C2E5.  
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Introduction  

 Transdermal drug delivery is non-invasive, can be self-administered, avoids first-pass 

metabolism, and is well-suited to pediatric populations and particular patient groups who have 

trouble swallowing  (Zempsky, 1998). In addition, transdermal products are attractive due to 

their sustained zero-order systemic release profile  (Naik et al., 2000). However, to reach the 

systemic circulation, drug molecules need to pass through the skin’s multiple barriers including 

the hydrophobic environment of the stratum corneum, the epidermis and the dermis to reach the 

vascularized hypodermis. These barriers effectively limit direct transdermal drug delivery to 

molecules that possess aqueous solubility in physiological pH (> 1 mg/ml, pH 5-9), a low 

molecular weight (usually <500 Daltons), moderate lipophilicity (oil-water partition coefficient 

Ko/w 10 – 1000), and those that require a moderate daily dosage (< 10 mg/day)  (Naik et al., 2000, 

Perumal et al., 2013). A growing number of drugs, that have many of the properties listed above, 

have been approved for transdermal delivery.  These include estradiol, fentanyl, lidocaine and 

testosterone patches and ultrasonic delivery systems for analgesia (Nitti, 2003, Prausnitz and 

Langer, 2008).  

  In addition to the physical barriers, cutaneous metabolism via local phase I and phase II 

metabolic enzymes can also reduce bioavailability (Esser and Gotz, 2013, Zhang et al., 2009). 

Cytochrome P450 enzymes are clearly expressed in organotypic skin models (Saeki et al., 2002, 

Swanson, 2004).  In human skin, CYP families 1, 2 and 3 are responsible for the metabolism of 

the majority of drugs and other xenobiotics (Du et al., 2004). Xenobiotic metabolizing enzymes 

are located in the epidermis and dermis where hair follicles, sebaceous and sweat glands are 

located (Scheuplein and Blank, 1971; Sugibayashi et al., 1999). The study of dermal metabolism 

is complicated by significant interspecies differences in xenobiotic metabolism  (Inoue et al., 
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1980; Prusakiewicz et al., 2006; Fu et al., 2015). Therefore, ideally, metabolism should be 

investigated in human skin tissues.  

  Enzymatic metabolism in the skin can be utilized to bio-activate prodrug molecules and to 

improve dermal or transdermal delivery.  For example, morphine propionate and morphine 

enanthate are two alkyl ester prodrugs of morphine that have been shown to enhance dermal 

delivery of morphine by 2- and 5-fold, respectively  (Wang et al., 2007). Many prodrugs, 

including these two morphine prodrugs, are formed by esterification of the active molecule. The 

added ester moiety can be used to alter the physicochemical properties of the molecule and 

improve transdermal absorption  (Wang et al., 2007). Once absorbed into the skin, enzymatic 

hydrolysis of the prodrug by esterases releases the active drug. 

  Carboxylesterases (CES1 and CES2) are involved in the metabolism of xenobiotics. For 

example, CES1 activates prodrugs of angiotensin-converting enzyme inhibitors and CES2 

activates the anticancer prodrug CPT-11 (Bencharit et al., 2002, Thomsen et al., 2014). In 

humans, CES1 and CES2 expression is ubiquitous; however, CES1 predominates in most organs  

(Satoh et al., 2002). Although CESs are known to be expressed in human skin, information on 

their role in the metabolism of topically applied drugs and prodrugs is limited  (Zhu et al., 2007).  

  We have developed a penta-ethyl ester prodrug of the chelating agent diethylene triamine 

pentaacetic acid (DTPA), referred to as C2E5 (Figure 1), to enhance clearance (decorporation) of 

transuranic radionuclides  (Zhang et al., 2013b). C2E5 is metabolized by CESs  (Fu et al., 2015) 

and the physiochemical properties of C2E5 (CLogP of 4.7, with a molecular weight of 533 

Daltons) suggest that it would be a good candidate for transdermal delivery. Evidence supporting 

transdermal application of C2E5 was reported in rat in vivo transdermal pharmacokinetics and 

efficacy studies  (Zhang et al., 2013b). Therefore, the first objective of the current work was to 
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assess the expression of CES isoforms in four different human skin cell lines. The second 

objective was to determine the capacity of the CESs in each cell line to metabolize the prodrug 

C2E5. 
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Materials and Methods  

  Materials. [14C]-DTPA penta-ethyl ester ([14C]-C2E5; 55 mCi/mmol, 1mCi/ml) was purchased 

from American Radiolabeled Chemicals, Inc. (St. Louis, MO). Ultima-Flo AP scintillation fluid 

was obtained from PerkinElmer Life and Analytical Sciences (Waltham, MA). Acetonitrile 

(ACN), 4-nitrophenyl valerate (4-NPV), p-nitrophenyl acetate (pNPA), Dulbecco’s modified 

Eagle’s medium, 0.25% trypsin-EDTA, and Dulbecco’s phosphate buffered saline (PBS) were 

purchased from Sigma Aldrich (St. Louis, MO). Penicillin-streptomycin was purchased from 

Invitrogen Corporation (Carlsbad, CA). Fetal bovine serum was purchased from Cansera 

International Inc. (Rexdale, ON, Canada). Human female skin S9 fractions were purchased from 

BioreclamationIVT (Hicksville, NY).  

  Cell Culture. HaCaT cells, immortal human keratinocytes, and A431, an immortalized 

epidermoid carcinoma derived, were kindly provided by Dr. Zhi Liu (Lineberger Comprehensive 

Cancer Center, Chapel Hill, NC). Primary neonatal human epithelial kerotinocytes (HEKn) and 

adult human epithelial kerotinocytes (HEKa) cells were obtained commercially (Gibco by Life 

Technologies, Grand Island, NY). HaCaT and A431 were maintained in 10% fetal bovine serum 

and Dulbecco’s modified eagle medium/high glucose medium (Gibco) containing 10% fetal calf 

serum, penicillin (10,000 units/ml) and streptomycin (10 mg/ml) until sub-confluence was 

reached (after 48 h). HEKn and HEKa were cultured in EpiLife medium (Gibco), supplemented 

with 1% EpiLife® defined growth supplement and 0.1% calcium chloride (CaC12) (Gibco). All 

incubations were conducted at 37±1°C, 95% air/5% CO2, and saturated humidity.  
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  Preparation of Cell Supernatant (S9 fractions). For all cell lines, cytosolic S9 fractions were 

prepared as cited in literature (Imai et al.,  2013). Protein concentrations were determined by the 

PierceTM BCA protein assay (Thermo Fisher Scientific, Waltham, MA).  Human liver S9 

fractions (XenoTech, Kansas City, KS), human recombinant protein (BD Biosciences, Franklin 

Lakes, New Jersey), and human skin S9 fractions (BioreclamationIVT, Hicksville, NY) were 

purchased commercially.   

   Determination of the Gene Expression by Real-Time Polymerase Chain Reaction (RT-

qPCR).  HEKa, HEKn, HaCaT and A431 cells were seeded and grown in 15 ml in T75 tissue 

culture flasks. Expressions of the CESs genes were evaluated by RT-qPCR. Total RNA was 

extracted using the RNeasy Mini Kit (Qiagen, Cat. No.74134, Hilden, Germany) according to the 

manufacturer’s instructions. Briefly, cell samples were lysed and homogenized using 1ml/10cm2 

cells of  TRIzol (Ambion® by Life Technology) and then were isolated by QIAshredder columns 

(Qiagen Cat. No.79656) in a highly denaturing guanidine-thiocyanate containing buffer.  Ethanol 

(70%) was added and the samples were applied to an RNeasy Mini Spin Column (Qiagen). RNA 

was bound to the membrane of the column and contaminants were washed away. Subsequently, 

RNA was eluted from the column using 30 µl of water.  The concentration and purity of the total 

RNA was determined using the Nanodrop 2000 method (Thermo Scientific,Wilmington, DE). 

cDNAs were prepared by reverse transcription of total RNA using the iScriptTM cDNA synthesis 

kit (Bio-Rad cat #170-8891, Hercules, CA) and stored at -20ºC until qPCR amplification.  qPCR 

reactions were prepared using the 2X iTaqTM Universal Probes Supermix, TaqMan® CES1, 

CES2 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) primers, (TaqMan® Gene 

Expression Assays Rack ID: 14429192. Primers: Hs00275607_m1 for CES1, Hs01077945_m1 

for CES2 and Hs02758991_g1 for GAPDH) (Applied Biosystems, Foster City, CA) and 
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nuclease-free water (Qiagen) cDNA was diluted 5- fold and qPCR was performed by the 

TaqMan® Gene Expression Assay (Bio-Rad). The PCR amplification was conducted in a total 

volume of 20 μl containing universal PCR master mixture (10 μl), gene-specific TaqMan® assay 

mixture (1 μl), diluted cDNA (5 μl) and nuclease-free water (4 μl). The cycling profile was 50°C 

for 2 min, 95°C for 10 min, followed by 40 cycles of 15 s at 95°C and 1 min at 60°C, as 

recommended by the manufacturer. Amplification and quantification were done with the Applied 

Biosystems 7900HT Real-Time PCR System (Foster City, CA). All samples were analyzed in 

triplicate and the signals were normalized to GAPDH and then expressed as relative levels of 

mRNA. The CES1 probe recognized both CES1A1 and CES1A2; these enzymes are identical 

although distinct genes encoded. GAPDH was included in the study as the loading control.  

  Quantification of Gene Expression. Relative RNA expression levels were determined from 

delta Ct values using the expression of the GAPDH gene as an internal control. The RT-qPCR 

assay was performed in triplicate for each sample. For each replicate, the CES Ct was 

normalized to the GAPDH Ct [ΔCt = Ct[Target]-Ct[Gapdh]] before the mean and SEM ΔCt were 

calculated. 

  Determination of the Protein Expression. Western blot studies were conducted to explore 

CES1 and CES2 expression in the different human skin cell lines. CES1 and CES2 antibodies 

were purchased from Abcam (Cambridge, England).  Protein concentrations were determined 

using the PierceTM BCA Protein Assay (Thermo Fisher Scientific). Total protein lysate (30 µg) 

was run on a NuPAGE™ 4–12% Bis-Tris Gel (Bio-Rad) at 120 V for 1 h.  Following 

electrophoresis, the proteins were transferred by blotting onto 0.45 µm polyvinyl difluoride 

membranes (Thermo Fisher Scientific) at 350 mA for 1.25 h in transfer buffer (Bio-Rad). The 
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membrane was blocked in 5% skimmed milk powder in Tris-buffered saline/0.05% Tween for 1 

h before overnight incubation with primary antibody: monoclonal hCES1 or hCES2 (Sigma-

Aldrich) at 1:1000 dilution or GAPDH (Abcam) at 1:10000 dilution. The membranes were 

washed and incubated with a secondary antibody, horseradish peroxidase-conjugated goat anti-

rabbit (Sigma-Aldrich) at 1:10000 dilution for 1 h. Finally, the membranes were incubated 

briefly in SuperSignal® Stable Peroxide Solution together with SuperSignal® West Pico 

Luminol/Enhancer Solution (Thermo Fisher Scientific) and immediately imaged. The 

chemiluminescent signal was registered with a FluorChem 8000 camera (Alpha Innotech Corp, 

San. Leandro, CA).  Human liver and intestine S9 fractions served as positive controls for CES1 

and CES2, respectively.   

  Determination of Enzyme Activity by pNPA Assay and 4-NPVAssay. Total esterase and 

CES-specific enzyme activity was measured using established substrates pNPA (100 μM) and 4-

NPV (100 μM), respectively  (Testa B and Mayer MJ, 2006). Hydrolysis of the freshly prepared 

substrates was carried out in 96 well plates with a total volume of 100 μl/well. Reactions were 

initiated by mixing 1 μl of substrate with diluted S9 samples (0.1 mg/ml). The rates of hydrolysis 

of pNPA and 4-NPV were determined spectrophotometrically by measuring reaction products at 

402 nm after 10 min incubation at 37°C as previously described  (Williams, 2008) using a UV 

spectrometer (BioTek, Winooski, VT).  

  Determination of C2E5 Hydrolysis by High Performance Liquid Chromatography-

Radiomatic Flow Scintillation Analyzers (HPLC-FSA). [14C]-C2E5 (1 μM, 0.55 nCi) was 

pre-incubated in 0.1 M phosphate buffer (pH 7.4) for 5 min at 37°C. Reactions were initiated by 

the addition of S9 fractions (1 mg/ml) from different cell lines (HEKa, HEKn, HaCaT and A431) 
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in a total volume of 100 μl; boiled S9 fractions were used as a blank to correct for non-enzymatic 

C2E5 degradation.  The reactions were terminated by adding an equal volume of ice-cold 

acetonitrile (ACN), followed by centrifugation at 14,000g for 15 min at 4°C. The supernatant 

was transferred to HPLC vials for analysis as previously described  (Fu et al., 2015). 

Representative radio-chromatograms illustrate a C2E5 peak generated from the boiled S9 

fractions and C2E5 and the presences of a metabolite, C2E4, in human skin S9 fractions 

(Supplemental Figures 1 and 2). 

  Sample Preparation for Human Skin S9 fraction-Mediated C2E5 Hydrolysis with and 

without Inhibitors.  Experiments were designed to examine the effect of specific inhibitors on 

C2E5 hydrolysis in human skin S9 fractions.  The following inhibitors were selected: benzil (10 

μM) was chosen as a pan CES inhibitor  (Wadkins et al., 2005), troglitazone (10 μM) as a CES1 

specific inhibitor  (Fukami et al., 2010), loperamide (100 μM) as a CES2 specific inhibitor  

(Williams et al., 2011) and BNPP (1 mM) as a non-specific esterase inhibitor  (Li et al., 2007).  

Inhibitors were incubated with human skin S9 fractions for 30 min at 37°C before the reaction 

was initiated. All reactions were initiated by the addition of S9 fractions (0.5 and 1 mg/ml) to 

prepared C2E5 in water to result a final C2E5 concentration of 0.5 μM at 37°C. Reactions were 

terminated after 120 min by adding an equal volume of ice-cold acetonitrile with 2% of formic 

acid, followed by centrifugation at 14,000 g for 15 min at 4°C. Liver S9 fractions (1 mg/ml) 

were used as a positive control and boiled S9 fractions were used as negative controls. Reactions 

were performed in triplicate. The standards used to generate the LC/MS/MS C2E5 calibration 

curve were prepared by spiking boiled S9 fractions with C2E5 and processed as described above.  

  LC/MS/MS Chromatographic and Spectroscopic Conditions.  Chromatographic separation 

from matrix components was achieved using reverse-phase chromatography on an YMC ODS-
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AM C18 (100 x 2 mm, 3 µm) column.  Gradient elution was used based on a combination of 

water with 0.1% formic acid (A) and acetonitrile with 0.1% formic acid (B). The mobile phase 

was initiated at 13% B increasing to 40% B by 1 min, to 60% B by 6 min and to 95% B by 6.2 

min. The mobile phase was held at 5% A and 95% B from 6.2 min to 6.5 min when a post-run 

cycle that included isopropyl alcohol (C) was initiated. Between 6.5 min and 7 min solvent B 

(95%) was gradually replaced with solvent C (95%). The mobile phase was then held at 5% A 

95% C until 7.5 min before gradually returning to initial conditions (87% A, 13% B, 0% C) after 

8.5 min, which were maintained for 1.5 min prior to the next injection. The flow rate was 300 

µl/min and the injection volume was 5 µl. The column oven temperature was set to 40°C. C2E5 

was detected on a triplequadrupole mass spectrometer (Thermo TSQ Quantum Access) using 

electrospray ionization (ESI) in the positive-ion mode. The ionization source and collision 

parameters were optimized to give maximum analyte signal intensity (Spray Voltage 3500V; 

Sheath and Auxiliary gas nitrogen, 10 and 25 psi, respectively; Collision gas Argon @ 1.5 

mTorr; Collision energy 35 eV). The mass spectrometer was set to carry out single reaction 

monitoring (SRM) for the precursor → product ion transitions m/z 534 → 216 (C2E5) and m/z 

506 → 188 (C2E4) at a retention times of 3.6 and 2.8 min, respectively. For C2E5 quantification, 

a calibration plot of analyte peak area against nominal C2E5 concentration (20 – 1000 ng/ml) 

was constructed from a quadratic equation with a 1/concentration2 weighting. Representative 

chromatograms showed formation of C2E5 metabolite, C2E4. Representative chromatograms 

illustrate a C2E5 peak generated from the boiled S9 fractions and C2E5 and the presences of a 

metabolite, C2E4, in human skin S9 fractions (Supplemental Figures 3 and 4). 

Data analysis. The data were processed by Graph Pad Prism 5.0, and are presented as 

mean ± SEM.  
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Results  

  Gene Expression of Carboxylesterase in HEKa, HEKn HaCaT, A431 cells, and Human 

Skin Tissue. The mRNA expression of CES1 was primarily detected in human skin tissue. A 

small amount was detected in HEKa and HEKn cells, and none was detected in HaCaT and 

A431 cells (Figure 2A). In contrast, mRNA expression of CES2 was detected in all cells. Human 

skin CES2 expression was about 2-fold higher than HEKa, HEKn and HaCaT and 10-fold higher 

than A431 expression (Figure 2B). CES1 expression in the human skin was about 25-fold greater 

than CES2 expression. However, the human skin total RNA was obtained from only one human 

subject and inter-individual variability could affect these comparative results.   

  Protein Expression of Carboxylesterase in HEKa, HEKn, HaCaT, A431 cells and Human 

Skin Tissue. Human liver and intestine S9 fractions were used as positive controls. CES1 protein 

expression was detected in human skin S9 fractions.  The band for CES1 in human skin (30 μg 

of skin sample) was considerably lighter than the CES1 band in human liver S9 fractions (5 μg 

of liver sample). There was little evidence of CES1 in HEKn, HaCaT and A431 cells (Figure 

3A). Meanwhile, CES2 protein expression was detected in HEKn, HaCaT, human skin and 

human intestine S9 fractions (Figure 3B). The bands indicated that more CES2 was present in 

HEKn compared to HaCaT. Little evidence for CES2 in A431 was observed (Figure 3B). 

  Hydrolysis Activity of pNPA and 4-NPV in HEKa, HEKn, HaCaT, A431 cells and Human 

Skin Tissue. Enzymatic activity was determined using pNPA (esterases) and 4-NPV (CESs) 

assays with human liver S9 fractions as a control. The pNPA assay demonstrated that the S9 

fractions from human skin cell lines exhibited esterase activity (Figure 4A). pNPA hydrolysis 

activity in the cultured cells was slightly lower than in human skin S9 fractions and 5- to 10-fold 
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lower than in human liver S9 fractions (Table 1). For example, HEKn displayed approximately 

20% of the esterase activity of the liver. When the amount of protein was standardized across all 

the samples, the catalytic rate of esterase in HEKn was the highest among all cell lines.  The 4-

NPV assay showed that CES activity was present in all of the tested cells; the catalytic rate of 

CES in HEKn cell lines was the greatest (Figure 4B). 4-NPV hydrolytic activity in the cultured 

cells was comparable to or slightly lower than in human skin S9 fractions and 2- to 5-fold lower 

than in human liver S9 fractions (Table 2). For example, HEKn displayed approximately 60% of 

the CES activity of the liver. 

  Hydrolytic Activity of Penta-ethyl Ester Prodrug of DTPA (C2E5) in HEKa, HEKn, 

HaCaT and A431 Cell Lines.   S9 fractions produced from HEKa, HEKn, HaCaT hydrolyzed 

[14C]-C2E5 (1μM) to the primary metabolite, C2E4. Little hydrolysis was observed in the S9 

fractions of A431 cells (Figure 5). The hydrolytic rates of C2E5 by HEKa, HEKn, HaCaT and 

A431 cells were 7.12, 2.63, 3.80 and 0.66 pmol/mg/min, respectively.  

  Inhibition of Hydrolytic Activity of Penta-ethyl Ester Prodrug of DTPA (C2E5) in Human 

Skin S9 Fractions. Near complete (98.6%) hydrolysis was seen in human liver S9 fractions, 

while human skin S9 fractions showed 62.8% loss of the parent drug (C2E5, Figure 6). As 

expected, addition of the non-specific esterase inhibitor, BNPP, totally blocked the hydrolysis of 

C2E5.  Addition of the inhibitors benzil (pan CESs) troglitazone (CES1) and loperamide (CES2) 

resulted in 10.6%, 40.68%, and 77.68% loss of parent drug C2E5, respectively. These data 

suggest that both CES1 and CES2 hydrolyze C2E5, but the hydrolysis is primarily via CES1.  
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Discussion 

  As transdermal delivery technology becomes more common, questions remain as to how and 

whether ester-based prodrugs pass through the skin and whether hydrolysis during this transition 

affects the absorption, distribution, metabolism and excretion (ADME) of the drug. Because of 

the interspecies differences in hydrolysis profiles, skin derived from animals may be very 

different from human skin (Tauber, U. R and Rost KL, 1987, Prusakiewicz et al., 2006, Hewitt et 

al., 2001).  Therefore, alternative methods to examine human specific hydrolysis are needed 

during drug development. Previously, we reported that CESs play an important role in the 

metabolism of the ester-based prodrug, C2E5, which is being investigated as a decorporation 

agent for contamination with transuranic elements (Zhang et al., 2013b). The present study 

characterized CES expression and activity in human skin tissue and different human keratinocyte 

cell lines and demonstrated the role of CES in facilitating C2E5 hydrolysis in skin during 

transdermal delivery. In addition, the prodrug, C2E5, was hydrolyzed in all skin cell lines 

examined and HEKa may be one of the most appropriate cell lines to study for transdermal 

delivery. 

  CES1 and CES2 proteins were expressed in human skin S9 fractions. RT-qPCR clearly showed 

the greater expression of CES1 mRNA compared to CES2 mRNA, which supports a previous 

report of greater CES1 expression in human skin microsomes (Jewell et al., 2007). As expected, 

measurement of total esterase activity using the pNPA assay (Imai et al., 2013) revealed much 

less activity in the skin compared to the liver (Figure 4A). However, the 4-NPV assay, which 

measures CES activity (Williams et al., 2011) showed that total CES activity was only 2-fold 

lower in the skin than in the liver (Figure 4B), confirming the potential for human skin to 
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contribute to the metabolism of ester compounds when applied transdermally  (Wang et al., 

2007).   

  As an alternative to human skin, we assessed different human keratinocyte cell culture models 

for their utility as surrogates in investigating transdermal drug metabolism. The keratinocyte 

tumor cell line A431 had no detectable CES1, and CES2 was expressed at barely detectable 

levels. Therefore, we concluded that A431 cell line is not a suitable model for investigating 

transdermal drug metabolism. Of the remaining keratinocyte cultures, our results demonstrated 

that while HEKa, HEKn and HaCaT express CES1, CES2 was more abundant across the various 

keratinocyte cell lines. These findings are consistent with the work of Zhu et al. who identified 

CES2 as the main CES in HaCaT cells  (Zhu et al., 2007). Enzyme expression and activity in 

keratinocytes change over time in culture; cytochrome P450 enzymes are particularly vulnerable, 

but esterases and conjugated enzymes are also affected  (Williams, 2008). This observation could 

explain our findings that CES2 expression was slightly lower in HaCaT cells compared to HEKa 

or HEKn cells, and that CES1 expression was greatly reduced or absent in all the cultured cells. 

HEKa and HEKn are primary cultures and, as such, may retain the greater enzymatic activity 

observed in human skin compared to the immortalized HaCaT cell line.   

  CES1 and CES2 are from the same family, known as 60-kDa serine esterases. While these two 

isoforms have a similar molecular weight, (CES1 is 62.5 kDa and CES2 is 60.0 kDa), they are 

structurally quite different.  The isoelectric point of CES1 is 5.8 and CES2 is 4.9 and the 

sequence homology between the two enzymes is only 48%  (Pindel et al., 1997). These structural 

differences result in different substrate specificity. CES1 tends to hydrolyze molecules with a 

small alcohol moiety more efficiently, while CES2 is more efficient at metabolizing molecules 

with a larger alcohol moiety and more lipophilic molecules  (Brzezinski et al., 1994, Williams et 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on April 29, 2016 as DOI: 10.1124/dmd.116.069377

 at A
SPE

T
 Journals on A

ugust 13, 2019
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD # 69377  

 18

al., 2011). These differences in the substrate specificity of CES1 and CES2 could lead to 

differences in predicting skin absorption or metabolism. In different human cell lines and skin S9 

fractions, we demonstrated CESs expression by western blot and RT-qPCR and confirmed 

enzyme activity with pNPA and 4-NPV assays; subsequently, we examined the metabolism of 

C2E5, a prodrug developed for transdermal delivery. 

  C2E5 is the penta-ethyl ester of DTPA, administered intravenously to treat plutonium, 

americium, and curium (Pu, Am and Cm) contamination. In vivo studies, in rats, report de-

esterification of C2E5 mainly into the tri- and di-ethyl esters, C2E3 and C2E2, with some DTPA 

also present  (Zhang et al., 2013b). In vitro binding experiments, using human, rat and dog 

plasma, suggest that C2E2 is an effective chelator of Am (Huckle et al., 2015a), and this 

hypothesis is supported by efficacy study following oral administration of C2E2 in beagle dogs  

(Huckle et al., 2015b). Thus, to be effective, when applied transdermally, C2E5 needs to be 

metabolized to C2E2 in the body. Sustained plasma concentrations of C2E2 are observed in rats 

following transdermal application of C2E5 in a non-aqueous gel  (Zhang et al., 2013b) and this is 

associated with effective Am decorporation  (Zhang et al., 2013a), suggesting that transdermal 

delivery of C2E5 to the active C2E2 is possible. In the present study, we used the S9 fractions 

model to assess the potential translation of these preclinical observations to human tissues. 

  Previously, we used a human recombinant protein system to examine human CES1 and CES2 

mediated C2E5 hydrolysis; the results demonstrated that  both CES1 and CES2 were reponsible 

for C2E5 hydrolysis. However, CES1 hydrolyzed C2E5 to a greater extent compared to CES2 

(Fu et al., 2015). The results in the current study agree with our previous findings (Figure 5 and 

6).  
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  Although complete metabolism to an active drug, C2E2, was not observed in human skin in the 

current study, once in the systemic circulation, further hydrolysis of C2E5’s metabolites can 

occur in the liver, mainly by CES1, and in plasma, possibly by paraoxonase and 

butrylcholinesterase as CES1 and 2 are not present  (Bahar and Imai, 2013). Additionally, the 

metabolism of C2E5 by CESs in keratinocytes, which we report here, results in metabolites that 

are more hydrophilic than C2E5 and could potentially more readily enter the systemic 

circulation. 

  The differences in enzyme activity and expression among cell lines and skin tissue has 

important implications for future studies examining transdermal metabolism of ester-based 

prodrugs. HEKa, HEKn and HaCaT cell cultures have the potential for examining the 

metabolism of compounds that are substrates for CES2. However, of the human cell lines we 

examined, only HEKa cells have the potential for establishing the metabolism of compounds that 

are substrates for CES1.  

  In summary, this is the first study to characterize the expression of CES isoforms in multiple 

human skin cell lines and human skin tissue with a view to using native phase 1 enzymes in skin 

to enhance transdermal delivery of C2E5. The differences in enzyme activity and expression 

among cell lines and skin tissue has important implications for future studies examining 

transdermal metabolism of ester-based prodrugs. We confirmed that CES activity is present in 

skin, albeit at lower levels compared to the liver, and that CES2 activity, but not CES1 activity, 

in HEKa, HEKn and HaCaT cells is comparable to that of human skin. Consequently, human 

skin cell cultures may be useful in quantifying CES2-mediated drug metabolism. Of the human 

cell lines we examined, HEKa cells have the potential for establishing the metabolism of 

compounds that are substrates for CES1. However, precaution should be taken when human skin 
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cells lines are used as alternative models for human cutaneous metabolism in transdermal drug 

delivery. Since the CES1 specific inhibitor reduced human skin S9 fraction-mediated hydrolysis 

of C2E5, CES1 appears to be crucial for C2E5 metabolism; as a result, the HEKa cell line could 

be an appropriate model for metabolism of C2E5. 
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Legends for Figures  

Figure 1. Structure of penta-ethyl ester DTPA prodrug (C2E5). 14C-radiolabel positions are 

indicated by asterisks.  

Figure 2. Log of relative expression of CES1 and CES2 mRNA in human epidermal keratinocyte 

HEKa, HEKn, HaCaT, A431 cells and human skin by RT-qPCR analysis. [A] CES1 expression. 

[B] CES2 expression. Values represent mean ± SEM (n=3).  

Figure 3. Western blot analysis of human epidermal keratinocyte HEKn, HaCaT and A431 cells 

and human tissue. Each band was detected with CES1 and CES2 antibodies. [A] CES1 

expression. [B] CES2 expression. Lane 1 = HEKn, 2 = HaCaT, 3 = A431, 4 = human skin, 5A = 

human liver, and 5B = human intestine.  

Figure 4. Esterase and carboxylesterase activities in human epidermal keratinocyte HEKa, 

HEKn, HaCaT, A431 cells and human skin tissue measured with a pNPA and 4-NPV assay. [A] 

pNPA assay in the presence of S9 fractions of HEKa, HEKn, HaCaT, A431 cells and human 

skin. [B] 4-NPV assay in the presence of S9 fractions of HEKa, HEKn, HaCaT, A431 cells and 

human skin. The hydrolysis of the freshly prepared substrates was carried out in 96 well plates 

with a total volume of 100 μl/well. Reactions were initiated by mixing 1 μl of substrate with 

diluted S9 samples (0.1 mg/ml). The rates of hydrolysis of pNPA and 4-NPV were determined 

spectrophotometrically by measuring reaction products at 402 nm after 10 min incubation at 

37°C using a UV spectrometer. Values represent mean ± SEM. (n=3). 

Figure 5. C2E5 hydrolysis in human epidermal keratinocyte HEKa, HEKn, HaCaT, A431 cells. 

Loss of parent drug was measured by detecting changes in radioactivity of C2E5 at HPLC 
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elution peak (7.3 min) during a 60 min incubation of 1μM [14C]-C2E5 with HEKa, HEKn, 

HaCaT and A431 cells. Values represent mean ± SEM (n=3). 

Figure 6. C2E5 hydrolysis in human skin S9 fractions and inhibition studies on C2E5 hydrolysis. 

Inhibitors, benzil, trogliazone, loperamide, and BNPP were incubated with human skin S9 

fractions for 30 min at 37°C before the reaction was initiated. Loss of parent drug was measured 

by detecting changes in spectromatogram at the LC/MS/MS analyte peak (3.6 min) after 120 min 

incubation of 0.5 μM C2E5 with human skin S9 fractions with and without inhibitors. Liver S9 

fractions (1 mg/ml) were used as a positive control and boiled S9 fractions were used as negative 

controls. Values represent mean ± SEM (n=3). 
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Tables 

Table 1. Esterase activity in human skin cell cultures, human skin S9 fractions and human 
liver S9 fractions 

Cell Type  Hydrolytic 

activity 

(nmol/min/mg) 

HEKa 20.2 ± 1.82 

HEKn  31.6 ± 3.76 

HaCaT 26.2 ± 1.97 

A431  16.7 ± 1.11 

Human skin  39.0 ± 11.54 

Human Liver  167.2 ± 5.50 

   Data are the Mean ± SEM. N = 3. 
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Table 2. Carboxylesterase activity in human skin cell cultures, human skin S9 fractions and 
human liver S9 fractions  

Cell Type  Hydrolytic 

activity 

(nmol/min/mg) 

HEKa 40.9 ± 8.87 

HEKn  125.8 ± 5.87 

HaCaT 103.0 ± 9.65 

A431  57.3 ± 7.56 

Human skin  114.3 ± 5.60 

Human Liver  217.7 ± 13.83 

  Data are the Mean ± SEM. N = 3. 
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